Spectral Assignments and Reference Data

Complete structural and spectral assignment of oxoisoaporphines by HMQC and HMBC experiments

Eduardo Sobarzo-Sánchez, ${ }^{1 *}$ Bruce K. Cassels, ${ }^{1}$ Carolina Jullian ${ }^{2}$ and Luis Castedo ${ }^{3}$
${ }^{1}$ Department of Chemistry, Faculty of Sciences, and Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, University of Chile, Casilla 653, Santiago, Chile
${ }^{2}$ Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Casilla 233, Santiago 1, Chile
${ }^{3}$ Department of Organic Chemistry and CSIC Associated Unit, Faculty of Chemistry, University of Santiago, 15706 Santiago de Compostela, Spain

Received 12 November 2002; accepted 7 January 2003
The oxoisoaporphines 2,3-dihydro-7H-dibenzo[de, h]qu-inolin-7-one, 2,3-dihydro-5-methoxy-7H-dibenzo [de, h] quinolin-7-one, 5-methoxy-6-hydroxy-2,3-dihydro-7Hdibenzo[de, h]quinolin-7-one, 5,6-dimethoxy-2,3-dihydro$7 H$-dibenzo[de, h]quinolin-7-one and 5,6-methylenedi-oxy-2,3-dihydro-7H-dibenzo[de,h]quinolin-7-one were prepared by cyclization of phenylethylaminophthalides with polyphosphoric acid or by treating 1-(2-carboxyph-enyl)-3,4-dihydroisoquinoline hydrochloride with sulfuric acid at $0^{\circ} \mathrm{C}$. The structures were confirmed and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were completely assigned using a combination of one- and two-dimensional NMR techniques. Copyright © 2003 John Wiley \& Sons, Ltd.

KEYWORDS: NMR; ${ }^{1} \mathrm{H}$ NMR; ${ }^{13} \mathrm{C}$ NMR; ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY; HMBC; HMQC; oxoisoaporphines;
2,3-dihydro-7H-dibenzo[de,h]quinolin-7-ones

INTRODUCTION

The oxoisoaporphine alkaloids isolated since the early 1980s from the rhizomes of Menispermum dauricum DC (Menispermaceae) are an unusual type of isoquinoline structure with a dubious biogenesis having a 7 H -dibenzo[de, h]quinolin- 7 -one skeleton confirmed through total synthesis and spectroscopic assignment. ${ }^{1-4}$ Some 2,3-dihydrooxoisoaporphines have been synthesized previously, together with a number of side-products, by cyclization of phenylethylaminophthalides with polyphosphoric acid, although their spectral characterization is poor by present-day standards. ${ }^{5}$ The unsubstituted 2,3-dihydrooxoisoaporphine had been synthetized by a different route by heating 1-(2-carboxyphenyl)-3,4dihydroisoquinoline hydrochloride in sulfuric acid, and the relevant spectroscopic information is also incomplete. ${ }^{6}$

In this paper, we describe the structure confirmation, conducted entirely by the use of NMR spectroscopy, and the complete chemical shift assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of several 2,3-dihydrooxoisoaporphine derivatives. This was achieved through the concerted application of a variety of one- and twodimensional techniques such as $\operatorname{COSY}^{7}, \mathrm{HMQC}^{8}$ and HMBC^{9} and the incorporation of the well-documented ${ }^{10}$ pulsed field gradients (PFG). ${ }^{11}$

These compounds have a structure consisting of two four-spin ${ }^{1} \mathrm{H}$ systems (two methylenes and four aromatic protons) and an
*Correspondence to: Eduardo Sobarzo-Sánchez, Department of Chemistry, Faculty of Sciences, and Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, University of Chile, Casilla 653, Santiago, Chile. E-mail: esobarzo@usc.es
Contract/grant sponsor: FONDECYT; Contract/grant number: 2010056.
additional three- or two-spin system or a singlet depending on the substitution pattern on ring B. These signals can be assigned unequivocally on the basis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra. The isolation of these systems by a nitrogen heteroatom and the carbonyl group makes the assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ RMN spectra relatively straightforward.

RESULTS AND DISCUSSION

The dihydrooxoisoaporphines $4-7$ were obtained starting from the condensation products of 3,4-dimethoxyphenylethylamine (homoveratrylamine) (1) or 3,4-methylenedioxyphenylethylamine (homopiperonylamine) (2) with phthalaldehydic acid (3). The intermediates were subsequently treated with polyphosphoric acid to give the final products. On the other hand, 11 was obtained via N phenethylphthalimide (8), which was partially reduced and cyclized to 5,6,8,12b-tetrahydro-8-isoindolo[1,2-a]isoquinolone (9) and this converted into 1-(2-carboxyphenyl)-3,4-dihydroisoquinoline (10), which was finally cyclized with sulfuric acid. The synthetic routes and the molecular structures of the different 2,3-dihydro-7Hdibenzo $[d e, h]$ quinolin- 7 -ones are shown in Scheme 1.

