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In this article we show sufficient conditions ensuring the existence and uniqueness of a
mild solution to the equation
DauðtÞ ¼ AuðtÞ þ Da�1f ðt;uðtÞÞ; 1 < a 6 2; t 2 R; ð�Þ
in the same space where f belongs. Here A is a sectorial operator defined in a Banach space
X; Da is the fractional derivative in the Riemann–Liouville sense and f ð�; xÞ 2 XðXÞ for each
x 2 X, where XðXÞ is a vector-valued subspace of the space of continuous and bounded
functions. The subspaces XðXÞ that we will consider in this article are the space of periodic,
almost periodic, almost automorphic and compact almost automorphic vector-valued
functions, among others. In particular, we extend and unify recent results established for
the equation ð�Þ in the papers Agarwal et al. (2010), Cuevas et al. (2010) and Cuevas and
Lizama (2008).

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Differential equations involving fractional derivatives have been used to describe a large number of natural phenomena in
different areas such as, engineering, physics, economy, and science. For this reason these equations have been studied for
many authors, including [4,13,16,22–24,33,36], among others. In particular, the study of abstract semilinear fractional dif-
ferential equations is of great interest. Some of this papers, studied the existence and uniqueness of solutions with a pre-
scribed qualitative property. For example, in [1,9,10], sufficient conditions have been found for the existence and
uniqueness of mild solutions to the equation
DauðtÞ ¼ AuðtÞ þ Da�1f ðt; uðtÞÞ; t 2 R; 1 < a 6 2; ð1:1Þ
in the vector-valued spaces that consist of almost automorphic, pseudo automorphic or pseudo almost periodic functions,
respectively. In all of the above mentioned papers, A : DðAÞ � X ! X is a closed operator of sectorial type l < 0 with angle
0 6 h < pð1� a=2Þ, and f : R� X ! X satisfies a suitable Lipschitz condition. The fractional derivative is understood in the
Riemann–Liouville sense [23].

Nevertheless, to the best of our knowledge, existence and uniqueness results of mild solutions for Eq. (1.1) on vector-val-
ued spaces that consist of periodic, pseudo periodic, compact almost automorphic, as well as asymptotic behavior have not
been studied in the literature.
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In this article, we attempt to close this gap by means of an unified approach. We will show sufficient conditions to ensure
the existence and uniqueness of mild solutions for the abstract semilinear fractional differential Eq. (1.1) in the following
classes of vector-valued function spaces: periodic, asymptotically periodic, pseudo periodic, almost periodic, asymptotically
almost periodic, pseudo almost periodic, almost automorphic, asymptotically almost automorphic, pseudo almost automor-
phic, compact almost automorphic, asymptotically compact almost automorphic, pseudo compact almost automorphic,
S-asymptotically x-periodic functions, decay functions and mean decay functions. Thus unifying and extending the results
appearing in [1,9,10] among others.

For our purpose, we will use some common properties for all the above mentioned categories of vector-valued function
spaces (see [27]). They will be summarized in the second section of this paper, together with the definitions and main results
that will be used later. In the third section, we extend and unify a key composition theorem appearing in [27, Theorem 4.1]
considering, instead of a Lipschitz type condition on the semilinear term f, more general and relaxed hypotheses and, con-
sequently, enlarging the number of applications. Then, we will show several types of sufficient conditions on the data f and A
to ensure the existence and uniqueness of mild solutions to Eq. (1.1) in each one of the preceding vector-valued function
spaces. The proofs of these results will be based on fixed point techniques. We finish this paper with some examples illus-
trating the feasibility of the abstract results.

2. Preliminaries

Let X be a Banach space. We denote
BCðXÞ :¼ ff : R! X : f is continuous; kfk1 :¼ sup
t2 R

kf ðtÞk <1g:
Let PxðXÞ be the space of all vector-valued x-periodic functions. For the space of almost periodic functions (in the sense of
Bohr), we set APðXÞ which consists of all functions f 2 BCðXÞ such that for each � > 0 there exists a x > 0 such that every
subinterval of R of length x contains at least one point s such that jjf ðt þ sÞ � f ðtÞjj1 < �. This definition is equivalent to
the so-called Bochner’s criterion (cf. [32, Theorem 3.1.8]), namely, f 2 APðXÞ if and only if for every sequence of real numbers
ðs0nÞ there exists a subsequence ðsnÞ such that f ð� þ snÞ is uniformly convergent on R. Almost periodic functions are uniformly
continuous on R (cf. [32, Theorem 3.1.4]). The space of compact almost automorphic functions will be denoted by AAcðXÞ.
Recall that a continuous bounded function f belongs to AAcðXÞ if and only if for all sequence ðs0nÞ of real numbers there exists

a subsequence ðsnÞ � ðs0nÞ such that lim
t!1

f ðt þ snÞ ¼: f ðtÞ and lim
t!1

f ðt � snÞ ¼ f ðtÞ uniformly over compact subsets of R. Clearly

the function f above is continuous on R. Therefore f is uniformly continuous [18]. In other words compact almost automor-
phic functions are uniformly continuous on R. The space of almost automorphic functions is defined as follows

AAðXÞ :¼ ff 2 BCðXÞ : for all ðs0nÞ there exists ðsnÞ � ðs0nÞ such that lim
t!1
¼: f ðtÞ and lim

t!1
f ðt � snÞ ¼ f ðtÞ 8t 2 Rg, provided with

the norm jj � jj1.
Let F ¼ fPxðXÞ;APðXÞ;AAcðXÞ;AAðXÞg and X 2 F . Then we have the following result.

Theorem 2.1 [27]. Assume f ; f 1; f 2 2 X. Then we have

(i) f1 þ f2 2 X;
(ii) kf 2 X, for any scalar k;

(iii) fsðtÞ :¼ f ðt þ sÞ 2 X for any s 2 R;
(iv) The range Rf of f is relatively compact in X;
(v) Let ðgnÞ 2 X, such that gn ! g uniformly on R. Then g 2 X;

(vi) Let FðtÞ :¼
R t

0 f ðsÞds. Then F 2 X if and only if Rf is relatively compact in X.

Now we consider the set
C0ðXÞ :¼ ff 2 CðXÞ : lim
jtj!1
kf ðtÞk ¼ 0g;
and define the space of asymptotically periodic functions: APxðXÞ :¼ PxðXÞ � C0ðXÞ. Analogously, we define the space of
asymptotically almost periodic functions AAPðXÞ :¼ APðXÞ � C0ðXÞ, the space of asymptotically compact almost automorphic
functions AAAcðXÞ :¼ AAcðXÞ � C0ðXÞ and the space of asymptotically almost automorphic functions AAAðXÞ :¼ AAðXÞ � C0ðXÞ.

Remark 2.2. We observe that
APxðXÞ– SAPxðXÞ
where SAPxðXÞ :¼ ff 2 BCðXÞ : 9x > 0; kf ðt þxÞ � f ðtÞk ! 0 as t !1g. This fact was only recently proved in [21], providing
a counterexample to the assertion given in [15, Lemma 2.1]. This way, in general we only have
APxðXÞ � SAPxðXÞ:

We will next consider the following set
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P0ðXÞ :¼ ff 2 BCðXÞ : lim
T!1

1
2T

Z T

�T
kf ðsÞkds ¼ 0g;
and define the following classes of spaces: The space of pseudo-periodic functions PPxðXÞ :¼ PxðXÞ � P0ðXÞ, the space of
pseudo almost periodic functions PAPðXÞ :¼ APðXÞ � P0ðXÞ, the space of pseudo compact almost automorphic functions
PAAcðXÞ :¼ AAcðXÞ � P0ðXÞ, and the space of pseudo almost automorphic functions PAAðXÞ :¼ AAðXÞ � P0ðXÞ. We have the fol-
lowing diagram that summarizes the relation of the different classes of subspaces defined previously.
AAðXÞ � AAAðXÞ � PAAðXÞ
[ [ [

AAcðXÞ � AAAcðXÞ � PAAcðXÞ
[ [ [

APðXÞ � AAPðXÞ � PAPðXÞ
[ [ [

PxðXÞ � APxðXÞ � PPxðXÞ
\

SAPxðXÞ
In what follows, we denote by MðXÞ the set which consists of all the vector-valued function spaces described above. In
addition the spaces C0ðXÞ and P0ðXÞ will also be treated independently.

