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X, D* is the fractional derivative in the Riemann-Liouville sense and f(-,x) € Q(X) for each
x € X, where Q(X) is a vector-valued subspace of the space of continuous and bounded
functions. The subspaces Q(X) that we will consider in this article are the space of periodic,
almost periodic, almost automorphic and compact almost automorphic vector-valued
functions, among others. In particular, we extend and unify recent results established for
the equation (x) in the papers Agarwal et al. (2010), Cuevas et al. (2010) and Cuevas and
Lizama (2008).
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1. Introduction

Differential equations involving fractional derivatives have been used to describe a large number of natural phenomena in
different areas such as, engineering, physics, economy, and science. For this reason these equations have been studied for
many authors, including [4,13,16,22-24,33,36], among others. In particular, the study of abstract semilinear fractional dif-
ferential equations is of great interest. Some of this papers, studied the existence and uniqueness of solutions with a pre-
scribed qualitative property. For example, in [1,9,10], sufficient conditions have been found for the existence and
uniqueness of mild solutions to the equation

D*u(t) = Au(t) + D" 'f(t,u(t)), te R, 1 < < 2, (1.1)

in the vector-valued spaces that consist of almost automorphic, pseudo automorphic or pseudo almost periodic functions,
respectively. In all of the above mentioned papers, A : D(A) C X — X is a closed operator of sectorial type u < 0 with angle
0<0<m(l-0/2),and f: R x X — X satisfies a suitable Lipschitz condition. The fractional derivative is understood in the
Riemann-Liouville sense [23].

Nevertheless, to the best of our knowledge, existence and uniqueness results of mild solutions for Eq. (1.1) on vector-val-
ued spaces that consist of periodic, pseudo periodic, compact almost automorphic, as well as asymptotic behavior have not
been studied in the literature.
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In this article, we attempt to close this gap by means of an unified approach. We will show sufficient conditions to ensure
the existence and uniqueness of mild solutions for the abstract semilinear fractional differential Eq. (1.1) in the following
classes of vector-valued function spaces: periodic, asymptotically periodic, pseudo periodic, almost periodic, asymptotically
almost periodic, pseudo almost periodic, almost automorphic, asymptotically almost automorphic, pseudo almost automor-
phic, compact almost automorphic, asymptotically compact almost automorphic, pseudo compact almost automorphic,
S-asymptotically w-periodic functions, decay functions and mean decay functions. Thus unifying and extending the results
appearing in [1,9,10] among others.

For our purpose, we will use some common properties for all the above mentioned categories of vector-valued function
spaces (see [27]). They will be summarized in the second section of this paper, together with the definitions and main results
that will be used later. In the third section, we extend and unify a key composition theorem appearing in [27, Theorem 4.1]
considering, instead of a Lipschitz type condition on the semilinear term f, more general and relaxed hypotheses and, con-
sequently, enlarging the number of applications. Then, we will show several types of sufficient conditions on the data fand A
to ensure the existence and uniqueness of mild solutions to Eq. (1.1) in each one of the preceding vector-valued function
spaces. The proofs of these results will be based on fixed point techniques. We finish this paper with some examples illus-
trating the feasibility of the abstract results.

2. Preliminaries

Let X be a Banach space. We denote
BC(X) :={f : R — X : f is continuous, |f||.. := sup|lf(t)| < oc}.
te R

Let P, (X) be the space of all vector-valued w-periodic functions. For the space of almost periodic functions (in the sense of
Bohr), we set AP(X) which consists of all functions f € BC(X) such that for each € > 0 there exists a w > 0 such that every
subinterval of R of length @ contains at least one point 7 such that ||f(t + T) — f(£)||., < €. This definition is equivalent to
the so-called Bochner's criterion (cf. [32, Theorem 3.1.8]), namely, f € AP(X) if and only if for every sequence of real numbers
(s,) there exists a subsequence (s,) such that f(- + s,) is uniformly convergent on R. Almost periodic functions are uniformly
continuous on R (cf. [32, Theorem 3.1.4]). The space of compact almost automorphic functions will be denoted by AA.(X).
Recall that a continuous bounded function f belongs to AA.(X) if and only if for all sequence (s),) of real numbers there exists
a subsequence (s,) C (s;,) such that }Lngf(t +5,) = f(t) and !mef(t — sp) = f(t) uniformly over compact subsets of R. Clearly

the function f above is continuous on R. Therefore f is uniformly continuous [18]. In other words compact almost automor-
phic functions are uniformly continuous on R. The space of almost automorphic functions is defined as follows
AA(X) := {f € BC(X) : for all (s;) there exists (s,) C (s},) such that!im =: f(t) and !imf(t —sp) =f(t) Vt € R}, provided with
the norm || - || ..

Let 7 = {P,(X),AP(X),AA.(X),AA(X)} and Q € F. Then we have the following result.

Theorem 2.1 [27]. Assume f, fy, f, € Q. Then we have

D i+fae
(ii) Af € Q, for any scalar 2;
(iii) fz(t) =f(t+ 1) e Qforany T € R;
(iv) The range Ry of f is relatively compact in X;
(v) Let (g,) € Q, such that g, — g uniformly on R. Then g € Q;
(vi) Let F(t) := féf(s)ds. Then F € Q if and only if Ry is relatively compact in X.

Now we consider the set
ColX) == {f € C00) : lim | (1) = 0},

and define the space of asymptotically periodic functions: AP, (X) := P, (X) & Co(X). Analogously, we define the space of
asymptotically almost periodic functions AAP(X) := AP(X) & Co(X), the space of asymptotically compact almost automorphic
functions AAA.(X) := AA.(X) @ Co(X) and the space of asymptotically almost automorphic functions AAA(X) := AA(X) ® Co(X).