The ${ }^{1} \mathrm{H}$ NMR spectra of $4-7$ and 11 (Table 1), analyzed with the aid of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC , displayed signals of aliphatic protons coupled mutually at $\delta 4.05-4.20(\mathrm{t}, J=7.5-7.9 \mathrm{~Hz})$ and 2.78-2.96 ($\mathrm{t}, J=7.7-8.3 \mathrm{~Hz}$) assigned to C-2 and C-3, respectively, the former strongly deshielded by the neighboring imine group, and four aromatic protons at $\delta 8.22-8.32(\mathrm{~d}, J=7.5-7.6 \mathrm{~Hz}), 7.59$ (ddd, $J=7.3-8.5,1.1 \mathrm{~Hz}$), $7.6-7.7$ (ddd, $J=7.2-7.4,1.3 \mathrm{~Hz}$) and $8.31-8.41(\mathrm{~d}, J=7.1-7.3 \mathrm{~Hz})$ attributed to $\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-10$ and $\mathrm{C}-11$, respectively, in the D ring. Also, analyzing the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC NMR spectra of 4 , the methoxyl group at C-5 can be easily assigned. The strong deshielding of the proton at C-11, which resonates at $\delta 8.31-8.41$ in all the studied oxoisoaporphines due to the anisotropic effect of the attached quinolone unit, was the starting point for the assignments of the quinoline system. The ${ }^{13} \mathrm{C}$ NMR spectra of all five dihydrooxoisoaporphines showed 13 common carbon resonances corresponding to two methylenes, four methines and seven quaternary carbon atoms. The remaining resonances for ring B varied according to the substitution level, from three methines for 11, to two methines and an additional quaternary carbon for 4 , and one methine and two additional quaternary carbons for 5, 6 and 7 . Important correlations revealed by the HMBC experiment are shown in Table 2 . The imine carbon atom, C-11b, and the carbonyl C-7 were the starting points for assignment of the protons of the methine carbon atoms $\mathrm{C}-8$ and $\mathrm{C}-11$, similarly affected by the deshielding moieties, $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$. For the former, the carbon resonates at almost the same frequency in all five dihydrooxoisoaporphines, between $\delta 154.8$ and 156.1 ppm . However, C-7 resonates close to 184 ppm in 4, 6, 7 and 11, but at 189 ppm in 5 owing to hydrogen bonding of the carbonyl oxygen, evidenced by the chelated $\mathrm{OH}-6$ proton resonance at δ 12.94 ppm .

EXPERIMENTAL

Synthesis of alkoxy-substituted

2,3-dihydro-7H-dibenzo[de,h]quinolin-7-ones (4-7)
A solution of phthalaldehydic acid in toluene was treated with homoveratrylamine or homopiperonylamine and refluxed with stirring under a Dean-Stark trap for 2 h . Each resulting mixture was treated with polyphosphoric acid and kept at $100^{\circ} \mathrm{C}$ for 10 min . The red mixtures were taken up in water, neutralized with aqueous ammonia and extracted with CHCl_{3}. The chloroform extracts were then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residues subjected to silica gel flash chromatography, eluting with hexane-ethyl acetate ($95: 5, \mathrm{v} / \mathrm{v}$) to give, among other side-products, the 2,3-dihydro-7H-dibenzo[de,h]quinolin-7ones 4-7. Their yields and melting-points are reported in Table 3.

Synthesis of 2,3-dihydro-7H-dibenzo[de,h]quinolin-7-one (11) N-Phenethylphthalimide (8) was reduced partially with sodium borohydride in MeOH at room temperature and cyclized with

Spectral Assignments and Reference Data

Table 1. ${ }^{1} \mathrm{H}$ chemical shifts $\delta[\mathrm{H}-\mathrm{X} \text {, multiplicity, } \mathrm{J}(\mathrm{H}, \mathrm{H})(\mathrm{Hz})]^{a}$ of 2,3 -dihydro- 7 H -dibenzo[de, $\left.h\right]$ quinolin- 7 -one ($\mathbf{(1 1)}$, and 5 -methoxy-2,3-dihydro- 7 H -dibenzo[de, $\left.h\right]$ $]$ quinolin- 7 -one (4),