Recall that a closed operator A is said to be sectorial of type l 2 R and angle 0 6 h < p=2 if there exists M > 0 such that its

resolvent exists outside the sector lþ Sh :¼ flþ k : k 2 C; jargð�kÞj < hg and kðk� AÞ�1k 6 M=jk� lj; k R lþ Sh. Sectorial
operators are well studied in the literature. For a recent reference including several examples and properties we refer the
reader to [20]. We also recall the following definition from [5], which has been used extensively for several authors in
the treatment of some classes of abstract fractional differential equations (see e.g. [11,12,9,7,2,1]).

Definition 2.3 [5]. Let A be a closed operator with domain DðAÞ defined on a Banach space X and 1 < a 6 2. We say that A is
the generator of a a-resolvent family if there exists l 2 R and a strongly continuous function Sa : Rþ ! BðXÞ such that
fka : Rek > lg � qðAÞ and ka�1ðka � AÞ�1x ¼

R1
0 e�ktSaðtÞxdt; Rek > l; x 2 X. In this case, SaðtÞ is called the a-resolvent family

generated by A.
We note that if A is sectorial of type l with 0 6 h < pð1� a=2Þ, then A is the generator of an a-resolvent family given by

SaðtÞ :¼ 1=ð2piÞ
R
c ektka�1ðka � AÞ�1dk, where c is a suitable path lying outside the sector lþ Sh (cf. [8]). It is known [8] that if

A is a sectorial operator of type l < 0 for some M > 0 and 0 6 h < pð1� a=2Þ, then there exists C > 0 such that
kSaðtÞkBðXÞ 6
CM

1þ jljta ; t P 0: ð2:1Þ
We notice that the concept of a a- resolvent family as above defined, is closely related to the concept of a resolvent family
(see Prüss [34, Chapter 1]). For the scalar case, there is a large bibliography (cf. [17] and references therein). Because of the
uniqueness of the Laplace transform, in the border case a ¼ 1, the family SaðtÞ corresponds to a C0-semigroup, whereas in the
case a ¼ 2 an a-resolvent family corresponds to the concept of a cosine operator family; see Arendt et al. [6] and Fattorini
[14]. We note that a-resolvent families, as well as resolvent families, are a particular case of ða; kÞ-regularized families [28].
According to [28] an a-resolvent family SaðtÞ corresponds to a ð1; ta�1=CðaÞÞ-regularized family.

A characterization of generators of a-resolvent families, analogous to the Hille-Yosida Theorem for C0-semigroup, can be
directly deduced from [28, Thorem 3.4]. Results on perturbation, approximation, representation as well as ergodic type the-
orems can be deduced, from the most general context of ða; kÞ-regularized resolvents, (see [28–31]).

We finally recall the following definition.

Definition 2.4. [34] A strongly measurable family of operators fTðtÞgtP0 � BðXÞ is called uniformly integrable (or strongly
integrable) if

R1
0 kTðtÞkdt <1. In what follows, we will denote kTk :¼

R1
0 kTðtÞkdt for any uniformly integrable family of such

operators fTðtÞgtP0.
Observe that in view of (2.1) an a-resolvent family is uniformly integrable under the hypothesis that A is sectorial of neg-

ative type.

3. Regularity under convolution and composition

We will start with the following result on maximal regularity under convolution which is a consequence of [27,
Theorem 3.3]:

Theorem 3.1 [27, Theorem 3.3]. If f belongs to one of the spacesMðXÞ, then wðtÞ :¼
R t
�1 Saðt � sÞf ðsÞds also belongs to the same

space as f.
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Concerning the spaces C0ðXÞ and P0ðXÞ we have the following result.

Theorem 3.2. Assume that f 2 C0ðXÞ or f 2 P0ðXÞ, then w 2 C0ðXÞ or w 2 P0ðXÞ respectively.
Proof. Let f 2 C0ðXÞ and � > 0 be given. There exists T > 0 such that kf ðsÞk < � for all jsj > T and hence we can write
wðtÞ :¼
Z T

�1
Saðt � sÞf ðsÞdsþ

Z t

T
Saðt � sÞf ðsÞds: ð3:1Þ
Then
kwðtÞk 6
Z T

�1
kSaðt � sÞkkf ðsÞkdsþ

Z t

T
kSaðt � sÞkkf ðsÞkds 6 kfk1

Z 1

t�T
kSaðvÞkdv þ kSak�;
and using the fact that Sa is integrable we conclude that wðtÞ ! 0 as t !1. On the other hand, for t < �T we have
kwðtÞk 6
Z t

�1
kSaðt � sÞkkf ðsÞkds 6 �

Z �T

�1
kSaðt � sÞkds 6 �kSak;
and we conclude that wðtÞ ! 0 as t ! �1. It proves that w 2 C0ðXÞ.
Let f 2 P0ðXÞ. For R > 0 we have
1
2R

Z R

�R
kwðtÞkdt 6

1
2R

Z R

�R

Z t

�1
kSaðt � sÞkkf ðsÞkds

� �
dt 6

1
2R

Z R

�R

Z 1

0
kSaðuÞkkf ðt � sÞkds

� �
dt

¼
Z 1

0
kSaðuÞk

1
2R

Z R

�R
kf ðt � sÞkdt

� �
ds:
Note that the set P0ðXÞ is translation-invariant. Hence, using the Lebesgue’s dominated convergence theorem, we obtain
from the above inequality that 1

2R

R R
�R kf ðtÞkdt ! 0 as R!1 i.e. f 2 P0ðXÞ. The proof is complete. h

It is well known that the study of composition of two functions with special properties plays a key role in discussing the
existence of solutions to semilinear equations. Hence, given a bounded function f 2 BCððR� X;XÞÞ and /ð�Þ 2 BðXÞ, such that
/ð�Þ belongs to some fixed space XðXÞ � MðXÞ, we can ask under which conditions on f we have that f ð�;/ð�ÞÞ belongs to
XðXÞ?. To answer this question we need the following notations and results.

We denote
C0ðR� X;XÞ ¼ fh 2 CðR� X;XÞ : lim
t!1
khðt; xÞk ¼ 0 uniformly for x on any compact subset of Xg:
as well as
P0ðR� X;XÞ ¼ fh 2 CðR� X;XÞ : f ð�; xÞ is bounded for all x 2 X and

lim
R!1

1
2R

Z R

�R
kf ðt; xÞkdt ¼ 0 uniformly in x 2 Xg: ð3:2Þ
In what follows, U will denote any of the symbols in the set fPx;AP;AAc;AAg. Define
UðR� X;XÞ :¼ ff 2 CðR� X;XÞ : f ð�; xÞ 2 UðXÞ uniformly for all x 2 B # X; B boundedg:
Analogously we define the sets AUðR� X;XÞ ¼ UðR� X;XÞ � C0ðR� X;XÞ and PUðR� X;XÞ ¼ UðR� X;XÞ � P0ðR� X;XÞ.
For example AAPððR� X;XÞÞ ¼ APðR� X;XÞ � C0ðR� X;XÞ.

