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The aporphine alkaloids constitute the second-largest group of isoquinoline alkaloids. Nevertheless, only a relatively small 
number of natural aporphines and their derivatives have been studied from a pharmacological viewpoint. Here we review the 
pharmacological data available for these compounds as related to their dopaminergic, noradrenergic and serotonergic activities, 
and also some results pertaining to their effects on ion channels and enzymes.  
 
Keywords:  aporphine alkaloids, semi-synthetic derivatives, dopamine, norepinephrine, serotonin, ion channels, enzymes. 
 
 
 
The aporphines are alkaloids and related compounds 
that share the otherwise unusual 5,6,6a,7-tetrahydro-
4H-dibenzo[de,g]quinoline skeleton (Figure 1).  

 
Figure 1: structure and numbering of the aporphine skeleton. 

 
Their natural representatives usually bear a methyl 
group on N-6, but the corresponding secondary 
amines or noraporphines, and the N,N-dimethylated 
quaternary salts are also well known. They   
constitute one of the largest groups of isoquinoline 
alkaloids and together with biosynthetically related 
structures such as proaporphines, oxoaporphines, etc., 
are widespread in the more ‘primitive’ groups of 
angiosperms that include the Magnoliaceae, 
Annonaceae, Monimiaceae, Menispermaceae, Laura-
ceae, Ranunculaceae, Berberidaceae, Papaveraceae 
and related families. Although they seldom 

accumulate in high concentrations, some plant tissues 
(e.g. the bark of Peumus boldus Molina, 
Monimiaceae) can contain more than 10% dry weight 
of these substances. Both absolute configurations at 
C-6a occur naturally. As a consequence of            
their different biosynthetic origins, the ring              
D-unsubstituted aporphines and those bearing a 
single oxygen substituent on this ring generally 
belong to the (6aR), levorotatory series, while those 
with a second substituent on this ring are (6aS) and 
dextrorotatory. It should be pointed out that the  
semi-rigid conformation of these compounds forces 
the biphenyl moiety to adopt a twisted conformation 
with a sign that depends on the configuration at C-6a.  
 
Shamma conjectured that the difference in the 
absolute values of the optical rotations of       
1,2,9,10- and 1,2,10,11-tetraoxygenated aporphines 
could be explained by a greater torsion angle in the 
com-pounds with greater steric compression between 
the C-1 and C-11 substituents [1]. The solid phase 
torsion angles were discussed thirty years ago for the 
three aporphine crystal structures known at that time 
[2], and much more extensively with additional data 
that indicated that when only one of these key 
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positions, i.e. C-1 or C-11, is substituted with a 
hydroxyl or a methoxyl group, the torsion angle is 
less than 30º (sometimes, although not usually, much 
less), and when these two positions bear oxygen 
substituents, the torsion angle exceeds 30º, but not by 
much. It therefore seems possible that crystal packing 
forces tend to even out the differences between the 
torsion angles dictated by the twist in the partially 
saturated ring C and the mutual repulsion of the 
atoms or substituents at C-1 and C-11 [3]. 
Unpublished calculations indicate that the aporphine 
skeleton is far from rigid and some degree of 
distortion can easily be accommodated by receptor 
interactions. The same idea is implicit in the 
suggestion that some aporphines can adopt nearly 
planar conformations and behave as ‘adaptive’ DNA 
intercalators [4]. Thus, a final answer to this problem, 
of interest for the interactions of aporphines with 
biological targets, will depend on a systematic study 
in solution, combining theoretical and experimental 
approaches.   
 

Dopaminergic activity 

The name ‘aporphine’ stems from that of their first 
known (unnatural) representative, (-)-apomorphine or 
(6aR)(-)-10,11-dihydroxyaporphine, produced by 
acid-catalyzed rearrangement of morphine [5]. This 
substance, a non-selective dopamine receptor agonist, 
is easily the aporphine that has undergone most 
pharmacological studies. A very recent review on the 
development of dopamine receptor subtype-selective 
agents includes a couple of sections on aporphines, 
largely apomorphine analogues [6], and was closely 
followed by another written by the same team, more 
specifically dedicated to semi-synthetic and natural 
dopaminergic aporphinoids [7].  
 
