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ABSTRACT: A system in a spatially degenerate ground state
responds in a qualitatively different way to positive and
negative point charges. This means that the molecular
electrostatic potential is ill-defined for degenerate ground
states due to the ill-defined nature of the electron density. It
also means that it is impossible, in practice, to define fixed
atomic charges for molecular mechanics simulations of
molecules with (quasi-)degenerate ground states. Atomic-
polarizability-based models and electronegativity-equalization-type models for molecular polarization also fail to capture this
effect. We demonstrate the ambiguity in the electrostatic potential using several molecules of different degree of degeneracy,
quasi-degeneracy, and symmetry.

I. INTRODUCTION

Atomic charge is one of the most powerful descriptive and
predictive concepts in chemistry.1 Many other concepts (e.g.,
the electronegativity and formal charge/oxidation state) are
useful primarily because they provide insight into the
population and charges of atoms and functional groups within
molecules. Conversely, atomic charges are often used to predict
chemical interactions: negatively charged sites tend to be basic/
nucleophilic and positively charged sites tend to be acidic/
electrophilic. It is, indeed, almost impossible to imagine
chemistry without the concept of atomic charge. Most chemists
recognize that atomic charges are not quantum-mechanical
observables and are therefore not uniquely defined.1,2 This is of
little consequence for practical work: one can use any set of
charges that are “chemically reasonable” (e.g., consistent with a
molecular-orbital or valence-bond interpretation of electronic
structure) and accurately reproduce the molecular electrostatic
potential. The molecular electrostatic potential is highly
important, especially on molecular surfaces, as it is one of the
key reactivity indicators explaining where reactions are most
likely to take place, e.g., in biomolecular modeling.3−6

Indeed, for the parametrization of force fields in molecular
mechanics, it is key to reproduce the electrostatic potential,
preferably at as low a computational cost as possible.7 In this
context, atomic charges/populations provide a coarse-grained
“condensed” representation of the electrostatic potential
whereby one aims to optimally reproduce the potential with
as little as possible need to go beyond atomic monopoles.
However, what many chemists do not appreciate is that neither
the electrostatic potential nor atomic charges/populations are
well-defined for molecules in degenerate ground states. While
one can often qualitatively assign atomic charges in terms of δ−

or δ+ values, when (quasi-)degenerate states occur, the value of
these charges depends on whether (a) the molecule is
interacting with a positive or a negative charge and (b) the
location of this charge.8 The goal of this paper is to further
elucidate and demonstrate this effect. In section II the
mathematical foundation of this effect is demonstrated. In
section IV we show several numerical examples for molecules
with different symmetries and different degrees of degeneracy
using the methods described in section III. In section V we
conclude by emphasizing that conceptual reasoning and
molecular-mechanics force fields based on fixed atomic charges,
while indubitably useful in practice, are typically theoretically
ill-founded.

II. NONEXISTENCE OF THE ELECTROSTATIC
POTENTIAL IN SPATIALLY DEGENERATE GROUND
STATES

The electrostatic potential of an N-electron molecule with M
nuclei located at positions {Rα} and nuclear charges {Zα} at a
position R0 is most often expressed as
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This expression is generally valid although it does not by
itself clarify the nature of the electron density ρ(r) to be used.
For a nondegenerate wave function, ρ(r) is simply the electron
density of the molecule but in cases where (quasi-)degeneracies
appear the electron density becomes ill-defined.8 To show the
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problems arising from the degeneracy, it is useful to derive eq 1
from the energetic response of a molecule, per unit charge, to a
point charge of magnitude q0 at the point R0
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Here E(v;̂ N) is the energy (including the nuclear repulsion but
without external fields) of the system obtained from the
Hamiltonian for the number of electrons, N, and the nuclear
potential acting on the electrons i, v:̂
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The presence of the extra point charge results in a new external
potential operator:
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The notation v′̂({R0,q0}) indicates that the operator depends
parametrically on the position and magnitude of the point
charge. The difference E(v ̂ + v′̂({R0,q0}); N) − E(v;̂ N) can be
easily computed using perturbation theory and provided the
point charge tends toward zero the first order energy correction
to the electronic energy suffices and yields Φ(R0):
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For a nondegenerate state, knowledge of the nuclear
potential, the electron density of the system, and the perturbing
potential suffices and eq 1 is immediately obtained. This
establishes the electron density ρ(r) as the first reactivity
indicator in the set of derivatives (δkU/δv