Remark 2.2. We observe that
AP, (X) # SAP,(X)

where SAP,,(X) := {f € BC(X) : 3w > 0, ||If(t + ) — f(t)|| — 0 as t — oo}. This fact was only recently proved in [21], providing
a counterexample to the assertion given in [15, Lemma 2.1]. This way, in general we only have
AP, (X) C SAP,(X).
We will next consider the following set



C. Lizama, F. Poblete / Applied Mathematics and Computation 224 (2013) 803-816 805

PoX) = 1 € B+ im 1 [ ts)1ds =),

and define the following classes of spaces: The space of pseudo-periodic functions PP, (X) := P, (X) ¢ Po(X), the space of
pseudo almost periodic functions PAP(X) := AP(X) & Po(X), the space of pseudo compact almost automorphic functions
PAA:(X) := AA:(X) @ Py(X), and the space of pseudo almost automorphic functions PAA(X) := AA(X) @ Po(X). We have the fol-
lowing diagram that summarizes the relation of the different classes of subspaces defined previously.

AAX) C AAAKX) C PAAX)

@] (@] @]
AA(X) C AAA(X) C PAA(X)
@] U 0]
APX) < AAPX) C PAP(X)
(@] @] U
P,(X) C AP,(X) C PP,(X)
n
SAP,(X)

In what follows, we denote by M (X) the set which consists of all the vector-valued function spaces described above. In
addition the spaces Co(X) and Po(X) will also be treated independently.

Recall that a closed operator A is said to be sectorial of type it € R and angle 0 < 6 < 7/2 if there exists M > 0 such that its
resolvent exists outside the sector p+S, := {u+4: /€ C,|arg(—4)| < 0} and ||[(A—A)""|| < M/|A—ul|, 4 ¢ w+S,. Sectorial
operators are well studied in the literature. For a recent reference including several examples and properties we refer the
reader to [20]. We also recall the following definition from [5], which has been used extensively for several authors in
the treatment of some classes of abstract fractional differential equations (see e.g. [11,12,9,7,2,1]).

Definition 2.3 [5]. Let A be a closed operator with domain D(A) defined on a Banach space Xand 1 < o < 2. We say that A is
the generator of a «-resolvent famlly 1f there exists © € R and a strongly continuous function S, : R, — B(X) such that
{3*:Rei> u} c p(A)and 2> 1(3* — x = Jo© e S, (t)xdt, Red > u, x € X. In this case, S(t) is called the o-resolvent family
generated by A.

We note that if A is sectorial of type ¢ with 0 < 0 < (1 — «/2), then A is the generator of an o-resolvent family given by
Sy(t) :=1/2mi) [, e 2% (2 - A)"'d4, where 7 is a suitable path lying outside the sector p + S, (cf. [8]). It is known [8] that if
A is a sectorial of)erator of type i < 0 for some M > 0 and 0 < 0 < m(1 — o/2), then there exists C > 0 such that

M
HS ( )HB -l + \,u|t‘“ t > 0 (2])

We notice that the concept of a a- resolvent family as above defined, is closely related to the concept of a resolvent family
(see Priiss [34, Chapter 1]). For the scalar case, there is a large bibliography (cf. [17] and references therein). Because of the
uniqueness of the Laplace transform, in the border case o = 1, the family S, (t) corresponds to a Co-semigroup, whereas in the
case oo = 2 an «-resolvent family corresponds to the concept of a cosine operator family; see Arendt et al. [6] and Fattorini
[14]. We note that a-resolvent families, as well as resolvent families, are a particular case of (a, k)-regularized families [28].
According to [28] an a-resolvent family S, (t) corresponds to a (1,t*!/T"(a))-regularized family.

A characterization of generators of a-resolvent families, analogous to the Hille-Yosida Theorem for Co-semigroup, can be
directly deduced from [28, Thorem 3.4]|. Results on perturbation, approximation, representation as well as ergodic type the-
orems can be deduced, from the most general context of (a, k)-regularized resolvents, (see [28-31]).

We finally recall the following definition.

Definition 2.4. [34] A strongly measurable family of operators {T(t)},., C B(X) is called uniformly integrable (or strongly
integrable) if [;° ||T(t)||dt < cc. In what follows, we will denote ||T| := [5° |T(t)||dt for any uniformly integrable family of such
operators {T(t)};- -

Observe that in view of (2.1) an a-resolvent family is uniformly integrable under the hypothesis that A is sectorial of neg-
ative type.

3. Regularity under convolution and composition

We will start with the following result on maximal regularity under convolution which is a consequence of [27,
Theorem 3.3]:

Theorem 3.1 [27, Theorem 3.3]. If f belongs to one of the spaces M (X), then w(t) := ffoc S«(t —s)f(s)ds also belongs to the same
space as f.
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Concerning the spaces Co(X) and Py(X) we have the following result.

Theorem 3.2. Assume that f € Co(X) or f € Po(X), then w € Co(X) or w € Py(X) respectively.

Proof. Let f € Co(X) and € > 0 be given. There exists T > 0 such that ||f(s)|| < € for all |s| > T and hence we can write
T t
w(t) := / Sa(t = 8)f(s)ds + / Su(t —5)f(s)ds. (3.1)
oo T
Then

T ot " 00
WO < [ 1S:=9IF)ds+ [ 1. =9I Ids < Il [ 1S:(2)dv+ 1S e

and using the fact that S, is integrable we conclude that w(t) — 0 as t — oo. On the other hand, for t < —T we have

t -T
Iw(e)]l < [ [1Sx(t = $)[1[If (s)llds < 6/ [1x(t = s)llds < €[|Sqll,

and we conclude that w(t) — 0 as t — —oo. It proves that w € Co(X).
Let f € Py(X). For R > 0 we have

1 R 1 R t 1 R 0
ok [ Ol < g [ ][ Isde-siisoas]de< g [ ]IS e -sdsa

= [T s[5z [ e sye]as

Note that the set Py (X) is translation-invariant. Hence, using the Lebesgue’s dominated convergence theorem, we obtain
from the above inequality that ;- fR IIf(t)||dt — 0 as R — oo i.e. f € Po(X). The proof is complete. O

It is well known that the study of composition of two functions with special properties plays a key role in discussing the
existence of solutions to semilinear equations. Hence, given a bounded function f € BC((R x X, X)) and ¢(-) € B(X), such that
¢(-) belongs to some fixed space Q(X) c M(X), we can ask under which conditions on f we have that f(-, ¢(-)) belongs to
Q(X)?. To answer this question we need the following notations and results.