The dopaminergic agonist activity of apomorphine 
itself, long known as a centrally-acting emetic, seems 
to have been documented for the first time in 1966 
[8]. A practical synthesis of enantiomerically pure 
apomorphines [9] and the subsequent testing of a 
broad range of synthetic analogues led to the 
generally accepted proposal that in the aporphine 
series dopaminergic agonism is associated with the 
(6aR) configuration and enhanced by the presence of 
a hydroxyl group at C-11 [10]. As the dopaminergic 
activities of apomorphine and its analogues have 
been extensively and recently reviewed [7], we will 
not address them here. 

 
The catatonia that naturally occurring            
(6aS)(+)-bulbocapnine  (Figure 2)  causes  in  animals  

 
Figure 2: structures of some representative (6aS)(+)-aporphine alkaloids. 
 
[11], an early model of schizophrenia, was only 
ascribed in 1971 to dopaminergic antagonism [12]. 
Many years later bulbocapnine and its (6aS)(+) 
congeners corytuberine, boldine and glaucine  
(Figure 2) were shown to exert neuroleptic-like 
effects [13], suggestive of dopaminergic antagonism 
as a common feature of this group of natural 
products. This was confirmed for boldine and 
glaucine [14] and extended to some halogenated 
derivatives of these alkaloids and of the closely 
related predicentrine (9-O-methyl-boldine) [15-17]. 
At about the same time, the expected, nonselective 
dopaminergic agonist activity of the (6aR) and       
11-hydroxylated pukateine (Figure 4) was confirmed 
[18].  
 
Shortly after the identification of bulbocapnine as a 
dopamine antagonist, a couple of papers confirmed 
this activity in different models. Thus, it was shown 
to antagonize adrenergic inhibition in ganglia of the 
urinary bladder [19] and in right cardioaccelerator 
postganglionic nerves [20]. In addition to its 
behavioral effects reminiscent of neuroleptics [13], it 
was more recently found to inhibit tyrosine 
hydroxylase, the rate-limiting enzyme of dopamine 
bio-synthesis, thereby reducing the dopamine content 
of cultured PC12 cells [21, 22], and providing an 
additional mechanism to decrease dopaminergic 
neurotransmission. 
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Figure 3: structures of miscellaneous (6aS)(+)- aporphine alkaloids. 
 
Once thought to block D1-like dopamine receptors 
selectively, this was convincingly disproved in 1986 
[23]. A similar lack of selectivity, at least as far as 
dopamine receptor binding is concerned, was 
observed for boldine and glaucine. Unexpectedly, 
although the affinities of boldine for D1- and D2-like 
dopamine receptors in vitro are an order of 
magnitude better than those of glaucine, the latter is 
more potent in behavioral assays, suggesting that the 
less lipophilic boldine might have less favorable 
pharmacokinetics [14]. This hypothesis was later 
supported by a study showing that the plasma half-
life of boldine in rats is of only a few minutes, that 
the alkaloid is rapidly and extensively glucuronidated 
in the liver, and that most of the injected boldine is 
excreted in the urine as a glucuronide. On the other 
hand, Phase I oxidative demethylation pathways do 
not seem to be important [24, 25]. 
 