k(r))N.
9

In developing molecular mechanics force fields and in
computing atomic charges to interpret calculations, one often
selects point charges, {qα}, usually on the atomic centers such
that a simple monopole approximation reproduces the
electrostatic potential as closely as possible

∑Φ ≈
| − |α

α

α=

q
R

R R
( )

M

0
1 0 (6)

Of prime interest in this are electrostatic potential derived
atomic charges that minimize the difference between the exactly
computed Φ(R0) and the point charge based approximation in
eq 6. It is this type of atomic charge10−12 that is often used in
molecular mechanics force fields13 although clear statistical
problems13 largely limit the possibility to reproduce them using
semiempirical methods such as electronegativity equaliza-
tion.14,15 There, other definitions of atomic charge that allow
a good approximation of the true electrostatic potential, such as
Hirshfeld-I,16 may prove more useful.17−19

All the above relies on the existence of the limit in eq 5.
Existence of the limit is established when the limit (ε → 0)+

(the limit of ε → 0 from above) equals the limit (ε → 0)−. The
present paper addresses the problem of degenerate ground
states and the associated ambiguous nature of the electrostatic

potential and of atomic charges. This is a problem that no
specific choice of atomic charge model can alleviate as it is more
fundamental than the choice of some atoms-in-molecules
model. It is therefore important to stress that the ill-defined
nature of atomic charges in the present paper is not due to the
conceptual difficulty of defining an atom in the molecule and
the need to choose a specific method but is here a consequence
of the (quasi-)degeneracy of the electronic states and applies to
all methods to describe an atom in the molecule.
The problem is that when the ground state is spatially

degenerate, the limit in eq 5 does not exist and one finds that8

Φ ≤ Φ+ −R R( ) ( )0 0 (7)

where now the notation Φ+(R0) adds a superscript to
distinguish between a positive or negative sign of the point
charge. Note that Cardenas et al.8 have a different sign
convention, but eq 7 is consistent with eq 5. Equation 7 means
that the response to a positive and negative point charge differs
depending on whether the limit is approached from the positive
or negative side. As was recently argued,8 rather than simply
using eq 1 with the electron density of the degenerate ground
states, one needs to consider degenerate perturbation theory
and use the N-electron wave function associated with the
lowest eigenvector of the perturbation matrix

⟨Ψ|Δ |̂Ψ⟩ ⟨Ψ|Δ |̂Ψ ⟩ ··· ⟨Ψ|Δ |̂Ψ ⟩

⟨Ψ |Δ |̂Ψ⟩ ⟨Ψ |Δ |̂Ψ ⟩ ··· ⟨Ψ |Δ |̂Ψ ⟩

⋮ ⋮ ⋱ ⋮
⟨Ψ |Δ |̂Ψ⟩ ⟨Ψ |Δ |̂Ψ ⟩ ··· ⟨Ψ |Δ |̂Ψ ⟩

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

v v v

v v v

v v v

g

g

g g g g

1 1 1 2 1

2 1 2 2 2

1 2 (8)

where Δv ̂ denotes −∑ =i
N

1(q0/|ri − R0|) and g is the degree of
degeneracy and {Ψi} are the associated unperturbed N-electron
ground state eigenfunctions. This matrix and as a consequence
its eigenvectors and eigenvalues, which correspond to the first
order energy corrections E(1), depend parametrically on the
magnitude and sign of the point charge q0 and its location R0.
Choosing a positive point charge q0 and using λmin