We denote

CoRxX,X)={he C(RxX,X): }im||h(t,x)|| = 0 uniformly for x on any compact subset of X}.

as well as
Po(R x X,X) ={h € C(R x X,X) : f(-,x) is bounded for all x € X and

R
limzl—R / If (¢, x)||dt = 0 uniformly in x € X}. (3.2)
J-R

R—o0
In what follows, ® will denote any of the symbols in the set {P,,AP,AA.,AA}. Define
O(R x X,X) :={f € C(R x X,X) : f(-,x) € ®(X) uniformly for all x € BC X, B bounded}.

Analogously we define the sets AD(R x X,X) = ®(R x X,X) & Co(R x X,X) and PO(R x X,X) = B(R x X, X) @ Po(R x X, X).
For example AAP((R x X, X)) = AP(R x X,X) & Co(R x X, X).

Theorem 3.3. Let f € ®(R x X,X) and ¢ € ®(X). Assume that f(t,-) is uniformly continuous in each bounded subset K of X
uniformly in t € R, that is: Given € >0 and K c X, there exists >0 such that x, ye K and |x—y| <J imply that
F(£,%) — F(£,¥)I| < € for all t € B Then f(-, $()) € D(X).

Proof. For almost periodic functions the result is given in [3, Proposition 1], and for almost automorphic functions in [26,
Lemma 2.2|. Let ® = P,, and asumme that f € P,,(R x X,X) and ¢ € P,,(X). Let K = {¢(t) € X : t € R} then,

flt+ o, ¢t + ) = f(t, ¢(t)) =f(t + @, $(t)) — (L, $(1)).
Since K is bounded then f(t + w, ¢(t)) — f(t, ¢(t)) = 0 and then f(-, ¢(-)) € Py, (X).
Let ® = AA. be given and assume that f € AA:(R x X,X) and ¢ € AA.(X). Let (s;), be a sequence of real numbers. Now, fix a
subsequence (s}), of (s;), and f € BC(R x X,X) so that the pair f, (s,), is associated with f as in the definition of AA.(X),
similarly fix a subsequence (s,), of (s;), and consider the pair (s;),, ¢ associated ¢. Let K C R be an arbitrary compact subset

and let € > 0. Since the set {¢(t) : t € R} is relatively compact, there exist points x; € X,i = 1,...,ng such that for each t € R
and i(t) € {1,2,...,no}
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[6(t) — Xiw |l < 0.and [|p(t) — X || <
Let N be a natural number such that |[f(t + s, %) — f(£,x)|| < € foralli=1,...,n9, and ||¢(t +s,) — p(t)|| < é forall t € K
(where ¢ is given by the uniform continuity of f), whenever n > N.. In view of the above, for each t € K, and n > N,
(€ + S, d(E +50)) = F (& SED| < IF(E+ S, d(E+5n)) = F(E+ 50, B(E)) +|lf t+sn,¢>(f))—f(HSmXim)II
P+ Sn, i) = F(EXio) | + IIF (8, i) = F(E D) <

This proves that the pair (s,),, f(-, ¢(-)) is associated to the function f(-,¢(-)) and then f(-, ¢(-)) € AA(X). O

Remark 3.4. We note that the above theorem is also valid for the case of the space SAP,(X). Indeed, assume that
f €SAP,(R x X,X) and ¢ € SAP,(X), It follows from hypotheses that, given € >0 and K = {¢(t) € X : t € R} there exists
6 > 0 such that for all X, y € K and ||x — y|| < ¢ imply that ||f(t,x) — f(t,y)|| < €/2 for all t € R. We consider N > 0 such that
lp(t + w) — ¢(t)|| < o and ||f(t + w,x) — f(t,x)|| < €/2 for all t = N and x € K. Consequently

If (£ + @, p(t + @) = f(t, p(O)) | < [If (t + @, p(t + @) — f(t + @, $(O))[| + [If (£ + @, () = f(£, p(D))]| < €,
for all t > N.. This proves that |[f(t + w, ¢(t + w)) — f(t, (t))|| — 0 as t — oo and then f(-, #(-)) € SAP,(X).

Remark 3.5. The condition that fis uniformly continuous in each bounded subset of X uniformly in t € R is not necessary in
the case when ®(X) = P, (X) or ®(X) = AP(X).

The unified proof of the following result follows the lines of [26, Theorem 2.3] for the case AAA(X) (see also [1, Lemma 2.9]
in case AAP(X)).

Theorem 3.6. Let f € AO(R x X, X) be such that f := f; + f, where f; € ®(R x X,X) and f, € Co(R x X, X). Assume that f (t, ) and
f(t,-) are uniformly continuous in each bounded subset of X uniformly in t € R. If ¢ € AD(X) then f(-,¢(-)) € AD(X).

Proof. Let fecAD(RxX,X) and ¢ecADX) be given. We have by definition that f=f +f, where
fi e (R x X,X), f, € Co(R x X,X) and ¢ = ¢; + ¢, where ¢; € D(X), ¢, € Co(X). Now we decompose f as follows

ft,¢() = fi(t, 1 (1) +f(t. $(1) = fi(t, 1 (1)) = fi(t, ¢1 (1)) +f(t, $(1)) — F(£, (1)) +Lo(t, 1 (1))

Using the fact that fi (¢, -) is uniformly continuous in each bounded subset of X uniformly in t and Theorem 3.3, we obtain
fi(, d1(+)) € ©(X). Now, set F(t) := f(t, ¢(t)) — f(t, p1(t)) + fo(t, 41 (¢)). Since ¢ and ¢, are bounded, we can choose a bounded
subset K c X such that ¢(R) U ¢, (R) C K. It follows from hypotheses that, given €/2 > 0, there exists § := J.x such that
X, y € K and ||x — y|| < 6 imply that

If(t,x) = ft.¥)]| < €/2.