Theorem 3.3. Let f 2 UðR� X;XÞ and / 2 UðXÞ. Assume that f ðt; �Þ is uniformly continuous in each bounded subset K of X
uniformly in t 2 R, that is: Given � > 0 and K � X, there exists d > 0 such that x; y 2 K and kx� yk 6 d imply that
kf ðt; xÞ � f ðt; yÞk 6 � for all t 2 R. Then f ð�;/ð�ÞÞ 2 UðXÞ.
Proof. For almost periodic functions the result is given in [3, Proposition 1], and for almost automorphic functions in [26,
Lemma 2.2]. Let U ¼ Px and asumme that f 2 PxðR� X;XÞ and / 2 PxðXÞ. Let K ¼ f/ðtÞ 2 X : t 2 Rg then,
f ðt þx;/ðt þxÞÞ � f ðt;/ðtÞÞ ¼ f ðt þx;/ðtÞÞ � f ðt;/ðtÞÞ:
Since K is bounded then f ðt þx;/ðtÞÞ � f ðt;/ðtÞÞ ¼ 0 and then f ð�;/ð�ÞÞ 2 PxðXÞ.
Let U ¼ AAc be given and assume that f 2 AAcðR� X;XÞ and / 2 AAcðXÞ. Let ðs00nÞn be a sequence of real numbers. Now, fix a

subsequence ðs0nÞn of ðs00nÞn and f 2 BCðR� X;XÞ so that the pair f ; ðs0nÞn is associated with f as in the definition of AAcðXÞ,
similarly fix a subsequence ðsnÞn of ðs0nÞn and consider the pair ðsnÞn;/ associated /. Let K � R be an arbitrary compact subset
and let � > 0. Since the set f/ðtÞ : t 2 Rg is relatively compact, there exist points xi 2 X; i ¼ 1; . . . ;n0 such that for each t 2 R

and iðtÞ 2 f1;2; . . . ;n0g
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k/ðtÞ � xiðtÞk 6 d and k/ðtÞ � xiðtÞk 6 d:
Let N� be a natural number such that kf ðt þ sn; xiÞ � f ðt; xiÞk 6 � for all i ¼ 1; . . . ;n0, and k/ðt þ snÞ � /ðtÞk < d for all t 2 K
(where d is given by the uniform continuity of f), whenever n P N�. In view of the above, for each t 2 K , and n P N�,
kf ðt þ sn;/ðt þ snÞÞ � f ðt;/ðtÞÞk 6 kf ðt þ sn;/ðt þ snÞÞ � f ðt þ sn;/ðtÞÞk þ kf ðt þ sn;/ðtÞÞ � f ðt þ sn; xiðtÞÞk
þ kf ðt þ sn; xiðtÞÞ � f ðt; xiðtÞÞk þ kf ðt; xiðtÞÞ � f ðt;/ðtÞÞk 6 4�:
This proves that the pair ðsnÞn, f ð�;/ð�ÞÞ is associated to the function f ð�;/ð�ÞÞ and then f ð�;/ð�ÞÞ 2 AAcðXÞ. h
Remark 3.4. We note that the above theorem is also valid for the case of the space SAPxðXÞ. Indeed, assume that
f 2 SAPxðR� X;XÞ and / 2 SAPxðXÞ, It follows from hypotheses that, given � > 0 and K ¼ f/ðtÞ 2 X : t 2 Rg there exists
d > 0 such that for all x; y 2 K and kx� yk < d imply that kf ðt; xÞ � f ðt; yÞk < �=2 for all t 2 R. We consider N > 0 such that
k/ðt þxÞ � /ðtÞk 6 d and kf ðt þx; xÞ � f ðt; xÞk 6 �=2 for all t P N and x 2 K. Consequently
kf ðt þx;/ðt þxÞÞ � f ðt;/ðtÞÞk 6 kf ðt þx;/ðt þxÞÞ � f ðt þx;/ðtÞÞk þ kf ðt þx;/ðtÞÞ � f ðt;/ðtÞÞk 6 �;
for all t P N�. This proves that kf ðt þx;/ðt þxÞÞ � f ðt;/ðtÞÞk ! 0 as t !1 and then f ð�;/ð�ÞÞ 2 SAPxðXÞ.
Remark 3.5. The condition that f is uniformly continuous in each bounded subset of X uniformly in t 2 R is not necessary in
the case when UðXÞ ¼ PxðXÞ or UðXÞ ¼ APðXÞ.

The unified proof of the following result follows the lines of [26, Theorem 2.3] for the case AAAðXÞ (see also [1, Lemma 2.9]
in case AAPðXÞ).

Theorem 3.6. Let f 2 AUðR� X;XÞ be such that f :¼ f1 þ f2 where f1 2 UðR� X;XÞ and f2 2 C0ðR� X;XÞ. Assume that f1ðt; �Þ and
f ðt; �Þ are uniformly continuous in each bounded subset of X uniformly in t 2 R. If / 2 AUðXÞ then f ð�;/ð�ÞÞ 2 AUðXÞ.
Proof. Let f 2 AUðR� X;XÞ and / 2 AUðXÞ be given. We have by definition that f ¼ f1 þ f2 where
f1 2 UðR� X;XÞ; f 2 2 C0ðR� X;XÞ and / ¼ /1 þ /2 where /1 2 UðXÞ; /2 2 C0ðXÞ. Now we decompose f as follows
f ðt;/ðtÞÞ ¼ f1ðt;/1ðtÞÞ þ f ðt;/ðtÞÞ � f1ðt;/1ðtÞÞ ¼ f1ðt;/1ðtÞÞ þ f ðt;/ðtÞÞ � f ðt;/1ðtÞÞ þ f2ðt;/1ðtÞÞ:
Using the fact that f1ðt; �Þ is uniformly continuous in each bounded subset of X uniformly in t and Theorem 3.3, we obtain
f1ð�;/1ð�ÞÞ 2 UðXÞ. Now, set FðtÞ :¼ f ðt;/ðtÞÞ � f ðt;/1ðtÞÞ þ f2ðt;/1ðtÞÞ. Since / and /1 are bounded, we can choose a bounded
subset K � X such that /ðRÞ [ /1ðRÞ � K. It follows from hypotheses that, given �=2 > 0, there exists d :¼ d�;K such that
x; y 2 K and kx� yk 6 d imply that
kf ðt; xÞ � f ðt; yÞk < �=2:
Since the function /2 belongs to C0ðXÞ and f2 2 C0ðR� X;XÞ, there exists t0 > 0 depending on d such that
k/ðtÞ � /1ðtÞk < d and kf2ðt;/1ðtÞÞk < �=2 for all jtj > t0. Then
kFðtÞk 6 kf ðt;/ðtÞÞ � f ðt;/1ðtÞÞk þ kf2ðt;/1ðtÞÞk 6 �=2þ �=2 ¼ �
for all jtj > s0, i.e. F 2 C0ðXÞ. Using the fact that f1ð�;/1ð�ÞÞ 2 UðXÞ we conclude that f ð�;/ð�ÞÞ 2 AUðXÞ. h

For our next results we will need the following Lemma.

Lemma 3.7 [26, Lemma 2.1]. Let f 2 BCðXÞ be given. Then f 2 P0ðXÞ if and only if for any � > 0,
lim
T!1

1
2T

mesðMT;�ðf ÞÞ ¼ 0;
where mesð�Þ denotes the Lebesgue measure and MT;�ðf Þ :¼ ft 2 ½�T; T� : kf ðtÞk > �g.
The main theorem in case of functions with the pseudo property is the following result. The idea of the proof follows [25]

and [26, Theorem 2.4] for the cases PAPðXÞ; PAAðXÞ respectively.