The activity of electrophilic substitution products of 
1,2,9,10-tetraoxygenated aporphines (Figure 4) 
deserves special mention. Bromination of boldine at 
C-3 and C-8 with molecular bromine in carbon 
tetrachloride had been described many years earlier 
in a paper on the biosynthesis of this alkaloid [26]. 
Use of N-bromosuccinimide and subsequently         
N-chloro- or iodosuccinimide in trifluoroacetic acid a 

 
 

 
Figure 4: structures of boldine derivatives mentioned in this review. 

 
as the halogen source led to the preparation of the    
3-bromo-, 3-chloro-, 3-iodo-, 3,8-dibromo-, and 3,8-
dichloro derivatives. Radioligand displacement 
studies with these products showed that the mono- or 
dibromo boldines and 3-chloroboldine have slightly 
decreased affinities for D2-like receptors, but 
increased D1-like receptor affinities, leading to 9- to 
16-fold selectivities. Although 3-iodoboldine binds 
more strongly than boldine to both major receptor 
types, it has a very low IC50 value at D1-like 
receptors (2-3 nM), and its selectivity vs. D2-like 
receptors rises to about 32-fold [15].  
 
The O-methylation of boldine with diazomethane 
allows the 9-O-methyl derivative predicentrine to be 
isolated in addition to the di-O-methylated glaucine, 
apparently due to the more rapid reaction of the C-9 
hydroxyl group because of its greater acidity and/or 
its greater exposure due to the preferred coplanarity 
of the C-10 methoxyl group with aromatic ring D, in 
contrast to the necessarily perpendicular arrangement 
of the C-1 methoxyl group as a consequence of its 
compression between the C-2 hydroxyl and the C-11 
hydrogen [27, 28]. The same protocols used before 
for boldine, glaucine and the haloboldines showed 
that predicentrine has marginal D1-like dopamine 
receptor selectivity, but its 3-bromo- and iodo 
derivatives, though somewhat less potent than          
3-iodoboldine, exhibit about 41-fold and 139-fold 
preferences for the D1-like receptor [17] (Table 1). 
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Table 1: Ki values for the displacement of [3H]SCH23390 and 
[3H]raclopride (from rat brain D1-like and D2-like dopamine receptors, 
respectively) by boldine and derivatives [16, 17]. 
 

Aporphine D1 Ki (nM) D2 Ki (nM)
Boldine 294 366
3-Chloroboldine 60 507
3-Bromoboldine 49 739
3,8-Dibromoboldine 152 1,345
3-Iodoboldine 2 68
O,O’-Dipivaloylboldine 464 1,898
8-Nitrosoboldine 25 5,116
8-Aminoboldine 962 569
Predicentrine 243 761
3-Bromopredicentrine 15 613
3,8-Dibromopredicentrine 36 866
3-Iodopredicentrine 6 831
Glaucine 2,868 2,831
3-Chloroglaucine 8,566 7,423
3,8-Dichloroglaucine 27,794 7,958
3-Bromoglaucine 522 2,359
3,8-Dibromoglaucine 35,074 10,405
3-Iodoglaucine 2,110 4,514

 
Boldine undergoes facile nitrosation with sodium 
nitrite in acetic acid to afford 8-nitrosoboldine and, 
after catalytic hydrogenation, 8-aminoboldine [29]. 
Radioligand displacement by these two derivatives 
showed that the 8-amino compound binds with 
negligible selectivity to both major dopamine 
receptor families and with slightly lower affinities 
than boldine, while 8-nitrosoboldine binds rather 
strongly to D1-like receptors (IC50 = 34 nM) with 
more than 200-fold selectivity over D2-like receptors 
[16] (Table 1). 
 
Considering the unfavorable pharmacokinetics of 
boldine [14, 25], its more lipophilic derivatives might 
be expected to have stronger in vivo activities. For 
the sake of comparison, the Log D values were 
determined for some of these compounds using the 
shake-flask method with the 1-octanol / phosphate 
buffer (pH = 7.4) system and are summarized in 
Table 2 [30], together with the calculated (ClogP) 
values for the neutral compounds. 
 

Table 2: Distribution constants (1-octanol / phosphate buffer,                
pH = 7.4)  [30] and ClogP values for boldine and derivatives. 