+ and λmax
+ to

denote the lowest and highest eigenvalues of the perturbation
matrix, one finds that upon diagonalization of the matrix 8, the
lowest energy corresponds to E(1) = λmin

+ . Note that both λmin
+

and λmax
+ are negative as the electrons and the point charge are

of opposite sign. If a point charge −1 is considered, then the
same matrix is used but every integral is multiplied by −1
because of the repulsion between the electrons and the point
charge. Algebraically, the eigenvalues have the same magnitude
but opposite sign. As a consequence, it suffices to discuss the
eigenvalues of only one given sign of q0. In the results and
discussion, we therefore limit ourselves to the analysis of λmin

+

and λmax
+ and their (positive) difference λmax

+ − λmin
+ . The

eigenvalues thus show the following (in)equalities:

λ λ≤+ +
min max (9)

λ λ≤− −
min max (10)

λ λ= −+ −
min max (11)

λ λ= −+ −
max min (12)

Note that the eigenvalues do depend parametrically on q0
and R0. In order not to overload notation, these dependencies,
other than on the sign of q0, are not specified explicitly and in
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the results always a unit point charge is used and the
dependence on R0 is made explicit in the figures.
The issues due to degeneracy are illustrated graphically in

Figure 1. The values λ correspond to the E(1) values on the

ordinate for a given value of q0 on the abscissa and some value
of R0. The relations from eq 12 are clear and the essential
feature of Figure 1 is that for the depicted system with two
degenerate states the slopes of the red and blue lines differ in
such a way that if the lowest energy is sought for any value of
q0, the slope differs depending on the sign of q0. So the
electrostatic potential as a function of q corresponds to the
slope of the yellow dashed line, clearly illustrating that the
limits below and above q0 = 0 differ and fulfill eq 7. When no
degeneracy is present, only one line remains and the limit thus
exists. The figure also explains why no unique set of atomic
charges can be found in case of degeneracies as this set would
have to account for two, often significantly different, slopes (see
section IV).
As in the following, Born−Oppenheimer approximated wave

functions are used, the focus lies on the electronic part of the
electrostatic potential as the nuclear contribution does not
differ between the (quasi-)degenerate electronic states. Note
also that the simple formula eq 1 still applies but that for every
{R0, q0} a new density needs to be computed from the
eigenvector with the lowest eigenvalue of the perturbation
matrix. This is due to the ill-defined nature of the electron
density for degenerate states.8

As a simple elucidative example, consider how the boron
atom responds to the presence of a point charge located on the
z axis, at (0, 0, z). If an infinitesimal positive point charge is
placed on the z axis, the degeneracy of the 2px, 2py, and 2pz
orbitals is broken, with the 2pz orbital becoming the lowest-
energy orbital because it allows the electron density to
accumulate near the point charge. Conversely, if one puts a
negative point charge on the axis, the 2pz orbital goes up in
energy and the HOMO becomes a linear combination of the
2px and 2py orbitals because this allows the negatively charged
electrons to become concentrated in the xy plane, away from
the repulsive point charge. As an example, the purely electronic

perturbation matrix for a positive point charge at a distance of
2.5 au from the nucleus and along the z axis has the eigenvalues
−3.870 au and the expected degenerate pair −3.740 au. Using
the RHF/cc-pvtz B+ 1s, 2s, and 2p orbitals, the eigenvectors
follow the given reasoning with the eigenvector associated with
λmin
+ equaling purely 2pz. For a negative point charge, the lowest
solution is the degenerate pair with eigenvalue 3.740 au with a
mixture of 2px and 2py as eigenvector and the eigenvector
associated with the higher eigenvalue equaling again purely 2pz.
Note the importance of treating the entire perturbation matrix:
for a general point in space, the two degenerate eigenvalues will
only be found when including the off-diagonal terms except for
a limited set of points contained in the plane defined by two
axis of the coordinate system. In order to have a generally
working scheme, one always needs to consider the full
perturbation matrix.
All the above means that molecular mechanics force fields

