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Optical surface modes in the presence of nonlinearity and disorder
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We investigate numerically the effect of the competition of disorder, nonlinearity, and boundaries
on the Anderson localization of light waves in finite-size, one-dimensional waveguide arrays. Using
the discrete Anderson - nonlinear Schrödinger equation, the propagation of the mode amplitudes
up to some finite distance is monitored. The analysis is based on the calculated localization length
and the participation number, two standard measures for the statistical description of Anderson
localization. For relatively weak disorder and nonlinearity, a higher disorder strength is required to
achieve the same degree of localization at the edge than in the interior of the array, in agreement
with recent experimental observations in the linear regime. However, for relatively strong disorder
and/or nonlinearity, this behavior is reversed and it is now easier to localize an excitation at the
edge than in the interior.

PACS numbers: 42.25.Dd, 42.65.Wi, 42.79.Gn, 72.15.Rn, 73.20.Fz

Introduction.- A fundamental question concerning sys-
tems which are both disordered and nonlinear is whether
or not Anderson localization [1] is weakened by the pres-
ence of nonlinearity. While it was originally developed in
order to understand electronic transport in non-periodic
(disordered) solids, the concept of Anderson localization
was later generalized to the localization of classical waves
in disorder media [2]. The interaction of propagating
waves, and in particular of electromagnetic waves, when
both disorder and nonlinearity are present can signifi-
cantly affect localization and other phenomena [3].
Despite of many efforts, that question has not been

conclusively answered [4–11]. It thus seems that the an-
swer depends on the relative strength of disorder and
nonlinearity. For large nonlinearity, time-periodic and
exponentially localized excitations in the form of discrete
breathers may be generated, due to the self-trapping
effect [12]. For small disorder strength, the discrete
breathers are modulated to become localized modes [13].
The above theoretical results were accompanied by a se-
ries of experimental demonstrations of Anderson local-
ization in optics [14] and Bose-Einstein condensates [15].
It was recently observed experimentally that Ander-

son localization in finite segments of disordered waveg-
uide arrays in the linear regime is actually site-dependent
[16]. Specifically, a higher disorder strength is required to
achieve the same degree of localization at the edge than
in the interior (i.e., the ”bulk”) of the array [16]. Here
we are interested in the effect of the interplay of disorder
and nonlinearity on the site-dependence of wavepacket
localization in one-dimensional (1D), disordered, finite-
size arrays of coupled Kerr-type waveguides. Using the
discrete nonlinear Schrödinger (DNLS) equation with di-
agonal (on-site) disorder, frequently referred to as the dis-
crete Anderson - nonlinear Schrödinger (DANLS) equa-
tion, we calculate standard measures of Anderson local-

ization in order to analyze the site-dependence of the de-
gree of localization for a wide range of nonlinearity and
disorder strengths.
Model equations and statistical measures.- Consider a

1D array of N single-mode optical waveguides. In the
framework of the coupled-modes formalism, the electric
field C(x, z) propagating along the waveguides can be
expanded as a superposition of the waveguide modes,
C(x, z) =

∑

n Cn(z)φ(x − n), where Cn is the complex
amplitude of the single guide mode φ(x) centered at the
nth site. The evolution equations for the modal ampli-
tudes Cn are

i
dCn

dz
+Vn,n−1Cn−1+ǫnCn+Vn,n+1Cn+1+χ|Cn|

2Cn = 0,

(1)
where n = 1, 2, 3, ..., N , ǫn is the propagation constant as-
sociated with the nth site, Vn,n±1 are the tunneling rates
between two adjacent sites, χ is the nonlinearity parame-
ter, and z is the spatial coordinate along the propagation
direction (‘time’). Eq. (1) describes very well recent ex-
periments in 1D disordered waveguide lattices and, more-
over, it serves as a paradigmatic model for a wide class of
physical problems where both disorder and nonlinearity
are important. Disorder is introduced into the optical
lattice by randomly choosing the propagation constants
ǫn from a uniform, zero-mean distribution in the interval
[−∆,+∆]. As a result, the lattice remains periodic on
average and, to a very good approximation, the param-
eters Vn,n±1 become independent of the site number n,
i.e., Vn,n±1 = V . Then, Eq. (1) reads

i
dCn

dz
+ ǫnCn + V (Cn−1 + Cn+1) + χ|Cn|

2Cn = 0. (2)