 

Aporphine Log D ClogP
3-Iodoboldine 1.88 3.12
8-Nitrosoboldine 1.56 2.05
3-Bromoboldine 1.23 2.93
3-Chloroboldine 1.19 2.73
O,O’-Dipivaloylboldine 1.18 4.41
Glaucine 0.95 3.08
Predicentrine 0.79 2.60
Boldine 0.78 2.13
8-Aminoboldine 0.36 0.80

 

The ester derivative 2,9-O,O’-dipivaloylboldine 
showed an unexpectedly low distribution constant, 
but it nevertheless binds to D1-like receptors with 
only slightly lower affinity than boldine, and also has 
modest affinity for D2-like receptors [16]. The latter 
observation is of interest considering the adrenergic 
antagonist activity attributed to 2,9-O,O’-diacetyl-
boldine (see below). 
 

Adrenergic, calcium channel and 
phosphodiesterase inhibitory activities 

 

(6aS)(+)-Glaucine has been in clinical use in Eastern 
Europe for many years as a non-narcotic antitussive, 
and has therefore been the subject of many 
pharmacological studies. Its hypotensive action, for 
example, is known at least since 1979 [31]. 
Experiments with rat vas deferens suggested that 
glaucine is a non-selective α1- and α2-adrenoceptor 
antagonist, and a weak calcium channel blocker. 
Interestingly, in spite of its recorded α-adrenoceptor 
antagonism, glaucine did not modify norepinephrine-
induced cardiovascular effects, but markedly reduced 
those elicited by nicotine [32]. In conscious, 
normotensive rats, glaucine had no appreciable 
cardiovascular effects, but in anesthetized animals it 
significantly reduced mean arterial pressure and heart 
rate [33]. 
 
The first report on the α1-adrenergic antagonism of 
the (6aS)(+) aporphine alkaloids boldine and glaucine 
(Figure 2) was apparently published in 1990 [34]. In 
a subsequent paper, boldine was shown to inhibit 
contractions evoked by noradrenaline in rat aorta and 
also behaved as a calcium entry blocker with affinity 
for the benzothiazepine but not the dihydropyridine 
binding site on voltage-operated calcium channels 
[35]. Unlike glaucine [36,37], which binds to         
α1-adrenoceptors and the benzothiazepine site on 
calcium channels, but also inhibits phosphodiesterase 
IV, boldine has negligible inhibitory effects on all 
phosphodiesterase forms. Boldine and glaucine were 
studied further to show that their specific calcium 
entry blocking activity does not affect the cellular 
contractile machinery or intracellular calcium levels 
[38]. α1-Adrenoceptor blockade by boldine of 
noradrenaline-elicited contraction of the guinea-pig 
aorta has the rather low pA2 value of 5.64 [39]. 
Comparison of boldine with its 9-O-methyl 
derivative predicentrine and its 2,9-O,O’-dimethyl 
derivative glaucine revealed that, although all three 
alkaloids bind selectively to α1-adrenoceptors, the 
affinity of glaucine is about 10 times lower than that 
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of the other two, which are also more subtype-
selective, suggesting that both affinity and selectivity 
are favored by the presence of a hydroxyl group at  
C-2 [40]. 
 
The vasodilator effects of boldine are related to both 
α1 and α2-adrenoceptor antagonism [41,42]. A more 
detailed study of boldine in a number of different 
models, complemented with radioligand binding 
studies, revealed that this alkaloid binds to human 
α1A-adrenoceptors with pKi = 7.21, but does not 
discriminate between α1B- and α1D-receptors for 
which its affinity is barely micromolar. The alkaloid 
also shows calcium channel blocking properties 
approximately 50 times weaker than diltiazem [43].  
 
Several of the substituted boldine derivatives   
(Figure 4) mentioned above as dopamine receptor 
ligands were assessed at α1-adrenoceptors in rat brain 
cerebral cortex membranes. The halogenated 
compounds bound slightly more strongly than 
boldine, but its 8-nitroso (reported erroneously as the 
3-nitroso) [44] and 8-amino derivatives exhibited 
very low affinity for the α1A subtype, and                 
8-aminoboldine is practically devoid of affinity for 
the α1D subtype (pKi < 2.5) [45] (Table 3). The 
boldine derivatives bound poorly to the diltiazem site 
of potential-operated calcium channels [44].  
 