Since the function ¢, belongs to Co(X) and f, € Co(R x X,X), there exists to >0 depending on & such that
lp(t) — (t)|| < dand |Lf2(t, ¢1(t))| < €/2 for all |t| > to. Then

IF(O)I < If(E ¢(6) = f(E 1 (O + Ifa(t, ¢1 (D) < €/2+€/2 = €

for all |t] > sp, i.e. F € CO(X). Using the fact that fi(-, ¢ (-)) € ®(X) we conclude that f(-, ¢(-)) € ADX). O
For our next results we will need the following Lemma.

Lemma 3.7 [26, Lemma 2.1]. Let f € BC(X) be given. Then f € Py(X) if and only if for any € > 0,

.1
lim - mes(Mr(f)) =

where mes(-) denotes the Lebesgue measure and Mr((f) := {t € [-T,T] : |[f (¢)|| > €}.

The main theorem in case of functions with the pseudo property is the following result. The idea of the proof follows [25]
and [26, Theorem 2.4] for the cases PAP(X), PAA(X) respectively.
Theorem 3.8. Let f € PO(R x X, X) is that f := f; + f, where f; € ®(R x X,X) and f, € Po(R x X, X). Assume that f satisfy the
following conditions:

(i) {f(t,y) : t € R,y € K} is bounded for every bounded subset K C X.

(ii) fi(t,-),f(t,-) is uniformly continuous on any bounded subset K C X uniformly int € R.

If ¢ € PO(X), then f(-,¢(-)) € PBX).
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Proof. Since f e PD(Rx X,X) and ¢ € P®(X), we have by definition that f=f;+f, and ¢ = ¢, +¢, where
fi € D(R x X,X), f, € Po(R x X,X), ¢; € O(X) and ¢, € Py(X). Now we decompose f as follows

f(t,o(0) = fi(t. 1 (1) + (£, (1) = fi(t, b1 (1)) = fi(t, b1 (8) +F(t, b(1)) = f(E, §1(0)) + fo(t, 1 (1))

Using (ii) and Theorem 3.3 we obtain fi(-, ¢;(-)) € ®(X). Now, set F(t) :=f(t, ¢(t)) — f(t, ¢,(t)). Next, we prove that
F € Po(X). Indeed, clearly by (i), F € BC(X); Then by Lemma 3.7, it is sufficient to show that

1
lim 2TmES(MT,e(F)) =0.

Since ¢ and ¢, are bounded, we can choose a bounded subset K c X such that ¢(R), ¢;(R) c K. It follows from hypotheses
that, given € > 0, there exists § := ., such thatx, y € Kand ||x — y|| < ¢ imply that ||f(t,x) — f(t,y)|| < e forall t € R. Then we
have

1 1
ILIE 5T mes(Mr¢(F)) < lgg 2Tmes(MT_5(¢2)).
Since (7)2 € Po(X), Lemma 3.7 yields for the above ¢ that

llm mes(Mrs(¢,)) = 0.

— 2T
This shows that F € Py(X). Next we show that f>(-, ¢ (-)) € Po(X). Since f5(-, ¢4 (+)) is continuous in [T, T], it is uniformly
continuous in [T, T]. Set I := ¢ ([T, T]). Since it is compact in R, one can find finite open balls Oy, k =1,2,...,m, with cen-
ter in x, and radius 6 small enough such that I ¢ |J;_,0, and
If2(t, 1 () — fa(t, )| < €/2,  ¢1(t) € Ok, t € [-T,T]. 33)

The set By := {t € [-T,T] : ¢,(t) € O} is openin [-T,T] = Ui, B« Let Ey = By, Ex = By \ U" !B; (2 < k < m) be given. Then
EjNE =0, whenij 1<ij<m.Clearly,

{te [-T.T]: |Ia(t, g1 ()] > €} C O{f € B+ Ia(t, 1 (8) — ot Xl + a8 i)l = €} C O{f € E
k=1 k=1

At ¢ (0) = (x| = €/2 U {t € Ee: (x> €/2}.
It follows from (3.3) that the sets {||f2(t, ¢, (t)) — fo(t,x)|| = €/2} are empty for all 1 < k < m. Therefore,

s Ms i 1) < g Y- mes(Mrc(ft- )

Since f5(-,X;) € Po(X), we obtain

lim zrmes(MT,e/z)(fz(ka)) =0

and hence we have that
.1
lim - mes(Mr) (- ¢1())) = 0.

that is f>(-, ¢1(-)) € Po(X), which ends the proof. O
An immediate corollary of the above results corresponds to a slight extension of the composition theorem recently stated
in [27].

Corollary 3.9. Let Q(X) € M(X) and f € Q(R x X, X) be given and fixed. Assume that there exists a constant Ly > 0 such that

If (%) = f(E Y < Lellx =yl
forallt e Rand x,y € X. Let ¢ € Q(X). Then f(-, ¢(-)) € Q(X).

Remark 3.10. Recall that in [27] the integro-differential equation

u'(t) = Au(t) + /t a(t —s)Au(s)ds + f(t,u(t)), t=0

00

is considered. The above corollary provides a direct extension of the existence results on mild solutions for the cited integro-
differential equation to the new classes of spaces AA.(X),AAA.(X) and PAA.(X) (see [27, Theorems 4.3, 4.5 and 4.7]).
The following results corresponds to the cases Co(X) and Py (X), which are considered individually.



C. Lizama, F. Poblete / Applied Mathematics and Computation 224 (2013) 803-816 809

Theorem 3.11. Let f € Co(R x X, X) be given and such that f(t, -) is uniformly continuous in each bounded subset K of X uniformly
inteR If ¢ € Co(X), then f(-,¢(-)) € Co(X).