with fixed point charges are inherently ill-suited for describing
systems with (quasi-)degenerate grounds states. (We consider
the ground state to be quasi-degenerate whenever the energy
difference between a ground state and (an) excited state(s) is
comparable to the magnitude of the electrostatic interaction. If
one considers that the electrostatic potential from a proton 2.5
Å from a molecule is more than 0.2 au (5.7 eV ≈ 130 kcal/
mol), the danger of ignoring the corrections from (quasi‑)-
degeneracy in classical molecular dynamics simulations
becomes clear.
To explore the importance of properly considering the effect

of degenerate states on the computed electrostatic potential, we
performed elaborate calculations for different molecules with
different symmetries and degrees of degeneracies (section III).
We observe profound differences in energetic responses,
eigenvectors of the perturbation matrix, and spatial features
of the density response, between a positive and negative test
charge (section IV). We also observe that atomic charges
change significantly (section IV). We conclude that the
concepts of molecular electrostatic potential and atomic partial
charges are ill-defined for (quasi-)degenerate systems, but that
directly computing the molecular response using (quasi‑)-
degenerate perturbation theory provides a way to recover
chemically useful results.

III. METHODS

As test cases we consider the molecules C∞v NO, D6h C6H6
+, Ih

B12H12
− and C2h C4H6

+. The basis sets used are consistently of
at least double-ζ quality and to account for electron correlation,
all calculations were performed at complete active space (CAS)
SCF levels of theory. Table 1 shows the respective levels of
theory applied.
In some cases, the symmetry would be broken by a Jahn−

Teller effect, e.g., in C6H6
+. In these cases, the geometry

optimization consisted of selecting the key geometric

Figure 1. Graphical illustration of the effect of degeneracy on the
electrostatic potential.

Table 1. Levels of Theory Used for the Different Molecules
Considereda

molecule CAS basis set degeneracy geometry

NO CAS(1,2) cc-pvtz 2 CAS(1,2)
C6H6

+ CAS(5,6) cc-pvdz 2 CAS(5,6)
B12H12

− CAS(7,8) 6-31G 4 MP2 B12H12
2−

C4H6
+ CAS(3,4) 6-31G 3QD CAS(3,4)

aQD denotes the degree of quasi-degeneracy considered.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4005454 | J. Chem. Theory Comput. 2013, 9, 4779−47884781



parameters (bond lengths) and generating the geometry by
application of the different symmetry operations of the desired
point group and scanning the potential energy surface within
the constraints set by the point group. The CAS calculations
were verified to yield the expected degeneracy and the Slater
determinant expansion was used to compute the required
density matrices and transition density matrices. The case of
C4H6

+ was included to show that the impact of degeneracy is
not limited to highly symmetric molecules forced into a Jahn−
Teller avoided geometry but goes far beyond this.
The one electron integrals for the perturbation matrix were

obtained using the Obara−Saika20 scheme. All calculations
were done using our own programs except for the CAS and full
CI calculations, which were performed using Gamess(US).21,22

This allows generating all Slater determinant expansions and all
determinants with a coefficient above 10−15 in absolute value
were retained to construct the required density matrices.
Validation of the code was performed through comparing the
diagonal elements of the perturbation matrix with results of
Gamess(US), revealing absolute errors in the order of 10−6 au
(<10−3 kcal/mol) at worst. Concerning the first order reduced
(transition) density matrices, the trace was found to deviate
from either the number of electrons or zero by less than 10−9.
The eigenvalues of the density matrices also match those of
Gamess(US) to the same accuracy.