Table 3: pKi values for the displacement of [3H]prazosin (from rat brain 
α1A receptor high affinity sites) by boldine and derivatives [40, 44, 45]. 

 

Aporphine pKi
Boldine 8.31
3-Chloroboldine 8.65
3-Bromoboldine 8.93
3,8-Dibromoboldine 8.87
8-Nitrosoboldine 6.41
8-Aminoboldine 6.37
Predicentrine 8.13
Glaucine 7.12

 
2,9-O,O’-Diacetylboldine is now sold as a skin-
lightening component of cosmetic ingredients such as 
Lumiskin™ and Lumiwhite™. This activity is 
ascribed to α-adrenergic antagonism (which seems 
less surprising given the D1-like dopaminergic 
activity of the dipivaloyl ester [16]), related to 
interference with intracellular calcium levels leading 
to inhibition of the phospholipase C / IP3 / PKC 
cascade and the subsequent down-regulation of 
tyrosinase activity [46, 47]. 
 
(6aS)(+)-Dicentrine (Figure 3) was shown to be a 
vascular α1-adrenoceptor antagonist with higher 

potency that phentolamine (pA2 = 8.19 vs 7.53) [48]. 
In anesthetized rats, 0.1, 0.5 and 1.0 mg/kg i.v. 
elicited a dose-related reduction of mean arterial 
pressure which reached its maximum after 5-10 
minutes and persisted for 2 hours without causing 
significant changes in heart rate, output or stroke 
volume. Oral administration (5 or 8 mg/kg) to 
conscious, spontaneously hypertensive rats caused a 
hypotensive effect lasting 15 hours. As this effect 
was abolished by α1-adrenoceptor blockade, it was 
concluded that antagonism of these receptors 
underlies the reduction of arterial blood pressure 
[49]. The same team showed subsequently that 
dicentrine blocks sodium and potassium channels, 
affecting the function of isolated rat heart cells in the 
same way and to nearly the same extent as quinidine 
[50]. Further evidence that dicentrine seems to be an 
α1D-(vs α1B) adrenoceptor blocker was provided by a 
comparative study in rat aortic rings and spleen [51]. 
 
(6aS)(+)-Nantenine has attracted an unusual degree 
of attention in the last few years. A preliminary study 
of its vasorelaxant effects in rat aorta, suggesting   
α1-adrenergic and calcium channel antagonism, but 
neither activation of ATP-sensitive potassium 
channels nor calcium-activated high-conductance 
potassium channels, was published in 2001 [52]. A 
couple of years later similar conclusions were 
reached in rat vas deferens [53] and, comparing 
several different rat isolated tissues, the α1-adrenergic 
(and serotonergic, see below) blocking activities were 
judged to be responsible for the pharmacological 
effects at concentrations below 1 μM, while above 
this concentration calcium channel blockade, and 
possibly protein kinase C inhibition and/or             
α2-adrenoceptor antagonism were viewed as likely 
mechanisms [54]. The in vivo inhibition of adrenergic 
pressor responses in both anesthetized and pithed rats 
and in guinea pig vas deferens also led to the 
conclusion that this alkaloid antagonizes α1- and    
α2-adrenoceptors and 5-HT2A serotonin receptors 
[55]. These results were confirmed in part in a later 
paper, although the participation of α2-adrenoceptor 
antagonism and calcium channel blockage was put in 
doubt [56].  
 