Proof. Let f € Co(R x X) and ¢ € Co(X). Let K = {¢(s) € X : s € R} U {0}. We note that by hypothesis, given €/2 > 0, there
exists ¢ := é.x such that x, y € K and ||x — y|| < é imply that

If (&%) = f(Ey)Il < €/2.

Since the function ¢ belongs to Co(X) and f € Co(R x X,X) there exists s, depending of 6 such that |¢(s)|| < and
If (s,0)|| < €/2 for all |s| > so. We can write

f(5,0(5) =f(5,0) +£(s,(5)) - f(5.0),
and estimate

If (s, p(s)Il = [If (5, 0)[| + If (5. 0(5)) = f(s,0)| < €/2+ €/2 =€
for all |s| > so, i.e. f(s,¢(5)) € Co(X). O

Theorem 3.12. Assume that f € Po(R x X, X) satisfy the following conditions:

(i) {f(t,y) : t € R,y € K} is bounded for every bounded subset K C X;
(ii) f(t,-) is uniformly continuous on any bounded subset K C X uniformly in t € R.

If ¢ € Po(X), then f(-,¢(-)) € Po(X).

Proof. Let f € Po(R x X,X) and ¢ € Po(X). We note that by (i), the composition theorem and Lemma 3.7 it suffices to show
that for all € > 0

1
lim 5= mes(Mr.e(f(-, 6(-)))) = 0.
We can write

f(s,6()) = £(£,0) + f(t, 6(t)) - f(t,0).

Firstly, we will prove that f(t, ¢(t)) — f(t,0) € Po(X). Since ¢(t) is bounded, we can choose K := {¢(t) : t € R} U {0}. Under
assumption (ii), f is uniformly continuous on the bounded subset K. Then, given € > 0, there exists 6 > 0 such thatx, y € K
and ||x — y|| < ¢ imply that

If(t,x) —f(t,y)| <e forallteR.

Then we have

o mes(My (2, 9(0) — F(£,0))) < omes(Mr(9(0)).

Since ¢(t) € Po(X), [26, Lemma 2.1] yields that for the above 4,

.1
}Lrglﬁmes(M”((ﬁ(t))) =0,

then

.1
lim o mes(Mr..(f (£, $(0)) — f(£,0)) =0,
and this shows that f(t,¢(t)) —f(t,0) € Po(X). Secondly, note that f(t,0) € Po(X) and hence from the above
f(t,¢(t)) — f(t,0) € Po(X). Therefore f(t, ¢(t)) € Po(X). O
We note that if Q(X) € M(X) U {Co(X),Po(X)} is fixed, then, given ¢ € Q(X) and f € BC(R x X, X), sufficient conditions to
ensure that f(-, ¢(-)) belongs to Q(X) should be chosen between the following:

(Hq) f(t,-) is uniformly continuous in each bounded subset of X uniformly in t € R. More precisely, given € > 0 and K C X,
there exists § > 0 such that x, y € K and ||x — y|| < § imply that ||f(t,x) — f(t,y)|| < €.

(Hy) {f(t,x): t € R, x € K} is bounded for all bounded subset K c X.

(Hs3) If f = f1 +f> where fi € ®(X) and f, € {Co(X), Po} \ {0}, then fi (¢, ) is uniformly continuous in each bounded subset of X
uniformly in t € R.
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For example, if Q(X) = AAA(X) and ¢ € AAA(X) to ensure thatf(-, ¢(-)) belongs to AAA(X) we need that f € AAA(R x X, X) and
the conditions (H;) and (Hs). However if ®(X) = PAA(X) and ¢ € PAA(X) to ensure thatf(-, ¢(-)) belongs to PAA(X) we need that
f € PAA(R x X, X) and the conditions (H;), (H2), (Hs). The whole spectrum of situations is summarized in the following table:

QX) H; H, Hj

P w
AP
AA
AA
AP,
AAP
AAA
AAA
PP,
PAP
PAA
PAA
Co
Py

4. Existence, uniqueness and regularity of mild solutions
The notion of mild solution that we use in this paper, reads as follows:

Definition 4.1 [5]. A function u: R — X is said to be a mild solution to (1.1) if there exists a strongly continuous family of
bounded an linear operators on X such that the function s — S, (t — s)f(s,u(s)) is integrable on (—oo, t) for each t € R and

u(t) = /t Su(t = )f (s,u(s))ds (4.1)

forall t e R.
The following theorems are the main results of this work.

Theorem 4.2. Assume that A is sectorial of type w<O0 with 0<0<m(l—0o/2). Let QX)e MX)\{Pun(X),
AP(X),AA:(X),AAX)} U {Co(X),Po(X)} be given. Let f € Q(R x X,X) be given and assume that there exists an integrable and
bounded function Lg : R — [0, co) satisfying

(&%) = fEYI<LO)lx=yl, vxyeX, t=0. (4.2)

Then Eq. (1.1) has a unique mild solution u which belongs to the same space as f(-, x).

Proof. We define the operator F : Q(X) — Q(X) by

(Fo)(t / Su(t—)f(s, (s))ds teR.

