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a b s t r a c t

Weprove that given a finite groupG togetherwith a set of fixed geometric generators, there
is a family of special hyperbolic polygons that uniformize the Riemann surfaces admitting
the action of G with the given geometric generators. From these special polygons, we
obtain geometric information for the action: a basis for the homology group of surfaces, its
intersection matrix, and the action of the given generators of G on this basis. We then use
the Frobenius algorithm to obtain a symplectic representation G of G corresponding to this
action. The fixed point set of G in the Siegel upper half-space corresponds to a component
of the singular locus of the moduli space of principally polarized abelian varieties.

We also describe an implementation of the algorithm using the open source computer
algebra system SAGE.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For g ≥ 4, the singular locus Sing(Mg) of the moduli space Mg of compact Riemann surfaces of genus g is the set of
(isomorphism classes of) Riemann surfaces of genus g with nontrivial automorphisms ([16]); similarly, the singular locus
Sing(Ag) of the moduli space of principally polarized abelian varieties of dimension g is the set of (isomorphism classes
of) principally polarized abelian varieties with nontrivial group of automorphisms ([15]). By Torelli’s theorem, we will
consider Mg ⊂ Ag by associating to a Riemann surface M its Jacobian variety JM . Since every automorphism of M induces
an automorphism of JM , Sing(Mg) ⊂ Sing(Ag).

There is a complete description of the components of Sing(Mg) insideMg , see [3], butmuch less is knownabout Sing(Ag);
for instance, there is nothing similar to the familiar Hurwitz upper bound 84(g − 1) for the order of a group acting on a
Riemann surface of genus g in the case of a group acting on a principally polarized abelian variety of dimension g .

If G is the group of automorphisms of a compact Riemann surface M of genus g , then G acts on the homology H1(M,Z)
ofM , and by choosing a symplectic basis for H1(M,Z), one obtains a symplectic representation of G, in Sp(2g,Z). Since the
symplectic group Sp(2g,Z) acts on the Siegel upper half space of complex symmetric g × g matrices with positive definite
imaginary part, the set of matrices fixed under the symplectic action for G will contain a period matrix for M , but also, in
general, many other period matrices for principally polarized abelian varieties admitting the same group action; that is, the
set of fixed period matrices will be a family contained in Sing(Ag). The advantage of knowing that a given finite symplectic
group comes from an action of the group of a Riemann surface is that this ensures that its set of fixed matrices is nonempty.

As we mentioned earlier, the components of Sing(Mg) inside Mg have been described; however, even for large
automorphism groups, a standard term used to denote groups of order larger than 4(g − 1) acting on Riemann surfaces
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of genus g (see [14, Section 1.3] and [1, Lemma 3.18]), computer searches for such groups have been carried out and lists
have been published ([14], [1]), but no algebraic equations nor period matrices are known for most of these curves.

It is the main goal of this paper to provide an algorithmic method to construct a symplectic representation for the action
of a group G on a Riemann surface M of genus g ≥ 2 such that the quotient surface M/G has genus zero. This symplectic
representation will be the same for all the Riemann surfaces admitting the same geometric action, defined in terms of
fixing a generating vector for G; see Sections 5–6.1. Note that a large group necessarily satisfies our condition for the genus
zero quotient, and that once the symplectic representation is obtained, the period matrices for the full family of principally
polarized abelian varieties admitting the same G-action may be found.

In her paper [11], Linda Keen found a uniquely determined fundamental polygon for every finitely generated Fuchsian
group together with a certain ‘‘standard’’system of generators: a canonical polygon.

In particular, such a canonical polygon P for a compact Riemann surface M of genus g (and a standard system of
generators) always has 4g sides, corresponding to 2g geodesics of M whose homotopy classes generate its fundamental
group. If the group G of conformal automorphisms ofM is nontrivial, then the action of G on this set of geodesics is far from
evident. However, the fundamental polygon she constructs for the case of a spherewith punctures will be our starting point.

On the other hand, in a series of papers by JaneGilman (see [7] and [8]) a conformal automorphism h of prime order acting
on a compact Riemann surfaceM is considered. It is shown that there exists an adapted basis for the homotopy (and the first
homology) of M , in the sense that it reflects the action of h in an optimal way ([8, Def.3.1] or [7, Cor.3.3]). The intersection
matrix for this basis is computed, and a unique normal form for the corresponding symplectic representation of h is found;
this normal form depends only on a tuple of integers, the conformal invariants of h.