(6aS)(+)-N-Methylactinodaphnine (Figure 3) is an 
antagonist of the phenylephrine-elicited contraction 
of rat thoracic aorta and the clonidine-induced 
inhibition of the twitch response of rat vas deferens. 
Additional experiments showed that it is a selective 
α1-adrenoceptor antagonist with selectivity for the 
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α1A subtype and a rather weak blocker of serotonin 
receptors (see below), but it has extremely low 
affinity for calcium channels and for a variety of 
other receptors [57]. Ocoteine and N-methylactino-
daphnine have very similar pharmacology [58].     
Isocorydine (Figure 3) also relaxes noradrenaline or 
KCl-induced contraction of the rat aorta, suggesting 
that it is another α1-adrenoceptor and calcium 
channel blocker rather like the aporphines mentioned 
above [59]. 
 
The adrenergic effects of a few (6aR)(-)-aporphines 
(Figure 5) have also been examined. Norushinsunine 
is the only 7-hydroxylated aporphine (strictly, a 
noraporphine) studied so far, and it seems to differ 
from the other α1-adrenoceptor blockers in that its 
vasorelaxant effect depends more strongly on the 
blockade of L-type calcium channels [60].        
(6aR)(-)-Anonaine (the unhydroxylated analog of 
nor-ushinsunine) and roemerine (N-methylanonaine) 
behave similarly [61]. A more recent comparison of 
anonaine, roemerine and pukateine determined that 
they resemble the (6aS)(+)-aporphines in that they are 
more potent as α1-adrenoceptor inhibitors than as 
voltage-operated calcium channel blockers (Table 4).  
 
Table 4: pKi values for the displacement of [3H]prazosin (from cloned α1 
receptor subtpes) by 1,2-methylenedioxy (6aR)-aporphines [62]. 
 

Aporphine α1A pKi α1B pKi α1D pKi
Anonaine 6.18 5.13 5.64
Roemerine 6.61 5.53 6.22
Pukateine 5.84 5.00 6.10

 
Thus, all three block α1A- and α1D-adrenoceptors 
more than the α1B subtype. Similarly to (6aR)(-)-nor-
ushinsunine, mentioned above [60], their affinities 
are rather low and they bind to the diltiazem calcium 
channel site with the also low pKi values 4.99, 5.26, 
and 4.62, respectively [62]. Likewise, none of them 
inhibit the phosphodiesterases tested (PDE 1-5) to 
any significant extent [62]. 
 
Boldine and other aporphines, particularly after 
quaternization of the nitrogen atom, readily undergo 
Hofmann elimination to afford ring B-opened     
seco-aporphines. N-Allylsecoboldine (Figure 4) has 
been rather more extensively studied than others, and 
was early shown to block α1-adrenergic receptors  
and potential-gated calcium channels [77]. Its α1A-
adrenoceptor blocking activity has been suggested to 
underlie the inhibitory effect of this derivative (albeit 
at micromolar concentrations) on neurally mediated 
contraction  of  human  hyperplastic   prostate   tissue 
 

 

 
Figure 5: structures of miscellaneous (6aR)(-)- aporphine alkaloids. 

 
[78]. N-Carbethoxysecoglaucine, on the contrary, 
was inactive on rat isolated aorta and did not modify 
arterial pressure or heart rate in rats nor affect the rate 
and force of contraction of isolated rat atria [33]. 
 

Serotonergic activity 
 

Nantenine was first recorded as a vascular 
serotonergic antagonist in 1984 [63]. This alkaloid 
inhibits the 5-HT2A receptor-mediated head-     
twitch, but not the 5-HT1A induced head weaving 
response in mice at 13.3, 20, and 30 mg/kg i.p. 
Nantenine showed slightly selective affinity for       
5-HT2 (Ki = 0.4 μM, pKi = 6.4) over α1-adrenoceptors 
and D2-dopaminergic receptors (Ki = 2.1 and 1.7 μM, 
pKi = 5.7 and 5.8, respectively) [64]. It also inhibits 
several cation-dependent ATP-ases, apparently by 
interacting with the substrate or by competing with 
the inorganic cation [65]. The anticonvulsant effect 
of nantenine at low doses seems to be due to the 
stimulation of phosphatase activity, while its 
convulsant effect at high doses might be related to 
Na+/K+-ATPase inhibition [66]. The anticonvulsant 
and convulsant profiles of nantenine were further 
studied in the pentylenetetrazole and electroshock-
induced seizure models [67]. A recent paper reported 
that nantenine blocks and reverses hyperthermia, 
attenuates lethality and reduces hyperlocomotion and 
head twitches induced in mice by the paradigmatic 
entactogen MDMA (‘ecstasy’) [68]. All these effects 
of nantenine can be attributed at least in part to 
blockade of serotonin and/or norepinephrine receptor 
activation. 
 