Theorem 3.8. Let f 2 PUðR� X;XÞ is that f :¼ f1 þ f2 where f1 2 UðR� X;XÞ and f2 2 P0ðR� X;XÞ. Assume that f satisfy the
following conditions:
(i) ff ðt; yÞ : t 2 R; y 2 Kg is bounded for every bounded subset K � X.
(ii) f1ðt; �Þ; f ðt; �Þ is uniformly continuous on any bounded subset K � X uniformly in t 2 R.

If / 2 PUðXÞ, then f ð�;/ð�ÞÞ 2 PUðXÞ.
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Proof. Since f 2 PUðR� X;XÞ and / 2 PUðXÞ, we have by definition that f ¼ f1 þ f2 and / ¼ /1 þ /2 where
f1 2 UðR� X;XÞ; f 2 2 P0ðR� X;XÞ; /1 2 UðXÞ and /2 2 P0ðXÞ. Now we decompose f as follows
f ðt;/ðtÞÞ ¼ f1ðt;/1ðtÞÞ þ f ðt;/ðtÞÞ � f1ðt;/1ðtÞÞ ¼ f1ðt;/1ðtÞÞ þ f ðt;/ðtÞÞ � f ðt;/1ðtÞÞ þ f2ðt;/1ðtÞÞ:
Using (ii) and Theorem 3.3 we obtain f1ð�;/1ð�ÞÞ 2 UðXÞ. Now, set FðtÞ :¼ f ðt;/ðtÞÞ � f ðt;/1ðtÞÞ. Next, we prove that
F 2 P0ðXÞ. Indeed, clearly by (i), F 2 BCðXÞ; Then by Lemma 3.7, it is sufficient to show that
lim
T!1

1
2T

mesðMT;�ðFÞÞ ¼ 0:
Since / and /1 are bounded, we can choose a bounded subset K � X such that /ðRÞ;/1ðRÞ � K. It follows from hypotheses
that, given � > 0, there exists d :¼ d�;K such that x; y 2 K and kx� yk 6 d imply that kf ðt; xÞ � f ðt; yÞk < � for all t 2 R. Then we
have
lim
T!1

1
2T

mesðMT;�ðFÞÞ 6 lim
T!1

1
2T

mesðMT;dð/2ÞÞ:
Since /2 2 P0ðXÞ, Lemma 3.7 yields for the above d that
lim
T!1

1
2T

mesðMT;dð/2ÞÞ ¼ 0:
This shows that F 2 P0ðXÞ. Next we show that f2ð�;/1ð�ÞÞ 2 P0ðXÞ. Since f2ð�;/1ð�ÞÞ is continuous in ½�T; T�, it is uniformly
continuous in ½�T; T�. Set I :¼ /1ð½�T; T�Þ. Since it is compact in R, one can find finite open balls Ok; k ¼ 1;2; . . . ;m, with cen-
ter in xk and radius d small enough such that I �

Sm
k¼1Ok and
kf2ðt;/1ðtÞÞ � f2ðt; xkÞk 6 �=2; /1ðtÞ 2 Ok; t 2 ½�T; T�: ð3:3Þ
The set Bk :¼ ft 2 ½�T; T� : /1ðtÞ 2 Okg is open in ½�T; T� ¼
Sm

k¼1Bk. Let E1 ¼ B1, Ek ¼ Bk n
Sk�1

j¼1 Bj ð2 6 k 6 mÞ be given. Then
Ej \ Ei ¼ ;, when i – j;1 6 i; j 6 m. Clearly,
ft 2 ½�T; T� : kf2ðt;/1ðtÞÞkP �g �
[m
k¼1

ft 2 Ek : kf2ðt;/1ðtÞÞ � f2ðt; xkÞk þ kf2ðt; xkÞkP �g �
[m
k¼1

ft 2 Ek

: kf2ðt;/1ðtÞÞ � f2ðt; xkÞkP �=2g [ ft 2 Ek : kf2ðt; xkÞkP �=2g:
It follows from (3.3) that the sets fkf2ðt;/1ðtÞÞ � f2ðt; xkÞkP �=2g are empty for all 1 6 k 6 m. Therefore,
1
2T

mesðMT;�ðf2ð�;/1ð�ÞÞÞÞ 6
1

2T

Xm

k¼1

mesðMT;�=2ðf2ð�; xkÞÞ:
Since f2ð�; xkÞ 2 P0ðXÞ, we obtain
lim
T!1

1
2T

mesðMT;�=2Þðf2ð�; xkÞÞ ¼ 0
and hence we have that
lim
T!1

1
2T

mesðMT;�Þðf2ð�;/1ð�ÞÞÞ ¼ 0;
that is f2ð�;/1ð�ÞÞ 2 P0ðXÞ, which ends the proof. h

An immediate corollary of the above results corresponds to a slight extension of the composition theorem recently stated
in [27].

Corollary 3.9. Let XðXÞ 2 MðXÞ and f 2 XðR� X;XÞ be given and fixed. Assume that there exists a constant Lf > 0 such that
kf ðt; xÞ � f ðt; yÞk 6 Lf kx� yk
for all t 2 R and x; y 2 X. Let / 2 XðXÞ. Then f ð�;/ð�ÞÞ 2 XðXÞ.
Remark 3.10. Recall that in [27] the integro-differential equation
u0ðtÞ ¼ AuðtÞ þ
Z t

�1
aðt � sÞAuðsÞdsþ f ðt;uðtÞÞ; t P 0
is considered. The above corollary provides a direct extension of the existence results on mild solutions for the cited integro-
differential equation to the new classes of spaces AAcðXÞ;AAAcðXÞ and PAAcðXÞ (see [27, Theorems 4.3, 4.5 and 4.7]).

The following results corresponds to the cases C0ðXÞ and P0ðXÞ, which are considered individually.
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Theorem 3.11. Let f 2 C0ðR� X;XÞ be given and such that f ðt; �Þ is uniformly continuous in each bounded subset K of X uniformly
in t 2 R. If / 2 C0ðXÞ, then f ð�;/ð�ÞÞ 2 C0ðXÞ.
Proof. Let f 2 C0ðR� XÞ and / 2 C0ðXÞ. Let K ¼ f/ðsÞ 2 X : s 2 Rg [ f0g. We note that by hypothesis, given �=2 > 0, there
exists d :¼ d�;K such that x; y 2 K and kx� yk 6 d imply that
kf ðt; xÞ � f ðt; yÞk < �=2:
Since the function / belongs to C0ðXÞ and f 2 C0ðR� X;XÞ there exists s0 depending of d such that k/ðsÞk < d and
kf ðs;0Þk < �=2 for all jsj > s0. We can write
f ðs;/ðsÞÞ ¼ f ðs;0Þ þ f ðs;/ðsÞÞ � f ðs;0Þ;
and estimate
kf ðs;/ðsÞÞk ¼ kf ðs;0Þk þ kf ðs;/ðsÞÞ � f ðs; 0Þk 6 �=2þ �=2 ¼ �
for all jsj > s0, i.e. f ðs;/ðsÞÞ 2 C0ðXÞ. h
Theorem 3.12. Assume that f 2 P0ðR� X;XÞ satisfy the following conditions:

(i) ff ðt; yÞ : t 2 R; y 2 Kg is bounded for every bounded subset K � X;
(ii) f ðt; �Þ is uniformly continuous on any bounded subset K � X uniformly in t 2 R.