Position	11	4	5	6	7
2	$\begin{aligned} & 4.20[\mathrm{H}-2 \alpha / \mathrm{H}-2 \beta, \mathrm{t}, J \\ & (2 \alpha, 2 \beta)=7.5] \end{aligned}$	$\begin{aligned} & 4.15[\mathrm{H}-2 \alpha / \mathrm{H}-2 \beta, \mathrm{t}, \mathrm{~J} \\ & (2 \alpha, 2 \beta)=7.9] \end{aligned}$	$\begin{aligned} & 4.11[\mathrm{H}-2 \alpha / \mathrm{H}-2 \beta, \mathrm{t}, J \\ & (2 \alpha, 2 \beta)=8.1] \end{aligned}$	$4.07[\mathrm{H}-2 \alpha / \mathrm{H}-2 \beta, \mathrm{t}, J(2 \alpha, 2 \beta)=7.7]$	$4.05[\mathrm{H}-2 \alpha / \mathrm{H}-2 \beta, \mathrm{t}, J(2 \alpha, 2 \beta)=8.0]$
3	$\begin{aligned} & 2.96[\mathrm{H}-3 \alpha / \mathrm{H}-3 \beta, \mathrm{t}, J \\ & (3 \alpha, 3 \beta)=7.7] \end{aligned}$	$\begin{aligned} & 2.90[\mathrm{H}-3 \alpha / \mathrm{H}-3 \beta, \mathrm{t}, \mathrm{~J} \\ & (3 \alpha, 3 \beta)=7.7] \end{aligned}$	$\begin{aligned} & 2.81[\mathrm{H}-3 \alpha / \mathrm{H}-3 \beta, \mathrm{t}, \mathrm{~J} \\ & (3 \alpha, 3 \beta)=8.5] \end{aligned}$	$2.86[\mathrm{H}-3 \alpha / \mathrm{H}-3 \beta, \mathrm{t}, J(3 \alpha, 3 \beta)=8.1]$	$2.78[\mathrm{H}-3 \alpha / \mathrm{H}-3 \beta, \mathrm{t}, J(3 \alpha, 3 \beta)=8.3]$
3 a					
3 b					
4	$7.50[\mathrm{H}-4, \mathrm{~d}, \mathrm{~J}(4,5)=7.4]$	$7.59[\mathrm{H}-4, \mathrm{dd}, J(4,6)=2.3]$	6.94	7.01	6.85
5	7.58 [H-5, dd, $J(6,5,4)=7.6]$				
6	$8.18[\mathrm{H}-6, \mathrm{~d}, J(6,5)=7.5]$	$6.99[\mathrm{H}-6, \mathrm{dd}, J(6,4)=2.1]$			
6a					
7a					
8	$8.32[\mathrm{H}-8, \mathrm{~d}, J(8,9)=7.6]$	$8.28[\mathrm{H}-8, \mathrm{~d}, \mathrm{~J}(8,9)=7.5]$	$\begin{aligned} & 8.29[\mathrm{H}-8, \mathrm{dd}, J(8,9)=9.1, J \\ & (9,10)=1.3] \end{aligned}$	$8.22[\mathrm{H}-8, \mathrm{~d}, J(8,9)=7.6]$	$\begin{aligned} & 8.25[\mathrm{H}-8, \mathrm{dd}, J(8,9)=9.1, J(9,10) \\ & =1.4] \end{aligned}$
9	$7.65[\mathrm{H}-9, \mathrm{dd}, J(8,9,10)=6.4]$	$7.61[\mathrm{H}-9, \mathrm{dd}, J(8,9,10)=7.4]$	$\begin{aligned} & 7.63[\mathrm{H}-9, \mathrm{ddd}, J(8,9)=J \\ & (9,10)=7.5, J(9,11)=1.4] \end{aligned}$	$\begin{aligned} & 7.59[\mathrm{H}-9, \mathrm{ddd}, J(8,9)=J(9,10)=7.3, \\ & J(9,11)=1.1] \end{aligned}$	$\begin{aligned} & 7.59[\mathrm{H}-9, \mathrm{ddd}, J(8,9)=J(9,10)=8.5, \\ & J(9,11)=1.2] \end{aligned}$
10	7.73 [H-10, dd, J (9,10,11)	7.70 [H-10, dd, J (9,10,11)	$7.72[\mathrm{H}-10, \mathrm{ddd}, J(9,10)=J$	$7.66[\mathrm{H}-10, \mathrm{ddd}, J(9,10)=J(10,11)$	$7.67[\mathrm{H}-10, \mathrm{ddd}, J(9,10)=J(10,11)$
	= 7.5]	$=6.6]$	$(10,11)=7.5, J(10,8)=1.2]$	$=7.3, J(10,8)=1.3]$	$=8.9, J(10,8)=1.4]$
11	$8.41[\mathrm{H}-11, \mathrm{~d}, J(11,10)=7.4]$	$8.39[\mathrm{H}-11, \mathrm{~d}, \mathrm{~J}(11,10)=7.8]$	$8.39[\mathrm{H}-11, \mathrm{~d}, \mathrm{~J}(11,10)=7.8]$	$8.31[\mathrm{H}-11, \mathrm{~d}, J(11,10)=7.1]$	$8.38[\mathrm{H}-11, \mathrm{~d}, J(11,10)=7.5]$
11a					
11b					
$\mathrm{O}-5-\mathrm{CH}_{3}$	-	3.93	3.98	3.96	-
$\mathrm{O}-6-\mathrm{CH}_{3}$	-	-	-	3.98	-
$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$	-	-	-	-	6.20
$\mathrm{OH}-6$	-	-	12.94	-	-