In this paper we follow along the line of these results, in the sense that we will start from a given finite group G and a
marked set of generators forG, and end upwith a symplectic representation forG, obtained from the construction of a family
of special fundamental polygons for all the compact Riemann surfaces M on which G acts with quotient M/G of genus zero
as prescribed by the given set of generators.

However, our construction differs from the results of Gilman ([8]), not only in the form but in the purpose: we are
not looking for a basis of H1(M,Z) such that the action of the group on it is in a particularly nice form (see [8, Def.3.1]
or [7, Cor.3.3]). We look for polygons fromwhich it is possible (1) to describe a homology basis formed by (classes of) curves
on its boundary, and (2) to compute its intersection matrix and the action of the group on this basis from the polygon itself
and the given generators for the group acting on the surface.

This is perhaps the main difference in both procedures: Gilman’s method starts from a presentation for the Fuchsian
group T that uniformizes the quotient surfaceM/⟨h⟩. Her proof of the existence of an adapted basis forM uses the Schreier–
Reidemeister rewriting process, by finding a standard presentation (with 2g generators) for the subgroupΓ that uniformizes
the surfaceM from the given presentation for T . The intersection matrix for this basis depends on the conformal invariants
of the conjugacy class of h in the mapping-class group ofM .

We do not study if her process can be generalized to any group, because our goal is to present a different method to
find a symplectic representation of a group acting on a (compact) Riemann surface, which works for any group of conformal
automorphisms of a compact Riemann surface M such that M/G has genus zero, the point being that for a general group G
the standard canonical polygon forM , with 4g sides, does not reflect the action of G in a useful way.

In our approach, the original data is a finite group G, together with a fixed set of generators satisfying certain conditions,
that depend on the geometry of the action (see Definition 2.1). These data replace the conformal invariants available in the
case of a cyclic group of prime order. The Fuchsian group Γ uniformizing M may be recovered from the data for the group
G, as the normal closure in the group Fuchsian T uniformizing M/G of the elements of T corresponding to the relations
in the presentation of G satisfied by its given generators; this description for Γ is completely different from its standard
presentation with 2g generators.

Once we prove the existence of the required polygons, and from them find the homology basis, its intersection matrix,
and the action of the given generators for the group on this basis, we use the Frobenius algorithm, which is analogous to
finding an orthogonal basis for symmetric forms, to modify our basis to a symplectic one. By conjugating by the change
of basis matrix the matrices for the generators obtained previously, we obtain the sought symplectic representation of the
group action.

Thework is structured as follows: in Section 2 the definitions, notations and framework are established. The newmethod
we present in this paper is described in the following four sections, each being a step toward the goal of finding a symplectic
representation. The steps are as follows.

• Step one (Section 3): construction of an adapted fundamental polygon for a Fuchsian group T (see Definition 3.3) together
with fixed generators t1, . . . tk+1 satisfying certain presentation (see Eq. (2.1)).

• Step two (Section 4): construction of an adapted hyperbolic polygon (see Definition 4.2) for any surfaceM of genus g ≥ 2
with a large group of conformal automorphisms G given in terms of an (admissible) generating vector c = (c1, . . . , ck+1)
for the action of G (see Definitions 2.1 and 2.2).

• Step three (Section 5): the adapted hyperbolic polygon constructed on step two is a special fundamental polygon for the
Fuchsian group uniformizing the surface, in the sense that a homology basis for H1(M,Z) may be found that is formed
by sides on the boundary of it, and the action of G on it maybe represented.

In this step, we find such a homology basis and the corresponding representation of G on it.
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• Step four (Section 6): we present a method to compute the intersection matrix of the basis found on step three, from the
polygon and the action of G on it.

• Step five (Section 6.1): we use the Frobenius algorithm to symplectify the intersection matrix obtained in step four, and
use this basis change to find the symplectic representation for G corresponding to its action onM given by the generating
vector c.