Given ¢ € Q(X), in view of Corollary 3.9, Theorems 3.11 and 3.12, we have that s — f(s, ¢(s)) belongs to Q(X) for
QX) € MX) \ {Po(X),AP(X),AA(X),AA(X)} or Q(X) € {Co(X),Po(X)} and hence is bounded in R. Since the function
t — 1/(1+ |u|t*) is integrable on R, (1 < o < 2), we get that F¢ exists. Now by Theorems 3.1 and 3.2 we obtain that
F¢ € Q(X), and hence F is well defined. It suffices to show that the operator F has a unique fixed point in Q(X). Let
1, ¢, € Q(X) be given and define M,, := sup,z||S.(t)|. We have

[E ¢ (t) — Fepo(t) /MLf M $1(5) = ¢2(5)llds < Ma|lLs[l|¢1 — dballc-

In general, we get

-1

IF'61(6) ~ (0] < (n’wﬁ [y [ yar) aston - gt <M ([ "0s) 16, bl

<ML, - ol
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Since (Mlele

the proof. IZI

< 1 for n sufficiently large, by the contraction principle, F has a unique fixed point u € Co(X). This completes

Remark 4.3. We must point out that the hypothesis (4.2) cannot be satisfied in case of the spaces P, (X),AP(X),AA(X) or
AA(X), except in the linear case f(t,x)=g(t)(t € R). Indeed, (4.2) cannot happen when f(.,x) belongs to
P.,(X),AP(X),AA(X) or AA.(X) since otherwise f(t,x)—f(t,y) € L'(R,), leading to a contradiction with the fact that
f(t,x) — f(t,y) belongs to P, (X), AP(X), AA(X) or AA.(X) respectively.
We can establish the following existence result.

Theorem 4.4. Assume that A is sectorial of type i < 0 with 0 < 0 < (1 — o/2) and let Q(X) € M(X) U {Co(X PO(X)1} be given.
Let f € Q(R x X,X) be a function that satisfies the Lipschitz condition (4.2) with Ly € BC(R). Let ||L¢|| := sup;g f[ s)ds. If
CM||L|| < |,u\’ M where C and M are the constants given in (2.1), then Eq. (1.1) has a unique mild solution u € Q(X)

Proof. We define the operator F : Q(X) — Q(X) by

(F)(t / Sy(t — S)f(s,p(s))ds € R.

Given ¢ € Q(X), in view of Corollary 3.9, and Theorems 3.11, 3.12, we have that s — f(s, ¢(s)) belongs to Q(X), and hence it
is bounded in R. Since the function t — 1/(1 + |u|t*) is integrable on R, (1 < « < 2), we get that F¢ exists. Now by [27, The-
orem 3.3], we obtain that F¢ € Q(X), and hence F is well defined. For ¢, ¢, € Q(X) we have the following estimate

L(s) 165
P Fon(ol < v [ 8 o) - ¢2(S)dS<CM<mz:/mH T )ds>¢>1 bl

(an . (mULf(s)ds)m ool aw(ZHM >||Lf| 61 = dall.

which finishes the proof. O

Corollary 4.5. Assume that A is sectorial of type pt < 0 with 0 < 0 < (1 — a/2). Let Q(X) € M(X) U{Co(X),Po(X)} be given.
Assume f € Q(R x X, X) satisfies the Lipschitz condition

If(E.%) = fEYI<Lllx-y| xyeX, t=0.
If CMLy < [u[*o¥"%/%), then Eq. (1.1) has a unique mild solution u € Q(X).

Remark 4.6. From the last Theorem we recover |1, Theorem 3.3] and [1, Corollary 3.4] for the case of pseudo-almost auto-
morphic functions. The remaining cases are new.
A slightly different condition is established in the next result.

Theorem 4.7. Assume that A is sectorial of type u<O0 with 0<0<m(l-a/2) and QX)e M\ {Pu(X),
AP(X), AAC(X) AAX)} U {Co(X),Po(X)} be given. Let f € Q(R x X,X) be such that satisfy the Lipschitz condition (4.2) and the
integral j o Lr(s)ds exists for all t € R. Then Eq. (1.1) has a unique mild solution u € Q(X).

Proof. Define a new norm |||¢||| := sup,{2(t)||¢(t)||}, where v(t) := e’kf; L% and k is a fixed positive constant greater
than M, := sup,||Sx(t)|- Let ¢, ¢, be in Q(X), then we have
t
v(O)[[F(¢1)(6) — (Fo)(0)]| = zf(f)H/ Su(t = 9)If(s. $1(5)) = f (5, p2(5))ds]| < M., / ($)[§1(5) — 2 (s)llds
<M1 = ]l / 5)7'L(s)ds = ln — / ket I (5)ds

= is -0l [ & (ekfr Lf“)“)ds =Rl = dall |1 = e L0 < B i, - .

Hence, since % < 1, F has a unique fixed point u € Q(X). O

Remark 4.8. The previous theorem extends [9, Theorem 3.4]| stated previously only in case of the space of pseudo almost
automorphic functions and [10, Theorem 3.3] stated in case of the space of almost automorphic functions.
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Next we will study the existence of mild solutions of Eq. (1.1) that belongs to Q(X), when the function f is not Lipschitz
continuous. To avoid the Lipschitz conditions considered in the previous results, we need to assume that f satisfies appro-
priate compactness conditions.

We begin by introducing the following assumption.

(B) There exists a continuous nondecreasing function W : R, — R, such that

IF (&)1 < W([ix])

forallt € Rand x € X.
Let h: R — R be a continuous function such that h(t) > 1 for all t € R, and h(t) — oo as |t| — oco. We consider the space

Ch(X) = {u e C(R,X) : }‘ A= O} endowed with the norm ||u|), := sup,z HZEQH- In our next result we will need the following

Lemma.
Lemma 4.9 [21]. A subset K c Cy(X) is a relatively compact set if it verifies the following conditions:

(a) The set K(t) := {u(t) : u € K} is relatively compact in X for each t € R;
(b) The set K is equicontinuous;
(c) For each € > 0 there exists L > 0 such that ||u(t)|| < €h(t) for all u € K and all |t| > L.

The next theorem is based on the Leray-Schauder alternative theorem [19, Theorem 6.5.4], which read as follows:

Lemma 4.10. [19] Let D be a closed convex subset of a Banach space X such that 0 € D. Let F : D — D be a completely continuous
map. Then either the set {x € D : x = AF(x),0 < 2 < 1} is unbounded or the map F has a fixed point in D.