If / 2 P0ðXÞ, then f ð�;/ð�ÞÞ 2 P0ðXÞ.
Proof. Let f 2 P0ðR� X;XÞ and / 2 P0ðXÞ. We note that by (i), the composition theorem and Lemma 3.7 it suffices to show
that for all � > 0
lim
T!1

1
2T

mesðMT;�ðf ð�;/ð�ÞÞÞÞ ¼ 0:
We can write
f ðs;/ðtÞÞ ¼ f ðt;0Þ þ f ðt;/ðtÞÞ � f ðt; 0Þ:
Firstly, we will prove that f ðt;/ðtÞÞ � f ðt;0Þ 2 P0ðXÞ. Since /ðtÞ is bounded, we can choose K :¼ f/ðtÞ : t 2 Rg [ f0g. Under
assumption (ii), f is uniformly continuous on the bounded subset K. Then, given � > 0, there exists d > 0 such that x; y 2 K
and kx� yk 6 d imply that
kf ðt; xÞ � f ðt; yÞk 6 � for all t 2 R:
Then we have
1
2T

mesðMT;�ðf ðt;/ðtÞÞ � f ðt;0ÞÞÞ 6 1
2T

mesðMT;dð/ðtÞÞÞ:
Since /ðtÞ 2 P0ðXÞ, [26, Lemma 2.1] yields that for the above d,
lim
T!1

1
2T

mesðMT;dð/ðtÞÞÞ ¼ 0;
then
lim
T!1

1
2T

mesðMT;�ðf ðt;/ðtÞÞ � f ðt;0ÞÞ ¼ 0;
and this shows that f ðt;/ðtÞÞ � f ðt;0Þ 2 P0ðXÞ. Secondly, note that f ðt;0Þ 2 P0ðXÞ and hence from the above
f ðt;/ðtÞÞ � f ðt; 0Þ 2 P0ðXÞ. Therefore f ðt;/ðtÞÞ 2 P0ðXÞ. h

We note that if XðXÞ 2 MðXÞ [ fC0ðXÞ; P0ðXÞg is fixed, then, given / 2 XðXÞ and f 2 BCðR� X;XÞ, sufficient conditions to
ensure that f ð�;/ð�ÞÞ belongs to XðXÞ should be chosen between the following:

ðH1Þ f ðt; �Þ is uniformly continuous in each bounded subset of X uniformly in t 2 R. More precisely, given � > 0 and K � X,
there exists d > 0 such that x; y 2 K and kx� yk 6 d imply that kf ðt; xÞ � f ðt; yÞk 6 �.

ðH2Þ ff ðt; xÞ : t 2 R; x 2 Kg is bounded for all bounded subset K � X.
ðH3Þ If f ¼ f1 þ f2 where f1 2 UðXÞ and f2 2 fC0ðXÞ; P0g n f0g, then f1ðt; �Þ is uniformly continuous in each bounded subset of X

uniformly in t 2 R.
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For example, if XðXÞ ¼ AAAðXÞ and / 2 AAAðXÞ to ensure that f ð�;/ð�ÞÞ belongs to AAAðXÞwe need that f 2 AAAðR� X;XÞ and
the conditions ðH1Þ and ðH3Þ. However if UðXÞ ¼ PAAðXÞ and / 2 PAAðXÞ to ensure that f ð�;/ð�ÞÞ belongs to PAAðXÞwe need that
f 2 PAAðR� X;XÞ and the conditions ðH1Þ; ðH2Þ; ðH3Þ. The whole spectrum of situations is summarized in the following table:
XðXÞ
 H1
 H2
 H3
Px
AP

AcA
 	

AA
 	

APx
 	

AAP
 	

AAcA
 	
 	

AAA
 	
 	

PPx
 	
 	

PAP
 	
 	

PAcA
 	
 	
 	

PAA
 	
 	
 	

C0
 	

P0
 	
4. Existence, uniqueness and regularity of mild solutions

The notion of mild solution that we use in this paper, reads as follows:

Definition 4.1 [5]. A function u : R! X is said to be a mild solution to (1.1) if there exists a strongly continuous family of
bounded an linear operators on X such that the function s! Saðt � sÞf ðs;uðsÞÞ is integrable on ð�1; tÞ for each t 2 R and
uðtÞ ¼
Z t

�1
Saðt � sÞf ðs;uðsÞÞds ð4:1Þ
for all t 2 R.
The following theorems are the main results of this work.

Theorem 4.2. Assume that A is sectorial of type l < 0 with 0 6 h < pð1� a=2Þ. Let XðXÞ 2 MðXÞ n fPxðXÞ;
APðXÞ;AAcðXÞ;AAðXÞg [ fC0ðXÞ; P0ðXÞg be given. Let f 2 XðR� X;XÞ be given and assume that there exists an integrable and
bounded function Lf : R! ½0;1Þ satisfying
kf ðt; xÞ � f ðt; yÞk 6 Lf ðtÞkx� yk; 8x; y 2 X; t P 0: ð4:2Þ
Then Eq. (1.1) has a unique mild solution u which belongs to the same space as f ð�; xÞ.
Proof. We define the operator F : XðXÞ ! XðXÞ by
ðF/ÞðtÞ :¼
Z t

�1
Saðt � sÞf ðs;/ðsÞÞds t 2 R:
Given / 2 XðXÞ, in view of Corollary 3.9, Theorems 3.11 and 3.12, we have that s! f ðs;/ðsÞÞ belongs to XðXÞ for
XðXÞ 2 MðXÞ n fPxðXÞ;APðXÞ;AAðXÞ;AAcðXÞg or XðXÞ 2 fC0ðXÞ; P0ðXÞg and hence is bounded in R. Since the function
t ! 1=ð1þ jljtaÞ is integrable on Rþ ð1 < a < 2Þ, we get that F/ exists. Now by Theorems 3.1 and 3.2 we obtain that
F/ 2 XðXÞ, and hence F is well defined. It suffices to show that the operator F has a unique fixed point in XðXÞ. Let
/1; /2 2 XðXÞ be given and define Ma :¼ supt2RkSaðtÞk. We have
kF/1ðtÞ � F/2ðtÞk 6
Z t

�1
MaLf ðsÞk/1ðsÞ � /2ðsÞkds 6 MakLf kk/1 � /2k1:
In general, we get
kFn/1ðtÞ � Fn/2ðtÞk 6
Mn

a

ðn� 1Þ!

Z t

0
Lf ðsÞ

Z s

0
Lf ðsÞds

� �n�1

dsk/1 � /2k1 6
Mn

a

n!

Z t

0
Lf ðsÞds

� �n

k/1 � /2k1

6
Mn

a

n!
kLf knk/1 � /2k1:
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Since ðMakLf k1Þ
n

n!
< 1 for n sufficiently large, by the contraction principle, F has a unique fixed point u 2 C0ðXÞ. This completes

the proof. h
Remark 4.3. We must point out that the hypothesis (4.2) cannot be satisfied in case of the spaces PxðXÞ;APðXÞ;AAðXÞ or
AAcðXÞ, except in the linear case f ðt; xÞ ¼ gðtÞ ðt 2 RÞ. Indeed, (4.2) cannot happen when f ð�; xÞ belongs to
PxðXÞ;APðXÞ;AAðXÞ or AAcðXÞ since otherwise f ðt; xÞ � f ðt; yÞ 2 L1ðRþÞ, leading to a contradiction with the fact that
f ðt; xÞ � f ðt; yÞ belongs to PxðXÞ; APðXÞ; AAðXÞ or AAcðXÞ respectively.