IV. RESULTS AND DISCUSSION

NO. Nitric oxide is an often studied molecule for interaction
with biomolecules and is characterized by a 2-fold degenerate
ground state. It binds myoglobin in a way reminiscent to CO
but with some subtle differences. In a recent molecular
dynamics study on the bonding with myoglobin,23 the
importance of the electrostatic interaction was emphasized:
“As with carbon monoxide (CO), NO is a versatile and useful
local probe for the electrostatic environment of a protein.”
Moreover, the authors further stress that “As the difference in
the kinetics depends on the details of the electronic structures
of NO and CO, it would be highly desirable to have force fields
that can accurately describe the electrostatics around diatomic
molecules such as CO and NO”. As explained in the previous
section, proper treatment of the electrostatic interaction is
therefore of prime importance although this was not fully
appreciated previously. Figure 2 shows the difference between
the maximum (yet negative) eigenvalue λmax

+ and the minimum
eigenvalue (i.e., λmin

+ , the most negative). The plot shows the
difference between the two eigenvalues for a unit positive point
charge located at a point identified by the coordinate z (the
bond axis) and with a radial (i.e., orthogonal to the z axis)
distance r. Due to the C∞v symmetry, the 3D data exhibit
cylindrical symmetry.
As is clear from Figure 2, this difference is quite significant

with values up to roughly 100 kcal/mol. Note that the
eigenvalues of the perturbation matrix suffice to show the

Figure 2. Difference λmax
+ − λmin

+ (kcal/mol) for NO as a function of z (bond axis coordinate; Å) and radial distance r (Å) from the bond. The
nitrogen atom is labeled by the white dot, and the oxygen atom, by the red dot.

Figure 3. Difference between the minimum and maximum eigenvalues (λmax
+ − λmin

+ ; kcal/mol) for NO versus the minimum eigenvalue (λmin
+ ; kcal/

mol) for a set of point charges located at points used in the CHELPG algorithm for computing electrostatic potential derived charges.
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differences in electrostatic potential as the nuclear contributions
(not included in the eigenvalues) are exactly the same for both
electronic states. When changing the sign of the test point
charge, the roles of both eigenvalues and eigenvectors reverse.
Whereas for a positive test charge, the lowest energy will be
obtained using λmin

+ , for a negative point charge it will be
obtained through −λmax+ of the perturbation matrix with a
positive point charge. It is also worth mentioning that the
largest changes do not occur near the nuclei, but farther away,
in regions where the electrostatic potential value is relevant for
reactivity prediction.
In order to highlight the effect of the degeneracy, we

computed the electrostatic potential for both eigenvectors of
the perturbation matrix at the set of points used in the
CHELPG scheme10 for fitting atomic charges. Figure 3 shows
that the differences between both eigenvalues of the
perturbation matrix may actually grow larger than |λmin

+ |. This
very clearly demonstrates that, for force field development, one
single set of charges is problematic when degenerate states
occur.
Note the importance of proper treatment of the nondiagonal

elements of the perturbation matrix. Although between the
different states, the differences in electrostatic potential may not
be that large (i.e., the difference in diagonal elements), the
admittedly smaller off-diagonal elements may significantly
enhance this difference. Moreover, the cylindrical symmetry
would not be respected upon neglecting the off-diagonal terms.
C6H6

+. The benzene molecule is a most enigmatic molecule
due to its aromatic nature and is thus also a key test molecule
for evaluating the performance of new reactivity indices.
Benzene itself has no degenerate states but often, as in Fukui
functions,24,25 one needs to compute wave functions for the
molecular ions, under constant external potential, meaning
(possibly among other constraints) the same molecular
geometry. For Fukui functions, one often uses a rather
pragmatic approach when considering degeneracy, namely a
simple average over the densities of the degenerate states26−29

(denoted ⟨ρavg⟩). In the present case, density matrices are used;
hence, we could analogously use the average density matrix to
compute the recently introduced Fukui matrix.30,31 This means,
however, that the off-diagonal terms in the perturbation matrix
are not taken into account. From the example described above,
this hardly seems to be a proper approach because depending
on the location of the test point charge, another set of wave
function coefficients may result in the lowest eigenvalue. For
the present study, we optimized the geometry of C6H6

+ at the
CAS(5,6)/cc-pVTZ level using as a constraint that the
geometry must respect D6h symmetry. The CAS active space
contains the 6 lowest π orbitals. Figure 4 shows the results for a
positive unit charge for λmax