In order to take into account the termination of the struc-
ture, we impose free boundary conditions at the edges,
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i.e., C0 = CN+1 = 0. For χ → 0, Eq.(2) reduces to the
original Anderson model while in the absence of disor-
der (ǫn = 0), it reduces to the 1D DNLS equation [17]
that is generally non-integrable and it conserves the norm

N =
∑N

n=1
|Cn|2 and the Hamiltonian H.

To investigate the simultaneous interplay of disorder,
nonlinearity and boundary effects, we place initially a
single-site excitation Cn = δn,n0

near, or at the bound-
ary of the array. This determines the value of the norm
N = 1 for all subsequent ‘times’. For a quantitative
analysis we utilize two of the standard measures used
in the description of Anderson localization; the partic-

ipation number P =
{

∑N
n=1

|Cn|4
}−1

, and the local-

ization length ℓ, defined as the width of the envelope
containing the localized profile. The participation num-
ber gives a rough estimate of the number of sites where
the wavepacket has significant amplitudes, and it is a
useful measure for ascertaining localization effects in the
case of partial localization. In this case, P will saturate
at a finite value, indicating the formation of a localized
wavepacket.

Statistical analysis.- In the following, we set V = 1,
while the nonlinearity parameter χ varies between 0 and
10, and the disorder width ∆ takes on several different
values. Since Anderson localization is essentially a sta-
tistical phenomenon, many realizations of disorder are
needed to obtain meaningful averages for the quantities
of interest. This is particularly true for low-dimensional
systems. We typically use nR = 1000 realizations in each
run. The array contains N = 200 waveguides, and the
maximum evolution “time” is z = 100 (except otherwise
stated). In optics, nonlinearity is varied by changing the
power content of the input beam. However, this is for-
mally equivalent to keeping the norm of the wavepacket
fixed, and to varying the nonlinearity parameter χ. Eqs.
(2) are integrated with a standard 4rth order Runge-
Kutta algorithm with fixed time-stepping. We compute
the absolute squared profiles < |Cn|

2 >, where the brack-
ets denote averaging over all realizations nR, hereafter re-
ferred to as Anderson mode profiles. Assuming that the
Anderson modes have a z−dependence which is a simple
exponential function of the form < |Cn|

2 >= C2
max e

−z/ℓ,
the localization length ℓ can be computed via χ2 fitting
procedure, with C2

max being the numerically obtained
maximum of < |Cn|2 >.

In Figs. 1-3 the inverse localization length ℓ−1 is shown
as a function of χ for three different values of disor-
der strength. In all the cases displayed in these figures
the initial wavepacket is a single-site excitation placed at
n = n0, with n0 = 1 (right at the edge), 2, 3, 5, and
10. In Fig. 1 (where ∆ = 0.6) we easily identify two
different χ− regimes; the weak and the strong nonlin-
earity regime, where ℓ−1 is small and large, respectively.
That generaly implies a lower degree of Anderson local-
ization in the weak nonlinearity regime compared to that
in the strong nonlinearity regime. The large ℓ−1 in the
interval of χ values where all the curves fall the one onto
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FIG. 1. (color online) Inverse localization length ℓ−1 as a
function of the nonlinearity strength χ. A single-site excita-
tion is launched from n0 = 1 (solid - black), 2 (red - dot-
ted), 3 (green - dashed), 5 (blue - long-dashed), 10 (indigo -
dotted-dashed), for a system with N = 200, V = 1, z = 100,
nR = 1000, and ∆ = 0.6.
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FIG. 2. (color online) Inverse localization length ℓ−1 and
localization length ℓ (inset) as a function of the nonlinearity
strength χ. Same parameters and notation as in Fig. 1, but
∆ = 1.0.