We can establish the following existence result.

Theorem 4.4. Assume that A is sectorial of type l < 0 with 0 6 h < pð1� a=2Þ and let XðXÞ 2 MðXÞ [ fC0ðXÞ; P0ðXÞg be given.
Let f 2 XðR� X;XÞ be a function that satisfies the Lipschitz condition (4.2) with Lf 2 BCðRÞ. Let kLf k :¼ supt2R

R tþ1
t Lf ðsÞds. If

CMkLf k < jlj
1
aa sinðp=aÞ

p , where C and M are the constants given in (2.1), then Eq. (1.1) has a unique mild solution u 2 XðXÞ.
Proof. We define the operator F : XðXÞ ! XðXÞ by
ðF/ÞðtÞ :¼
Z t

�1
Saðt � sÞf ðs;/ðsÞÞds t 2 R:
Given / 2 XðXÞ, in view of Corollary 3.9, and Theorems 3.11, 3.12, we have that s! f ðs;/ðsÞÞ belongs to XðXÞ, and hence it
is bounded in R. Since the function t ! 1=ð1þ jljtaÞ is integrable on Rþ ð1 < a < 2Þ, we get that F/ exists. Now by [27, The-
orem 3.3], we obtain that F/ 2 XðXÞ, and hence F is well defined. For /1;/2 2 XðXÞ we have the following estimate
kF/1ðtÞ � F/2ðtÞk 6 CM
Z t

�1

Lf ðsÞ
1þ jljðt � sÞa

k/1ðsÞ � /2ðsÞkds 6 CM
X1
m¼0

Z t�m

t�ðmþ1Þ

Lf ðsÞ
1þ jljðt � sÞa

ds

 !
k/1 � /2k1

6 CM
X1
m¼0

1
1þ jljðmÞa

Z t�m

t�ðmþ1Þ
Lf ðsÞds

 !
k/1 � /2k1 6 CM

X1
m¼0

1
1þ jljðmÞa

 !
kLf ksk/1 � /2k1;
which finishes the proof. h
Corollary 4.5. Assume that A is sectorial of type l < 0 with 0 6 h < pð1� a=2Þ. Let XðXÞ 2 MðXÞ [ fC0ðXÞ; P0ðXÞg be given.
Assume f 2 XðR� X;XÞ satisfies the Lipschitz condition
kf ðt; xÞ � f ðt; yÞk 6 Lf kx� yk x; y 2 X; t P 0:
If CMLf < jlj
1
aa sinðp=aÞ

p , then Eq. (1.1) has a unique mild solution u 2 XðXÞ.
Remark 4.6. From the last Theorem we recover [1, Theorem 3.3] and [1, Corollary 3.4] for the case of pseudo-almost auto-
morphic functions. The remaining cases are new.

A slightly different condition is established in the next result.

Theorem 4.7. Assume that A is sectorial of type l < 0 with 0 6 h < pð1� a=2Þ and XðXÞ 2 M n fPxðXÞ;
APðXÞ;AAcðXÞ;AAðXÞg [ fC0ðXÞ; P0ðXÞg be given. Let f 2 XðR� X;XÞ be such that satisfy the Lipschitz condition (4.2) and the
integral

R t
�1 Lf ðsÞds exists for all t 2 R. Then Eq. (1.1) has a unique mild solution u 2 XðXÞ.
Proof. Define a new norm kj/kj :¼ supt2RfvðtÞk/ðtÞkg, where vðtÞ :¼ e�k
R t

�1
Lf ðsÞds and k is a fixed positive constant greater

than Ma :¼ supt2RkSaðtÞk. Let /1; /2 be in XðXÞ, then we have
vðtÞkFð/1ÞðtÞ � ðF/2ÞðtÞk ¼ vðtÞk
Z t

�1
Saðt � sÞ½f ðs;/1ðsÞÞ � f ðs;/2ðsÞÞ�dsk 6 Ma

Z t

�1
vðtÞLf ðsÞk/1ðsÞ � /2ðsÞkds

6 Makj/1 � /2kj
Z t

�1
vðtÞvðsÞ�1LðsÞds ¼ Ma

k
kj/1 � /2kj

Z t

�1
kek
R s

t
Lf ðsÞdsLf ðsÞds

¼ Ma

k
kj/1 � /2kj

Z t

�1

d
ds

ek
R s

t
Lf ðsÞds

� �
ds ¼ Ma

k
kj/1 � /2kj 1� e�k

R t

�1
Lf ðsÞds

� �
6

Ma

k
kj/1 � /2kj:
Hence, since Ma
k < 1; F has a unique fixed point u 2 XðXÞ. h
Remark 4.8. The previous theorem extends [9, Theorem 3.4] stated previously only in case of the space of pseudo almost
automorphic functions and [10, Theorem 3.3] stated in case of the space of almost automorphic functions.
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Next we will study the existence of mild solutions of Eq. (1.1) that belongs to XðXÞ, when the function f is not Lipschitz
continuous. To avoid the Lipschitz conditions considered in the previous results, we need to assume that f satisfies appro-
priate compactness conditions.

We begin by introducing the following assumption.
ðBÞ There exists a continuous nondecreasing function W : Rþ ! Rþ such that
kf ðt; xÞk 6WðkxkÞ
for all t 2 R and x 2 X.
Let h : R! R be a continuous function such that hðtÞP 1 for all t 2 R, and hðtÞ ! 1 as jtj ! 1. We consider the space

ChðXÞ ¼ u 2 CðR;XÞ : lim
jtj!1

uðtÞ
hðtÞ ¼ 0

� �
endowed with the norm kukh :¼ supt2R

kuðtÞk
hðtÞ . In our next result we will need the following

Lemma.

Lemma 4.9 [21]. A subset K � ChðXÞ is a relatively compact set if it verifies the following conditions:

(a) The set KðtÞ :¼ fuðtÞ : u 2 Kg is relatively compact in X for each t 2 R;
(b) The set K is equicontinuous;
(c) For each � > 0 there exists L > 0 such that kuðtÞk < �hðtÞ for all u 2 K and all jtj > L.

The next theorem is based on the Leray–Schauder alternative theorem [19, Theorem 6.5.4], which read as follows:

Lemma 4.10. [19] Let D be a closed convex subset of a Banach space X such that 0 2 D. Let F : D! D be a completely continuous
map. Then either the set fx 2 D : x ¼ kFðxÞ;0 < k < 1g is unbounded or the map F has a fixed point in D.

Theorem 4.11. Let XðXÞ 2 MðXÞ n fPPxðXÞ; PAPðXÞ; PAAcðXÞ; PAAðXÞ; P0ðXÞg be given. Assume that A is sectorial of type l < 0
with 0 6 h < pð1� a=2Þ. Let f 2 XðR� X;XÞ be such that satisfy the assumption ðBÞ, and the following conditions:

(1) f ðt; xÞ is uniformly continuous in any bounded subset K � X uniformly in t 2 R.
(2) For each r P 0, the function t !

R t
�1

WðrhðsÞÞ
1þjxjðt�sÞa ds is included in BCðRÞ. We set
bðrÞ :¼ CM
Z ð�Þ

�1

WðrhðsÞÞ
1þ jxjðð�Þ � sÞa

ds
����

����
h

(3) For each � > 0 there is d > 0 such that for every u; v 2 ChðXÞ; ku� vkh < d implies that
R t
�1

kf ðt;uðsÞÞ�f ðt;vðsÞÞk
1þjxjðt�sÞa ds 6 � for all

t 2 R.
(4) lim inf

�!1
�

bð�Þ > 1.