+ − λmin
+ , indicating again quite

substantial differences between the two eigenvalues.
As stated above, often a simple average is taken of the two

density matrices to compute a response but this ignores the
essence of having to treat the problem using nondegenerate
perturbation theory. Figure 5 shows the difference between the
50−50 average and the lowest eigenvalue for a positive unit test
charge, again showing significant errors of up to 25 kcal/mol.
Cross sections through other planes reveal similar behavior
although in some cases even more pronounced.
Diagonalization of the perturbation matrix also allows

computing new density matrices of the correct 0th order
wave function for the lowest eigenvalue and thus also allows
computing atomic charges. It is important not to confuse these

density matrices based on the 0th order wave functions with
those that would result from perturbed wave functions. Figure 6
shows the resulting Mulliken atomic charge32 on the first
carbon atom in the molecule using the density matrix from the
correct 0th order wave function. For every point in the x, y
coordinate system (z = 0), the Mulliken charge on carbon atom
1 is shown for a unit positive point charge put at that point. As
explained above, the atomic charge is expected to depend on
the location and sign of the point charge. With a difference of
roughly 0.15 au, the effect is considerable and shows that the
use of a uniform set of atomic charges for any interaction is
highly questionable. Obviously the nature of the atoms in
molecules method used may have an impact, but the effect will
be similar as it is determined by the underlying effects of the
perturbation on the density matrix and any atoms in molecules
method that relies on the density matrix and thus electron
density will show these effects.
Similar figures for the other carbon atoms look exactly the

same and are merely rotated according to the expected
symmetry relation.

B12H12
−. Closo-dodecaborate B12H12

2− is a well-known
borane, characterized by the high Ih symmetry and 4-fold
degeneracy of the HOMO orbitals. Using MP2 level
calculations and the 6-31G basis set, the geometry was
optimized and subsequently used without further refinement
for the B12H12

− molecular ion to induce 4-fold degeneracy. The
MP2 geometry was found to be quite similar to the B3LYP
optimized geometry. Calculations were performed at the
CAS(7,8) level to capture a fair amount of electron correlation.
As Figure 7 shows, even in the xy plane containing no atoms
(the z = 0 plane with the z axis a C5 axis connecting the two
poles), an effect of similar magnitude as in the previous
example is found for λmax

+ − λmin
+ . The need for proper treatment

of degeneracy is thus clear for both smaller and larger degrees
of degeneracy and different plotting planes in molecules.
Exact degeneracy is often a consequence of high symmetry of

molecules and one might be tempted to consider the off-
diagonal elements in the perturbation matrix to be quite small
in magnitude and thus of little importance. Given the ready
availability of the integrals needed to compute the entire
perturbation matrix, it is advised to make it standard practice to
consider the entire perturbation matrix because even small off-
diagonal elements may substantially influence the eigenvalues

Figure 4. Difference λmax
+ − λmin

+ (kcal/mol) for C6H6
+ in the molecular

plane. The carbon atoms are labeled by black dots.
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when these are only slightly separated as is usually the case for
the perturbation considered here.33 The density of valence
eigenstates in B12H12

− is very high, so the response is large,
even though the difference between the lowest and highest
diagonal element of the perturbation matrix is relatively small.
In the realm of reactivity and selectivity, possibly even more
important than the eigenvalues alone, the eigenvectors of the
perturbation matrix can be seen as normal modes of reactivity.
These do not only depend on the molecule itself but also on
the nature of the perturbation. Yet, for the same perturbation
the different eigenvectors lead to different density matrices and
thus different reactivity modes.
C4H6

+. As mentioned in the introduction, atomic charges
and the electrostatic potential become ambiguous also in case
of quasi-degenerate states under a point charge perturbation. In
order to demonstrate the effect of considering near degeneracy

and at the same time the effect of the perturbation on atomic
charges, we now consider a system with low lying excited states.
The trans butadiene radical cation C4H6