the other, indicates the existence of a highly localized
mode due to the self-trapping effect. The characteristic
nonlinearity strength, χc, that roughly distinguishes be-
tween the two regimes is the critical on for self-trapping
to occur in the 1D DNLS equation [12]. In the weak
nonlinearity regime another important feature appears;
as it can be seen in the figure, the ℓ−1(χ) curve obtained
for excitations initially placed at the edge (n0 = 1) is
well below all the others (for which n0 > 1). Thus, an
excitation initially placed at the edge (n0 = 1) leads to
final wavepackets that are less localized than those which
have been initialized below the ’surface’ (n0 > 1). This
effect can be understood as the ”repulsive” action of the
boundary, reported in a previous work for surface modes
in nonlinear periodic lattices [7], and it is in agreement
with the experimental observations of Ref. [16].

As the disorder strength ∆ is increased from 0.6 to 1.0
(Fig. 2), all the curves become flatter without showing
any qualitative difference from those of Fig. 1. When
∆ is increased to 2.0, however, we do observe qualitative
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FIG. 3. (color online) Inverse localization length ℓ−1 and
localization length ℓ (inset) as a function of the nonlinearity
strength χ. Same parameters and notation as in Fig. 1, but
∆ = 2.0.

differences (Fig. 3). For weak nonlinearity (χ
<
∼ 4 ∼

χc) there are no significant differences in the degree of
localization for the Anderson modes resulting from initial
excitations either at the edge or in the interior of the
array. Thus, it is as easy to localize a wavepacket at the
edge as it is in the interior in this case. However, for

intermediate nonlinearities (from χ
>
∼ 4 to χ ≃ 8) it is

more favorable to loacalize a wavepacket at the edge than

in the bulk, whereas for large nonlinearities χ
>
∼ 8 it is as

easy to localize a wavepacket at the edge as it is in the
bulk. Thus, for relatively strong disorder we observe a
bahavior that is strikingly different to what is observed
in Figs. 1 and 2. The two different behaviors can be
seen even more clearly by comparison of the localization
length ℓ as a function of χ for ∆ = 1 and 2, shown
in the insets of Fig. 2 and 3, repsectively. Thus, the
presence of strong disorder is capable of overcoming the
”repulsive” character of the boundary for any value of χ
and, moreover, it favors wavepacket localization at the
edges for intermediate nonlinearities.
Typical examples of localized mode profiles both at,

or close to the edge and the ’bulk’ are shown in Fig. 4,
where the Anderson mode profiles < |Cn|2 > are shown
as a function of n for ∆ = 0.6. (Note that in this figure
z = 1000.) The edge-localized modes are significantly
more extended than the bulk modes, even though the
former are not all localized exactly at the edge. This is
because of the small disorder strength ∆, which allows
the repulsive force of the boundary on the mode to dom-
inate and move slightly the mode-maximum towards the
bulk. However, similar profiles (not shown) are obtained
also for ∆ = 1.0, that is large enough to keep the local-
ized modes at their initial location.
Moreover, single-site excitations initialized at different

sites n0 can be pushed by the boundary towards the in-
terior and form Anderson modes at the same final site.
These modes are different, at least for finite propaga-
tion distances z; they differ in the degree of localization,
leading to a multiplicity of Anderson modes having their
maximum at the same site of the lattice (Fig. 5). For
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FIG. 4. Anderson mode profiles < |Cn|
2 > as a function of

the site-number n for N = 200, V = 1, ∆ = 0.6, z = 1000,
nR = 1000, and χ = 1 (a,d), χ = 2 (b,e) and χ = 3 (c,f).
Left panels denote the surface mode case (n0 = 1) while right
panels refer to the bulk mode case (n0 = 100). Only part of
the array sites are shown for clarity.
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FIG. 5. (color online) Averaged absolute squared profiles <

|Cn|
2 > as a function of the site-number n for N = 200,

V = 1, ∆ = 0.4, nR = 1000, χ = 2.5, z = 100. These profiles
result from a single-site initial excitation at n0 = 1 (black-
solid); n0 = 2 (red-dotted); n0 = 3 (green-dashed). Only
part of the array sites are shown for clarity.

the particular value of χ used for Fig. 5, three single-site
excitations initialized at different n0 have formed, after
they have been propagated up to z = 100, three distinct
Anderson localized modes whose maximum is located at
the same lattice site (i.e., at n = 3).