(5) For all a; b 2 R; a < b, and r > 0, the set ff ðs;hðsÞxÞ : a 6 s 6 b; x 2 X; kxk 6 rg is relatively compact in X.

Then Eq. (1.1) has a mild solution u that belongs to XðXÞ.
Proof. We follow the argument given in [21, Theorem 4.9]. First, we define the operator F on ChðXÞ as in the proof of The-
orem 4.2. Next, we show that F has a fixed point in XðXÞ. In order to do that, we will divide the proof in several steps.

(i) For u 2 ChðXÞ, we have that
kFuðtÞk 6 CM
Z t

�1

WðkuðsÞkÞ
1þ jxjðt � sÞa

ds 6 CM
Z t

�1

WðkukhhðsÞÞ
1þ jxjðt � sÞa

ds: ð4:3Þ
It follows from condition ðbÞ that lim
jtj!1

kFðtÞk
hðtÞ ¼ 0 then F : ChðXÞ ! ChðXÞ.

(ii)The
map F is continuous. In fact, for � > 0, we take d involved in condition (3). If u;v 2 ChðXÞ and ku� vkh 6 d, then
kFuðtÞ � FvðtÞk 6
Z t

�1
Saðt � sÞðf ðs; uðsÞÞ � f ðt; vðsÞÞÞds

����
���� 6 CM

Z t

�1

kf ðt;uðsÞÞ � f ðt; vðsÞÞk
1þ jxjðt � sÞa

ds 6 �;
which show the assertion.
(iii) We will show that F is completely continuous. In order to do that, we will use Lemma 4.9. In fact, we set BrðXÞ for the

closed ball with center at 0 and radius r in a space X. Let V ¼ FðBrðChðXÞÞÞ and v ¼ FðuÞ for u 2 BrðChðXÞÞ.
Initially, we will prove that VðtÞ is a relatively compact subset of X for each t 2 R. It follows from condition (2) that the

function t ! Wðrhðt�sÞÞ
1þjxjðsÞa ds is integrable on ½0;1Þ. Hence, for � > 0 we can choose a P 0 such that CM

R1
a

WðrhðsÞÞ
1þjxjðt�sÞa ds 6 �.

Since
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Z 1

a
SaðsÞf ðt � s;uðt � sÞÞds

����
���� 6 CM

Z 1

a

Wðrhðt � sÞÞ
1þ jxjðsÞa

ds 6 �
we get
vðtÞ 2 acðfSaðsÞf ðn;hðnÞx : 0 6 s 6 a; t � a 6 n 6 t; kxk 6 rÞgÞ þ B�ðXÞ;
where cðKÞ denotes the convex hull of K. Using that Sað�Þ is strongly continuous and the property ð5Þ, we infer that
K ¼ fSaðsÞf ðn;hðnÞx : 0 6 s 6 a; t � a 6 n 6 t; kxk 6 rÞg is a relatively compact set, and VðtÞ � acðKÞ þ B�ðXÞ, which establishes
our assertion.
We will next show that the set V is equicontinuous. In fact, we can decompose
vðt þ sÞ � vðtÞ ¼
Z s

0
SaðnÞf ðt þ s� n;uðt þ s� nÞÞdnþ

Z a

0
ðSaðnþ sÞ � SaðnÞÞf ðt � n;uðt � nÞÞdnþ

Z 1

a
ðSaðnþ sÞ

� SaðnÞÞf ðt � n;uðt � nÞÞdn:
For each � > 0, we can choose a > 0 and d1 such thatZ s Z 1�� ��

0

SaðnÞf ðt þ s� n;uðt þ s� nÞÞdnþ
a
ðSaðnþ sÞ � SaðnÞÞf ðt � n;uðt � nÞÞdn�� ��

¼ CM
Z s

0

Wðrhðt þ s� nÞÞ
1þ jxjna dnþ 2

Z 1

a

Wðrhðt � nÞÞ
1þ jxjna dn

� �
¼ �=2;
for s 6 d1. Moreover, since ff ðt � n; uðt � nÞÞ : 0 6 n 6 a;u 2 BrðChðXÞÞg is a relatively compact set and Sað�Þ is strongly contin-
uous, we can choose d2 such that kðSaðnþ sÞ � SaðnÞÞf ðt � n;uðt � nÞÞk 6 �=2a for s 6 d2. Combining these estimate, we get
kvðt þ sÞ � vðsÞk 6 � for s small enough independent of u 2 BrðChðXÞÞ.
Finally, applying condition (2), we can show that
vðtÞ
hðtÞ 6

1
hðtÞ

Z t

�1

WðrhðsÞÞ
1þ jxjðt � sÞa

ds! 0; jtj ! 1;
and this convergence is independent of u 2 BrðChðXÞÞ. Hence V is a relatively compact set in ChðXÞ.
(iv) If ukð�Þ is a solution of equation uk ¼ kFðukÞ for some 0 < k < 1, from the estimate
kukðtÞk 6 CM
Z t

�1

WðkukkrhðsÞÞ
1þ jxjðt � sÞa

ds 6 bðkukkhÞhðtÞ
we get
kukkh

bðkukkhÞ
6 1
and, combining it with condition (4), we conclude that the set fuk : uk ¼ kFðukÞ; k 2 ð0;1Þg it is bounded.
(v) Given / 2 XðXÞ, in view of Theorems 3.3, 3.6 and 3.11, we have that s! f ðs;/ðsÞÞ belongs to XðXÞ, and hence is

bounded in R. Since the function t ! 1=ð1þ jljtaÞ is integrable on Rþð1 < a < 2Þ, we get that F/ exists. Now by
Lemma 3.2, we obtain that F/ 2 XðXÞ, and hence F is well defined. We can consider F : XðXÞh ! XðXÞh and using prop-
erties (i)–(iii), we deduce that this map is completely continuous. Using the Leray–Shauder alternative theorem [19,
Theorem 6.5.4], we infer that F has a fixed point u 2 XðXÞ. Let ðunÞn be a sequence in XðXÞ that converges to u in the
norm k � kh. It follows from (2) that given � > 0 exists d > 0, such that if ku� vkh < d implies that
kFðunÞðtÞ � FðuÞðtÞk 6
Z t

�1

kf ðt; uðsÞÞ � f ðt;vðsÞÞk
1þ jxjðt � sÞa

ds 6 �
for all t 2 R. Choose Nd such that kun � uk < d for all n P Nd. Then we deduce that ðFðunÞÞn converges to FðuÞ ¼ u uniformly in
R. This implies that u 2 XðXÞ, and completes the proof. h
Theorem 4.12. Let XðXÞ 2 fPPxðXÞ; PAPðXÞ; PAcAðXÞ; PAAðXÞ; P0ðXÞg be given. Assume that A is sectorial of type l < 0 with
0 6 h < pð1� a=2Þ. Let f 2 XðR� X;XÞ be given such that satisfy assumption ðBÞ, and the following conditions:

(1) f ðt; xÞ is uniformly continuous in any bounded subset K � X uniformly in t 2 R;
(2) For each r P 0, the function t !

R t
�1

WðrhðsÞÞ
1þjxjðt�sÞa ds is included in BCðRÞ. We set
bðrÞ :¼ CM
Z ð�Þ

�1

WðrhðsÞÞ
1þ jxjðð�Þ � sÞa

ds
����

����
h

;
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(3) For each � > 0 there is d > 0 such that for every u; v 2 ChðXÞ; ku� vkh < d implies that
R t
�1

kf ðt;uðsÞÞ�f ðt;vðsÞÞk
1þjxjðt�sÞa ds 6 � for all

t 2 R;
(4) lim inf

�!1
�

bð�Þ > 1;
(5) For all a; b 2 R; a < b, and r > 0, the set ff ðs;hðsÞxÞ : a 6 s 6 b; x 2 X; kxk 6 rg is relatively compact in X;
(6) The set ff ðt; xÞ : t 2 R; x 2 Kg is bounded for every bounded K � X.