+ is known to have
several low lying excited states above the ground Bg state

34 and
in line with the previous CAS(3,4) study we indeed found two
excited states within 0.2 au. We therefore included all three
states in our quasi-degenerate perturbation theory treatment
and computed the perturbation matrix. The off-diagonal
elements in the perturbation matrix are again significant and
differences between the highest and lowest eigenvalues for the
three lowest states in the perturbation treatment rise up to 0.4
au, as is shown in Figure 8. Moreover, for quasidegenerate
cases, any approximation like a simple average of density
matrices will be even more error prone as the off-diagonal
elements often become significantly larger than in most highly
symmetric small molecules. Figure 8 shows the quite impressive

Figure 5. Difference ⟨ρavg⟩ − λmin
+ (kcal/mol) for C6H6

+ in the molecular plane. The carbon atoms are labeled by black dots.

Figure 6. Mulliken atomic charge (au) for the first carbon atom in C6H6
+ for a positive unit point charge located in the molecular plane. The first

carbon atom is indicated with a white dot, the other carbon atoms are labeled by black dots.
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effect of the (quasi-)degeneracy with differences in eigenvalues
up to roughly 250 kcal/mol. The large value is not entirely
reflected in the diagonal elements of the perturbation matrix
which differ by maximally 85 kcal/mol, indicating again the
importance of the off-diagonal elements.
Figure 9 again shows the dependence of the Mulliken atomic

charge of one of the atoms on the sign of the perturbing point
charge. The effect is very significant with changes in charge up
to roughly half an electron. This is not due to the specific
choice of the Mulliken scheme with its known drawbacks. To
show this, electrostatic potential derived charges were
computed for different locations of a positive unit test charge
as well as for a negative one. Following the CHELPG suggested
van der Waals radii and point densities,10 a set of 556 points on
the outer molecular volume was chosen. For each of these

points, the degenerate perturbation theory treatment was
carried out for a single unit point charge placed at one of these
points and the effective density matrix was computed for the
lowest energy eigenvector of the perturbation treatment. Using
this density matrix for the point charge of given sign in the
chosen point, the electrostatic potential was computed on a
second grid of points on the van der Waals surface. This is
appropriate as it is found that the first degenerate treatment lifts
any (quasi-)degeneracies. This is repeated for both positive and
negative point charges at each of the 556 grid points. After the
electrostatic potential has been computed on the second grid,
atomic charges are computed such that the monopole based
electrostatic potentials in these points match those computed
ab initio in a least-squares sense, i.e. minimizing the difference
between the left and right-hand side of eq 6 but adding the

Figure 7. Difference λmax
+ − λmin

+ (au) for B12H12
2− in the molecular plane. The boron atoms are labeled by blue dots and hydrogen atoms by white

dots. Note that all atoms lie above and below the plane in which the difference is plotted.

Figure 8. Difference λmax
+ − λmin

+ (kcal/mol) for C4H6
+ in the molecular plane. The carbon atoms are labeled by black dots.
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constraint of charge conservation. This minimization is done
using singular value decomposition to avoid issues related to
the null space of the coefficient matrix. Although the grid of
points where the point charge is placed in the degenerate
treatment may be chosen different from that used for fitting
atomic charges, for computational convenience the same grid is
used in the implementation used here. Figure 10 shows the
atomic charge on the first carbon atom for both a positive and
negative unit point charge placed at one of the 556 points on
the grid. As Figure 10 very clearly shows, the electrostatic
potential fitted charge differs very significantly whether on the
same point either a positive or negative unit point charge is
placed. Moreover, the charge also depends strongly on where
the point charge is located, causing even changes in sign of the
atomic charge. Note that for a nondegenerate state, the same
result is obtained independent of where the point charge was
placed and independent of its sign. For reference, ignoring
quasi-degeneracy over the three states, results in atomic charges

of −0.06, −0.28, or 0.08 for respectively state 1, 2, or 3,
illustrating the dramatic effect of proper treatment of
(quasi‑)degeneracy.
The examples shown above stress the importance of using