[^0]
Spectral Assignments and Reference Data

Position	11		4		5		6		7	
	$\delta\left({ }^{13} \mathrm{C}\right)$	$\mathrm{HMBC}^{\text {b }}$								
2	48.59	3	48.54	3	48.04	3	47.98	3	47.75	3
3	25.40	2	25.86	2	24.53	2,4	26.07	2,4	25.28	2,4
3 a	127.9		138.7	2,3	127.7	2,3	133.6	4	130.5	
3 b	126.2	2,3,6	120.3		117.7	3,4	120.2	2, 3, 4	119.4	3,4
4	133.1	3,6	108.1	3,6	116.1	3	116.3	3	112.2	3
5	131.8		162.3	3, $\mathrm{O}-5-\mathrm{CH}_{3}$	150.8	4, O-5-CH3, OH-6	156.6	4, $\mathrm{O}-5-\mathrm{CH}_{3}$	146.4	4, $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$
6	125.8	4	120.4	3,4	151.3	4, OH-6	148.8	4, $\mathrm{O}-6-\mathrm{CH}_{3}$	150.9	$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$
6a	129.9	5	131.8		113.4	OH-6	124.3	4	120.5	
7	184.3	8,11	184.3		189.5	8	184.1	8	182.6	8
7a	132.2	9, 11	132.3	9,11	131.3	9,11	133.8		131.4	9
8	127.3	10	127.3	10	126.5	10	127.2	10	126.6	10
9	131.1	11	131.0	11	130.6	11	131.0	11	129.7	11
10	133.9	8	133.9	8	134.2	8	133.4	8	133.4	8
11	125.0	9	124.9	9	124.7	9	124.6	9	124.7	9
11a	136.3	8,10	136.3	8,10	136.3	8,10	135.6	8,10	135.9	2, 8, 10
11b	156.1	11	155.7	2,11	154.8	2,11	156.0	2,11	155.1	2,11
$\mathrm{O}-5-\mathrm{CH}_{3}$	-	-	56.10		56.25		56.64		-	-
$\mathrm{O}-6-\mathrm{CH}_{3}$	-	-	-	-	-	-	61.79		-	-
$\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$	-	-	-	-	-	-	-	-	103.0	

a In ppm from TMS.
${ }^{\mathrm{b}} \mathrm{C}, \mathrm{H}$ HMBC connectivities.

Spectral Assignments and Reference Data

$a=A P F / 100^{\circ} \mathrm{C} / 10 \mathrm{~min} ., \mathrm{b}=\mathrm{NaBH}_{4} / \mathrm{MeOH}-\mathrm{HCl}$ reflux, $\mathrm{c}=$ air $/ \mathrm{MeOH}$-dimethyl sulphate $/$ heating, $\mathrm{d}=\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{SO}_{3}$
Scheme 1. Syntheses of 2,3-dihydro-7H-dibenzo[de, h]quinolin-7-one (11) and derivatives (4-7).