Quite recently, (+)-N-methyllaurotetanine (Figure 2), 
which only differs from nantenine in that the       
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9,10-methylenedioxy ring is open, was shown to have 
high affinity for 5-HT1A receptors (Ki = 85 nM,      
pKi = 7.07) [69]. Glaucine is a fairly potent 
antagonist of serotonin-induced contraction of rat 
thoracic aorta [70]. Dicentrine (Figure 3) relaxes 
serotonin-induced rat stomach smooth muscle, 
suggesting that it can antagonize 5-HT2B receptors 
[71]. 
 
Assays of (±)-nantenine, (±)-nornantenine, (±)-N-
ethylnornantenine, (±)-domesticine and (±)-nor-
domesticine are unusual instances of the testing of 
synthetic, racemic aporphines [72,73]. (±)-
Domesticine was found to be an α1D-adrenoceptor 
antagonist in rat tissues, with 34-fold and 9-fold 
selective binding with regard to cloned human       
α1A and α1B receptors, respectively, and 183-fold 
selectivity with regard to rat cerebral cortical 5-HT1A 
receptor binding [74]. In general, affinities and 
functional potencies were lower for the secondary 
amines and for the nantenines than for the 
domesticines [72]. Possible interactions between the 
enantiomers in these studies could obscure some of 
their effects. It should be pointed out that             
these authors refer erroneously to the selective      
α1D-adrenoceptor blocker (-)-discretamine as an 
aporphine when it is in fact a berbine or 
tetrahydroberberine alkaloid.  
 
As mentioned above, N-methylactinodaphnine and 
ocoteine have weak antagonist activity at serotonin 
receptors [57,58]. (+)-Glaucine relaxes serotonin-
elicited rat aortal contraction with similar potency to 
papaverine, although the specific 5-HT receptor 
subtype involved was not identified [70]. 
 

Nicotinic cholinergic activity 

To the best of our knowledge, boldine and a couple 
of its brominated derivatives are the only aporphines 
that have been tested as nicotinic cholinergic ligands. 
Their affinities for neuronal nicotinic acetylcholine 
receptors (nAChR), an important family of ligand-
gated cation channels, decrease on going from the 3-
bromo- to the 3,8-dibromo compound, suggesting 
that halogenation is not a useful approach to obtain 
more active nAChR blockers [75] (Table 4). 
 
On the other hand, N,N-dimethylaporphinium salts, 
like many other quaternary nitrogen derivatives, 
could be expected to block nAChR. A study dating 
back to 1975 showed that the metho salts of the 
natural (6aS)(+)-corydine, isocorydine, glaucine, and 

boldine, are slightly more potent than their unnatural 
enantiomers at the neuromuscular junction [76]. 
Quite recently it was shown that the methiodides of 
boldine, predicentrine, glaucine, 3-bromo- and      
3,8-dibromo-boldine, and xanthoplanine iodide (the 
methiodide of N-methyllaurotetanine) also block 
neuronal nicotinic acetylcholine receptors at low 
micromolar concentrations, with slight (2 to 20-fold) 
selectivity for the α4β2 over the α7 subtype [75] 
(Table 5). 
 
Table 5: Binding affinities of some quaternary and tertiary (6aS)-
aporphines for the major (cloned human) central nervous system nicotinc 
acetylcholine receptor subtypes [75]. 
 