Then Eq. (1.1) has a mild solution u which belongs to XðXÞ.
Proof. The proof is similar to the given for the above theorem. Only we need to consider the composition Theorem 3.8 in the
last part (v). h

5. Examples

We finish the paper with the following examples.

Example 5.1. Let X ¼ L2½0;p� and let XðXÞ 2 MðXÞ n fPxðXÞ;APðXÞ;AAcðXÞ;AAðXÞg [ fC0ðXÞ; P0ðXÞg be given. We consider the
operator A defined on X by
Au ¼ u00 � su; ðs > 0Þ ð5:1Þ
with domain DðAÞ ¼ fu 2 L2½0;p� : u00 2 L2½0;p�;uð0Þ ¼ uðpÞ ¼ 0g. It is well known that M ¼ u00 is the generator of an analytic
semigroup on L2½0;p�. Hence ðsI � AÞ is sectorial of type l ¼ �s. Then the equation
@a
t uðt; xÞ ¼ @2

x uðt; xÞ � suðt; xÞ þ @a�1
t aðtÞ þ bbðtÞ sinðuðt; xÞÞð Þ t 2 R; x 2 ½0;2p� ð5:2Þ
can be formulated as the inhomogeneous problem (1.1), where uðtÞ ¼ uðt; �Þ. Let us consider the nonlinearity
f ðt;/Þ ¼ aðtÞ þ bbðtÞ sinð/ðsÞÞ for all / 2 X; s 2 ½0;p�; t 2 R; b 2 R; b 2 C0ðRÞ and a 2 XðXÞ. We observe that
bbð�Þ sinð/ðsÞÞ 2 C0ðXÞ imply that f ð�; xÞ belongs to XðXÞ and hence we have that
kf ðt;/1Þ � f ðt;/2Þk
2
2 6

Z p

0
b2jbðtÞj2j sinð/1ðsÞÞ � sinð/2ðsÞÞj

2ds 6 b2jbðtÞj2k/1 � /2k
2
2:
In consequence, the fractional differential Eq. (5.2) has a unique mild solution u 2 XðXÞ if either jbj2 2 L1ðRÞ (Theorem 4.2)

or
R t
�1 jbðsÞj

2ds exist (Theorem 4.7). If we assume that b 2 L1ðRÞ and jbj < a sinðp=aÞ
CMkbk1jlj

�1=ap
, then same conclusion holds, by Cor-

ollary 4.5.
Example 5.2. Let X ¼ L2½0;p� and let XðXÞ 2 fPxðXÞ;APðXÞ;AAcðXÞ;AAðXÞg be given. We consider the problem
@a
t uðt; xÞ ¼ @2

x uðt; xÞ � suðt; xÞ þ @a�1
t bbðtÞ sinðuðt; xÞÞð Þ t 2 R; x 2 ½0;2p�: ð5:3Þ
As in the above example, consider the nonlinearity f ðt;/Þ ¼ bbðtÞ sinð/ðsÞÞ for all / 2 X; s 2 ½0;p�; t 2 R; b 2 R and
bðtÞ 2 XðRÞ. We also assume that b 2 L1ðRÞ and jbj < a sinðp=aÞ

CMkbk1jlj
�1=ap

. We observe that bbð�Þ sinð/ðsÞÞ 2 XðXÞ and then f ð�; xÞ
belongs to XðXÞ. Moreover,
kf ðt;/1Þ � f ðt;/2Þk
2
2 6

Z p

0
b2jbðtÞj2j sinð/1ðsÞÞ � sinð/2ðsÞÞj

2ds 6 b2jbðtÞj2k/1 � /2k
2
2:
Then, by Corollary 4.5, the problem (5.3) has a unique mild solution which belongs to XðXÞ.
Example 5.3. Let X ¼ L2½0;p� and let XðXÞ 2 MðXÞ n fPxðXÞ;APðXÞ;AAcðXÞ;AAðXÞg [ fC0ðXÞ; P0ðXÞg be given. Just as in the
above example consider the function f : R� X ! X as
f ðt;/ÞðxÞ ¼ gðtÞ þ e�jtj
Z x

0
sin

/ðsÞ þ 1
k/kL2 þ 2

� �
ds

				
				
b

sinðxÞ;
where b 2 ð0;1Þ and g 2 XðXÞ. Then the fractional differential Eq. (1.1) has a mild solution that belongs to XðXÞ. A calculation
shows the following two estimates
kf ðt;/ÞkL2 6 kgðtÞkL2 þ e�jtj
pð1þ2bÞ=2

2
t 2 R; / 2 X
and
kf ðt;/1Þ � f ðt;/2ÞkL2 6 e�jtj3bpð1þ2bÞ=2k/1 � /2k
b

L2 t 2 R; /1;/2 2 X;
which follows from the fact that f 2 XðR� X;XÞ is uniformly continuous on bounded sets of X uniformly in t 2 R.
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It is straightforward to verify that
kf ðt;/ÞkL2 6 kgk1 þ pð1þ2bÞ=2 k/kL2 þ 1
k/kL2 þ 2

� �b

t 2 R; / 2 X:
Hence, we can define in ðBÞ WðxÞ ¼ kgk1 þ pð1þ2bÞ=2 xþ1
xþ2


 �b
and hðtÞ ¼ et ; t 2 R. Consequently, we see that
Z t

�1

WðrhðsÞÞ
1þ jljðt � sÞa

ds 6 kWk1
Z 1

0

1
1þ jljðsÞa

ds < M for all t 2 R
and
 Z t

�1

kf ðs;uðsÞÞ � f ðs;vðsÞÞkL2

1þ jljðt � sÞa
ds 6

Z t

�1

e�jsj3bpð1þ2bÞ=2k/1ðsÞ � /2ðsÞk
b

L2

1þ jljðt � sÞa
ds 6

Z t

�1

3bpð1þ2bÞ=2

1þ jljðt � sÞa
k/1 � /2k

b
hds

6 M0k/1 � /2k
b
h;
which means that conditions (2) and (3) of Theorems 4.11, 4.12 are satisfied. An easy computation leads to lim
�!1

�
hð�Þ > 1. An

argument involving Simon’s theorem (see [35, Theorem 1, pages 71–74]) proves that the set
K ¼ ff ðs;hðsÞxÞ : a 6 s 6 b; x 2 X; kxk 6 rg is relatively compact in X. In fact, we can verify the estimate
kf ðs;/ÞkL2 6 kgk1 þ pð1þ2bÞ=2 t 2 R; / 2 X:
Hence, for 0 6 a1 < a2 6 p, the integral
R a2

a1
f ðs;hðsÞ/ðsÞÞds is bounded uniformly in s and /. On the other hand, we can

infer the following estimate:
jf ðs;/ðsÞÞðxÞ � f ðs;/ðsÞÞðx0Þj 6 jx� x0jb þ pbjx� x0j:
Therefore
Z p�h

0
jf ðs;/ðsÞÞðxþ hÞ � f ðs;/ðsÞÞðxÞjdx! 0 as h! 0
uniformly in s and /. Finally, Simon’s theorem leads to the conclusion that K is relatively compact. Using Theorems 4.11 and
4.12, respectively, we deduce that Eq. (1.1) has a mild solution that belongs to XðXÞ.
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