Theorem 4.11. Let Q(X) € M(X) \ {PP.,(X), PAP(X), PAA.(X), PAA(X),Po(X)} be given. Assume that A is sectorial of type u <0
with 0 < 0 < (1 —a/2). Let f € Q(R x X, X) be such that satisfy the assumption (B), and the following conditions:

(1) f(t,x) is uniformly continuous in any bounded subset K c X uniformly int € R.
(2) For each r = 0, the function t — [*_ ) gs js included in BC(R). We set

oo 1+|w|(t-s)*

)
MH/ W(rh(s)) _ds
- T+ o[((-) =)
(3) For each € > 0 there is 5 > 0 such that for every u, v € Cy(X), ||u — v||, < 0 implies that [* VLTSl gs < ¢ for all

1+|w|(t—s)
teR
.. .
(4) h?ll@nf 75> 1

h

(5) Foralla, be R, a<b, and r > 0, the set {f(s,h(s)x) : a < s < b,x € X, ||x|| < r} is relatively compact in X.

Then Eq. (1.1) has a mild solution u that belongs to Q(X).

Proof. We follow the argument given in [21, Theorem 4.9]. First, we define the operator F on C,(X) as in the proof of The-
orem 4.2. Next, we show that F has a fixed point in Q(X). In order to do that, we will divide the proof in several steps.

(i) For u € Cy(X), we have that

IFu(o)| \CM/ _Wlus)I) M/ Wulnh(s) g 4.3)
1+|a)|t—s 1+ ||t -s)*
It follows from condition (b) that ‘!‘im [F3L =0 then F : Cy(X) — C(X).
(ilfhe o
map F is continuous. In fact, for € > 0, we take ¢ involved in condition (3). If u, v € C4(X) and ||u — 2|, < 6, then
u(s)) —f(&, vl
Fu(t Sa(t=5)(f(s,u t, v(s)))ds CM/ s <€,
iFue - Foe < | [ s (5)  F1t,2(5)) e ,

which show the assertion.
(iii) We will show that F is completely continuous. In order to do that, we will use Lemma 4.9. In fact, we set B,(X) for the
closed ball with center at 0 and radius r in a space X. Let V = F(B,(C,(X))) and v = F(u) for u € B;(Cp(X)).
Initially, we will prove that V(t) is a relatively compact subset of X for each t € R. It follows from condition (2) that the

function t — 1+r|':/)|t s)ds is integrable on [0, cc). Hence, for € > 0 we can choose a > 0 such that CM [ zds <

1+\u)\ t s
Since
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W(rh(t —s))
CM/ 7]+|a)\() ds <€

f(t —s,u(t —s))ds

we get
v(t) € ac({Su(S)f (&, h(E)x: 0 <s<at —a< <X <1)}) +Be(X),

where c(K) denotes the convex hull of K. Using that S,(-) is strongly continuous and the property (5), we infer that
K ={S,(s)f (&, h(&)x:0<s<a,t—a<é<t,|x|| <r)}is arelatively compact set, and V(t) c ac(K) + B¢(X), which establishes
our assertion.

We will next show that the set V is equicontinuous. In fact, we can decompose

0

v(t+5) — v(t /S t+s—5,u(t+s—é))di+/a(sa(é+s)—Sa(é))f(t—é,u(t—i))d§+/ (Su(&+5)
0 a
— Sy (ENf(E— & u(t - &))de.

For each € > 0, we can choose a > 0 and §; such that

fﬂ+5—&uﬁ+5—©Mé+/m6Aé+ﬂ—SA@V@—QHU—©M4

:CM(/ (rh(t+s—g +2/ W(rh(t - ¢)) >

o 14w B

for s < 1. Moreover, since {f(t — &, u(t — ¢)) : 0 < & < a,u € B,(Cy(X))} is a relatively compact set and S,,(-) is strongly contin-
uous, we can choose §, such that ||(S,(& +5) — S,(&)f (£ - ¢, u( &)\l < €/2a for s < §,. Combining these estimate, we get

lo(t +5) — v(s)| < € for s small enough independent of u € B.(Cp,(X)).
Finally, applying condition (2), we can show that

vty _ 1 (% W(rh(s))
W <h@ L. Thioleosr® O M=

and this convergence is independent of u € B,(C,(X)). Hence V is a relatively compact set in Cp,(X).
(iv) If u?(-) is a solution of equation u* = AF(u*) for some 0 < /. < 1, from the estimate

e m/]ﬁmw?m\wwmm

we get

HuZHh
Blllulln) =
and, combining it with condition (4), we conclude that the set {u* : u* = AF(u*), 4 € (0,1)} it is bounded.

(v) Given ¢ € Q(X), in view of Theorems 3.3, 3.6 and 3.11, we have that s — f(s, ¢(s)) belongs to Q(X), and hence is
bounded in R. Since the function t — 1/(1 + |u|t*) is integrable on R, (1 < a < 2), we get that F¢ exists. Now by
Lemma 3.2, we obtain that F¢ € Q(X), and hence F is well defined. We can consider F : Q(X)" — Q(X)" and using prop-
erties (i)-(iii), we deduce that this map is completely continuous. Using the Leray-Shauder alternative theorem [19,
Theorem 6.5.4], we infer that F has a fixed point u € Q(X). Let (u,), be a sequence in Q(X) that converges to u in the
norm || - ||,,. It follows from (2) that given € > 0 exists 6 > 0, such that if |u — 2|, < é implies that

HH%W%fwmmg/ IF (& u(s)) —f(&, 2(s)

oo 1+|w\(t—s)

S €

forall t € R. Choose N; such that ||u, — u|| < é foralln > N;. Then we deduce that (F(u,)), converges to F(u) = u uniformly in
R. This implies that u € Q(X), and completes the proof. O

Theorem 4.12. Let Q(X) € {PP,(X),PAP(X), PAcA(X),PAA(X),Po(X)} be given. Assume that A is sectorial of type u <0 with
0<0<m(1—0/2). Let f € Q(R x X, X) be given such that satisfy assumption (B), and the following conditions:

(1) f(t,x) is uniformly continuous in any bounded subset K C X uniformly in t € R;
(2) For each r > 0, the function t — f > ds is included in BC(R). We set

53] ]Hw\ [ s

‘C‘U ol o

X )
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(3) For each € > 0 there is 5 > 0 such that for every u, v € Cy(X), ||u — v||, < 6 implies that [ st < € for all
teR;

(4) llmmfﬁ() >1;

(5) Foralla, b€ R, a<b, and r > 0, the set {f(s,h(s)x) : a <s < b,x €X,|x|| <r} is relatively compact in X;

(6) The set {f(t,x) : t € R,x € K} is bounded for every bounded K c X.
Then Eq. (1.1) has a mild solution u which belongs to Q(X).