Aporphine α7 Ki (μM) α4β2 Ki (μM)
Boldine methiodide 15 2.5
Predicentrine methiodide 21 0.97
Xanthoplanine iodide 10 0.91
Glaucine methiodide 18 10
Boldine 67 3
3-Bromoboldine 83 30
3,8-Dibromoboldine 95 31

 
Conclusions 

Aside from the probably general antioxidative, 
cytoprotective and related properties of aporphine 
alkaloids, their derivatives and enantiomers [79], a 
salient feature of the pharmacological studies 
reviewed here is the recurrent record of affinities for 
monoamine receptors. Although most of these studies 
have dwelt on a single major receptor type (i.e.      
α1-adrenoceptors, D1-like or D2-like dopamine 
receptors, etc.), it seems likely that many aporphines 
bind significantly to several of these receptors, with 
varying degrees of selectivity. In this sense, one 
might suppose that this class of compounds contains 
many ‘dirty’ drugs, meaning that they interact with 
two or more biological targets. Although the drug 
discovery efforts of the major companies have 
concentrated for the last couple of decades on agents 
acting on single targets, it is becoming increasingly 
clear that disorders with multifactorial origins tend to 
respond better to multifunctional drugs [80,81].  
 
This is particularly true of neuropsychiatric illnesses, 
as shown for the atypical antipsychotics [82]. Many 
of the older neuroleptic drugs that are characterized 
mainly by their D2 dopaminergic receptor antagonism 
have a tendency to cause serious extra-pyramidal side 
effects (motion disorders) and are of little use in the 
management of the so-called negative symptoms of 
schizophrenia (flattened affect, cognitive impair-
ment). On the other hand, atypical antipsychotics 
such as clozapine, olanzapine and risperidone have 
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reduced extra-pyramidal liability and also exert 
beneficial effects on negative symptomatology. 
These advantages of the newer drugs have been 
variously ascribed to the blockade of neuro-
transmitter receptors other than the usually 
implicated dopaminergic D2 type and the serotonergic 
5-HT2 type. More recently, the activation of 5-HT1A 
receptors by these drugs has been suggested to result 
from simultaneous weak D2 and potent 5-HT2A 
antagonism [83], which may be responsible for the 
improved cognitive function observed with some of 
these compounds. This and related findings have led 
to a search for novel potential antipsychotics with    
5-HT1A agonist activity [84-86] which in addition has 
been suggested to be useful in the control of 
parkinsonian tremor [87]. 
 
Among the aporphines reviewed here, D1-like and 
D2-like receptor antagonism (or perhaps partial 
agonism) and binding to 5-HT1A receptors have been 
recorded. It does not seem to be an excessive stretch 
of the imagination to hope that these activities 
associated with the aporphine scaffold can be 
modulated until an optimal balance is struck for the 

treatment of a particular subset of patients. Similarly, 
our suggestion that the antioxidative, non-selective 
dopamine agonist pukateine might be a lead for the 
development of novel antiparkinsonian drugs [18], 
could be complemented with a search for analogues 
that additionally inhibit monoamine oxidase-B and/or 
chelate intracellular iron. Further exploration of the 
adrenergic antagonist, calcium channel blocking and 
phosphodiesterase inhibitory actions of aporphines 
could make valuable contributions to the therapy of a 
range of cardiovascular diseases. In summary, the 
relatively scarce pharmacological studies carried out 
on natural aporphines, considering the enormous 
structural variety of these alkaloids, have focused 
excessively on single targets and have made very 
limited incursions into semi-synthetic modifications. 
Interest in these compounds in the pharmaceutical 
industry is understandably limited, but the enormous 
potential for the discovery of useful drugs based on 
sometimes quite abundant alkaloids poses a most 
attractive challenge for natural products chemists 
with a taste for medicinal chemistry and a friendly 
relationship with pharmacologists. 
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