Table 3. Yields and melting-points of the 2,3-dihydrooxoisoaporphine derivatives

Compound	Melting-point $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
$\mathbf{4}$	$164-165$	30
$\mathbf{5}$	$156-157$	9
$\mathbf{6}$	$154-155$	4
7	$175(\mathrm{~d})^{\mathrm{a}}$	7
$\mathbf{1 1}$	$163-164$	69

${ }^{a}$ Decomposition.
hydrochloric acid to give 5,6,8,12b-tetrahydro-8-isoindolo[1, 2 a]isoquinolone (9) (90%). Compound 9 was then oxidized with air in the presence of $\mathrm{NaOH}-\mathrm{MeOH}$ and dimethyl sulfate to afford by heating 1-(2-methoxycarbonylphenyl)-3,4-dihydroisoquinoline, which was not isolated, but directly hydrolyzed to (10) with hydrochloric acid. Using fuming sulfuric acid at $0-5^{\circ} \mathrm{C}, 11$ was obtained as yellowish needles crystallized from MeOH .

NMR studies

Proton and ${ }^{13} \mathrm{C}$ NMR spectra were acquired using a Bruker Avance DRX 300 spectrometer operating at 300.13 and 75.47 MHz , respectively. All measurements were performed at a probe temperature of 300 K , using solutions of $4,5,6,7$ and 11 in CDCl_{3} containing tetramethylsilane (TMS) as an internal standard. All one- and two-dimensional spectra were acquired with a Bruker inverse 5 mm Z gradient probe. ${ }^{1} \mathrm{H}$ spectra were obtained with a spectral width of 5000 Hz , a 90° flip angle ($10.1 \mu \mathrm{~s}$) and 2 s relaxation delay in 32 scans. The one-dimensional carbon spectrum was obtained with a spectral width of 17000 Hz with 3 s between transients and the
90° pulse was $10 \mu \mathrm{~s}$. The homonuclear ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ shift-correlated 2D spectra were obtained using standard Bruker software (cosygs). The spectral widths were 5000 Hz . The spectra were collected as 512×512 blocks of data and were processed by sinusoidal multiplication in each dimension. Other parameters were as follows: number of increments in $t_{1}, 256$; number of scans, 4 ; and relaxation delay, 2 s.

The HMQC spectra were recorded using standard Bruker software (inv4gstp). These spectra were collected with 512×512 data points, a data acquisition of four scans $\times F_{2}$ and 256 increments in t_{1}. Spectral widths of 5000 and 15000 Hz were employed in the $F_{2}\left({ }^{1} \mathrm{H}\right)$ and $F_{1}\left({ }^{13} \mathrm{C}\right)$ domains, respectively. Data were processed using Qsine functions for weighting in both dimensions. The HMBC spectra were obtained using the inv4gslplrnd pulse sequence in the Bruker software and collected with 512×512 data points, a data acquisition of 10 scans $\times F_{2}$ and 256 increments in t_{1}. The spectral widths were $5000 \mathrm{~Hz}\left(F_{2}\right)$ and $18000 \mathrm{~Hz}\left(F_{1}\right)$ and the delays Δ_{1} and Δ_{2} were set to 3.45 and 65 ms , respectively. Data were processed using an exponential window in F_{2} with $\mathrm{lb}=0.3 \mathrm{~Hz}$ and Qsine window in F_{1}.

Acknowledgements

E.S.-S. thanks Fundación Andes for a scholarship. This work was supported in part by FONDECYT grant No. 2010056.

REFERENCES

. Kunitomo J-I, Satoh M. Chem. Pharm. Bull. 1982; 30: 2659.
2. Kunitomo J-I, Satoh M, Shingu T. Tetrahedron 1983; 39: 3261.
3. Takani M, Takasu Y, Takahashi K. Chem. Pharm. Bull. 1983; 31: 3091.
4. Kunitomo J-I, Kaede S, Satoh M. Chem. Pharm. Bull. 1985; 33: 2778.

Spectral Assignments and Reference Data

5. Walker GN, Kempton RJ. J. Org. Chem. 1971; 36: 1413.
6. Fabre J-L, Farge D, James C. US Patent 41286501972.
7. Nagayama K, Kumar A, Wüthrich K, Ernst RR. J. Magn. Reson. 1980; 40: 321.
8. Bax A, Subramanian S. J. Magn. Reson. 1986; 65: 565.
9. Bax A, Summers MF. J. Am. Chem. Soc. 1986; 108: 2093.
10. (a) Braun S, Kalinowski HO, Berger S. 100 and More Basic NMR Experiments: a Practical Course. Verlag Chemie: Weinheim, 1996; 244-390; (b) Claridge TDW. High-resolution NMR Techniques in Organic Chemistry. Elsevier: Amsterdam, 1999; 178-187.
11. Hurd RE. J. Magn. Reson. 1990; 87: 422.

[^0]: ${ }^{2}$ In ppm from TMS.