Proof. The proof is similar to the given for the above theorem. Only we need to consider the composition Theorem 3.8 in the
last part (v). O

5. Examples
We finish the paper with the following examples.

Example 5.1. Let X = L?[0, 7t] and let Q(X) € M(X) \ {Pw (X),AP(X),AA:(X),AA(X)} U {Co(X), Po(X)} be given. We consider the
operator A defined on X by

Au=u"-1u, (t>0) (5.1)

with domain D(A) = {u € [*[0, 7t] : v’ € [*[0, 7], u(0) = u(m) = 0}. It is well known that A = u” is the generator of an analytic
semigroup on L0, 7r]. Hence (tl — A) is sectorial of type u = —1. Then the equation

*u(t,x) = d2u(t,x) — Tu(t,x) + ' (a(t) + pb(t) sin(u(t,x))) teR,x e 0,27 (5.2)

can be formulated as the inhomogeneous problem (1.1), where u(t)=u(t,-). Let us consider the nonlinearity
f(t,¢) =a(t)+ pb(t)sin(¢(s)) for all ¢peX,se0,n], teR,BeR, beC(R) and aecQX). We observe that
Bb(-)sin(¢(s)) € Co(X) imply that f(-,x) belongs to Q(X) and hence we have that

IF(E, 1) —F(E.po) 15 < / B2b(t)[*| sin(¢y (5)) — sin(,(s))ds < B2b(O)[ldy — o l3-

In consequence the fractional differential Eq. (5.2) has a unique mild solution u € Q(X) if either |b* € L'(R) (Theorem 4.2)
or [*_|b(s)|*ds exist (Theorem 4.7). If we assume that b € L*(R) and || < —_25"%%) __ then same conclusion holds, by Cor-

CMb]l. |l 7
ollary 4.5.

Example 5.2. Let X = [?[0, 7t} and let Q(X) € {P,,(X),AP(X),AA.(X),AA(X)} be given. We consider the problem
u(t,x) = 2u(t,x) — Tu(t,x) + 1 (fb(t) sin(u(t,x))) te R,x e [0,27]. (5.3)
As in the above example, consider the nonlinearity f(t,¢) = pb(t)sin(¢(s)) for all p €X, s€[0,7], te R, p€ R and

b(t) € Q(R). We also assume that b € L*(R) and || < % We observe that gb(-)sin(¢(s)) € Q(X) and then f(-,x)

belongs to Q(X). Moreover,

IF(E, 1) = f(E, b2l / B0 sin(¢1(5)) - sin(¢a(5))*ds < B2 [b(O) (161 — s l5-

Then, by Corollary 4.5, the problem (5.3) has a unique mild solution which belongs to Q(X).

Example 5.3. Let X = [*[0, 7] and let Q(X) € M(X) \ {Po(X),AP(X),AA.(X),AA(X)} U {Co(X),Po(X)} be given. Just as in the
above example consider the function f : R x X — X as

[ on (i )ds

where $ € (0,1) and g € Q(X). Then the fractional differential Eq. (1.1) has a mild solution that belongs to Q(X). A calculation
shows the following two estimates

f(e.d)(x) =g(t) +e "

sin(x),

(1+2p)/2
(e o)l < gl +e " — teRr peX

and

It ¢1) =t do)llp < e3P R0 gy — ||l tER, 1.y €X,

which follows from the fact that f € Q(R x X, X) is uniformly continuous on bounded sets of X uniformly in t € R.
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It is straightforward to verify that

+1\/
t, < gl + m1+2072 <M) teR, g €X.
£ #)liz < g HE ¢
I
Hence, we can define in (B) W(x) = ||g||, + mt(1+2P/2 (ﬁ—;) and h(t) = ¢!, t € R. Consequently, we see that
t o0
Ms))ads < ||W||OO/ %ds <M forallteR
—o T4 |p|(t =) o 1+]|ul(s)

and

t _ R t e-lsI3f(1+2p)/2 _ A t Br(142p)/2
/ [If (s, u(s)) — (s, y(f))”L dsg/ e "3'n l[#1(5) a¢z(S)IIL ds < 3'n by — olllds
R () 0 T+ pi(t —s) —o T [U(t=5)

<M'|¢y — allf,

which means that conditions (2) and (3) of Theorems 4.11, 4.12 are satisfied. An easy computation leads to lim wg > 1. An
. . . €—00

argument involving Simon’s theorem (see [35, Theorem 1, pages 71-74]) proves that the set

K ={f(s,h(s)x) : a <s < b,x €X,|x|| <r} is relatively compact in X. In fact, we can verify the estimate

IF(s. )2 < liglle + 72072 R, §eX.

Hence, for 0 < a; < a; < 7, the integral f;lzf(s,h(s)qs(s))ds is bounded uniformly in s and ¢. On the other hand, we can
infer the following estimate:

1f(s, () (x) = £(5, () (X)] < [x =" + 7|x — /.

Therefore

n—h
/0 f(s. ¢(s))(x +h) = f(s,¢(s))(x)|dx — 0 ash— 0

uniformly in s and ¢. Finally, Simon’s theorem leads to the conclusion that K is relatively compact. Using Theorems 4.11 and
4.12, respectively, we deduce that Eq. (1.1) has a mild solution that belongs to Q(X).
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