the entire degenerate perturbation matrix instead of any
approximation. The differences between the lowest and highest
eigenvalue for a given sign of the test charge are significant, and
moreover, for a point charge with different sign, their roles
interchange. Interpretation of any reactivity modes in space also
relies on using the proper density matrix which is based on the
eigenvectors of the perturbation matrix. Degeneracy is not
limited to small highly symmetric molecules. Especially
(quasi‑)degeneracy becomes more common with increasing
molecular size, such that any study on reactivity should take the
possible effects of (quasi-)degeneracy properly into account.
Note that although CAS methods were used throughout here,
all conclusions hold also for DFT calculations and may
significantly impact many other reactivity indicators. At the

Figure 9. Mulliken atomic charge for the first carbon atom in C4H6
+ for a positive unit point charge located in the molecular plane. The first carbon

atom is indicated with a white dot, the other carbon atoms are labeled by black dots.

Figure 10. Electrostatic potential fitted atomic charge for the first carbon atom in C4H6
+ for a positive unit point charge q0 = +1 or negative unit

point charge q0 = −1 placed on a grid of 556 points. The abscissa refers to a random ordering of the grid of points where the point charge is placed
on the van der Waals surface .
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DFT level, however, proper treatment of degeneracy is not
straightforward and requires one to identify zero-frequency
excitations (poles) in the linear response matrix. In a more
pragmatic approach, one can proceed in the way described in
the present work although admittedly using Kohn−Sham
determinants from approximate DFT functionals.

V. CONCLUSION

Atomic charges and the electrostatic potential are ill-defined in
case of degenerate or (quasi-)degenerate states. Instead of using
only one state, one needs to compute the entire degenerate
perturbation theory matrix for every type of perturbation
considered. This includes both the location of the point charge
and its magnitude and sign. For a K-fold degenerate state, the K
× K perturbation matrix leads in general to K possibly different
responses (eigenvalues) and eigenvectors. Considering only the
interaction with the electrons, the lowest (most negative)
eigenvalue for a positive point charge becomes the highest
(most positive) eigenvalue for a negative point charge, implying
a change in sign of the eigenvalues. This implies that the
density matrix, which is obtained by taking the correct 0th
order linear combination of the degenerate states, also depends
on the specific sign and location of the point charge. Atomic
charges therefore depend on the location, sign, and type of
perturbing potential. Properly using degenerate perturbation
theory gives quite significant effects, with effective electrostatic
potentials differing by amounts comparable to or greater than
typical intermolecular interaction energies. Moreover, the
variation in atomic charges is also significant, showing that no
unique set of atomic charges can be used when modeling
intermolecular interactions in, e.g., a force field. Although the
magnitude of these variations may differ from method to
method, the underlying principles are generally valid.
Given the simplicity of the integrals appearing in the

perturbation matrix, we suggest that the (quasi-)degenerate
perturbation matrix be used whenever (near) degeneracy sets in
(e.g., in large molecules and small molecules with small band
gaps), independent of the level of theory used. The interaction
with a second molecule may for example be expressed in terms
of a perturbation through a set of nuclear centered atomic
charges. As a guideline for when to use degenerate perturbation
theory, knowledge of the energy separation between the ground
and other degenerate or excited states is required. We propose
to use the Fermi level εFermi = (εHOMO + εLUMO)/2 (where ε
refers to the orbital energy) as a reference. We suggest to
always examine whether (quasi-)degenerate states exist by
considering whether orbitals exist within 0.20−0.25 au from
this level and then to carefully examine whether states
produced from excitations involving these orbitals need to be
treated using degenerate perturbation theory. Force field
development and molecular dynamics simulations requiring
proper treatment of (quasi-)degeneracy should henceforth
consider the important effect of these degeneracies, as they
induce differences in electrostatic potentials of the same
magnitude as many of the relevant interactions in classical
molecular mechanics simulations.
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