Finally, let us look at the participation number P as
a function of z for wavepackets that are initially local-
ized at the edge (n0 = 1) and in the ’bulk’ (n0 = 100)
of the waveguide array. The logarithmic plots are shown
in Fig. 6 and Fig. 7, respectively, for several values
of χ and weak disorder. Comparing the curves in these
figures corresponding to the same χ, we see that those
for n0 = 100 are shifted to higher P values than those
for n0 = 1. Thus, single-site excitations initialized at
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FIG. 6. (color online) Logarithm of the averaged participation
number log

10
(< P >) as a function of log

10
(z) for the surface

case (n0 = 1) and N = 200, V = 1, ∆ = 0.6, nR = 1000,
z = 1000. The values of χ are shown on the figure.
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FIG. 7. (color online) Logarithm of the averaged participation
number log

10
(< P >) as a function of log

10
(z) for the bulk

case (n0 = 100) and N = 200, V = 1, ∆ = 0.6, nR = 1000,
z = 1000, n0 = 100. The values of χ are shown on the figure.

n0 = 100 have, while propagating along z, a larger num-
ber of sites where the wavepacket has significant ampli-
tudes. However, the excitations initialized at n0 = 100
exhibit a higher degree of localization than those initial-
ized at n0 = 1 (see also Fig. 4). It is also interesting to
see how the curves in each figure change as a function of

χ. For χ = 6, well above χc, we see that the wavepacket
remains localized at a single site, independently of n0.
For χ = 4 ∼ χc, the log10(< P >) vs. log10(z) curve
increases slowly with increasing log10(z), and it satu-
rates at a finite value around z ≃ 100, indicating the
formation of a wavepacket highly localized around n0.
For the nonlinearity strengths that are less than χc, the
log10(< P >) vs. log10(z) curves exhibit qualitatively
the same behavior. There is an increase with increas-
ing log10(z) which is slowed down after some z specific
to each χ value, and indicates significant delocalization
of the initially single-site wavepacket. Delocalization is
stronger for decreasing nonlinearity strength. However,
those curves do not seem to saturate, implying that the
corresponding Anderson localized modes may delocalize
further at longer propagation distances.
Concluding remarks.- We have performed extensive

calculations with the 1D DANLS equation in order to
clarify some aspects of the interplay between boundary
effects, disorder and nonlinearity, in finite-size waveguide
arrays. In particular, we attempt to clarify the site-
dependence of Anderson localization that results from
that interplay. We computed two standard measures of
localization for discrete systems for varying nonlinearity
and disorder strengths, and we observed two strikingly
different behaviors depending on the strength of the dis-
order. For weak to moderate disorder, we distinguish
two different nonlinearity regimes; weak and strong, for
values of χ roughly below and above χc, respectively.
In the weak nonlinearity regime it is easier to localize a
wavepacket in the interior of the array than at the edge,
which is in agreement with the experiments in the lin-
ear regime [16]. In the strong nonlinearity regime it is
as easy to localize a wavepacket at the edge as it is in
the interior. However, for relatively strong disorder, this
behavior is reversed, at least for intermediate nonlinear-
ities, and it is now easier to localize a wavepacket at the
edge than in the bulk. For weak and very strong non-
linearities there is no significant site-dependence on the
degree of wavepacket localization. The results presented
here obviously hold for finite propagation distance z, an
important case of practical interest for experimentalists.
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