We have implemented these step methods in a computational program in the open source platform SAGE.
In Section 7, we use this symplectic representation for G to describe the locus of principally polarized abelian varieties

with the given action of G.
Finally, we want to remark that we consider here M/G being of genus 0, so that we can construct a fundamental

polygon for M where all the vertices on its boundary correspond to fixed points of elliptic elements of the Fuchsian group
T uniformizing M/G. If the quotient surface has genus greater than 0, the situation is rather different: one needs to also
consider hyperbolic elements for T . We will not treat this general case in this work.

2. Framework

We now recall definitions needed in the paper and fix the notation.
An action of G (or a G-action) onM is an injective homomorphism φ : G → Aut(M).
A (finite) group G acts on M with signature

(γ ;m1, . . . ,mk+1),

if γ is the nonnegative integer denoting the genus of the quotient surface M/G, the cover πG : M → M/G is ramified
over k + 1 points P1, . . . , Pk+1, and the mj are integers at least equal to two, such that πG is locally mj to 1 over the
corresponding branch point Pj (see [6]). The signature is unique if the mj are listed in nonincreasing order; we will always
assume m1 ≥ m2 ≥ . . . ≥ mk+1 ≥ 2.

In this paper we will concentrate on groups which are usually called large; that is, groups whose quotient surface has
genus zero; this type of groups has proven to be of use, for example in studying moduli space (c.f. [20] and [13]). From
now on the action of G on M will be with quotient of genus zero, and the signature (0;m1, . . . ,mk+1) of G on M will be
abbreviated (m1, . . . ,mk+1).

It is known (see for instance [9] or [2, Section 2]) that every action of G on M may be constructed by giving a pair of
Fuchsian groups T andΓ , togetherwith an epimorphismψ : T → G, termed in [10, Section 3] surface-kernel homomorphism.
In this case, Γ = ker(ψ) is a torsion-free normal subgroup of T , isomorphic to the fundamental group of M , and T has a
presentation of the following form.

T =


t1, t2, . . . , tk+1; t

m1
1 = . . . = tmk+1

k+1 = 1 =

k+1
j=1

tj


. (2.1)

We summarize this information in the following associated short sequence, which will be used repeatedly throughout
this work.

1 −→ Γ −→ T
ψ

−→ G −→ 1. (2.2)
Our starting point will be a finite group G and adequate generators for it. Note that we are not assuming any action of

the group at this point. The following definition was introduced in [2].
Definition 2.1. Let G be a finite group and consider k + 1 integersmj such thatm1 ≥ m2 ≥ · · · ≥ mk+1 ≥ 2.

A k + 1-tuple (c1, . . . , ck+1) of nontrivial elements of G is called an (m1, . . . ,mk+1)-generating vector for G (or surface
kernel generators) if the following conditions are satisfied:
(1) G is generated by the elements {c1, . . . , ck+1},
(2) the order of cj is mj for each 1 ≤ j ≤ k + 1, and
(3)

k+1
j=1 cj = 1.

Note that in the case of having a sequence as in (2.2), the generating vector corresponds to the image by the surface-
kernel homomorphismψ of the generators of T satisfying the presentation given in (2.1). Closely related notions were used
in [7, Section 5.1] and [19, Proposition 3].
Definition 2.2. A generating vector (c1, . . . , ck+1) for G is admissible if

k+1
j=1


1 −

1
mj


> 2, (2.3)

where mj is the order of cj, j = 1, . . . , k + 1, and if the following number is an integer

g = 1 + |G|


−1 +

1
2

k+1
j=1


1 −

1
mj


. (2.4)
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Remark 2.3. Note that Condition (2.3) is equivalent to the following.

(1) k ≥ 2, and
(2) if k = 2, then (m1,m2,m3) ≠ (6, 3, 2), (3, 3, 3), (4, 4, 2), (5, 3, 2), (4, 3, 2), (m, 2, 2), (3, 3, 2), and
(3) if k = 3, then (m1,m2,m3,m4) ≠ (2, 2, 2, 2).

The conditions are imposed so that G acts on a Riemann surface M of genus g and so that M/G is a hyperbolic manifold.
Furthermore, under these conditions the integer g of (2.4) satisfies g ≥ 2.

From now on we will only consider admissible generating vectors.

Definition 2.4. Given an action of G onM , or equivalently given T , Γ andψ as before, consider the presentation for T given
by (2.1). Setting cj = ψ(tj) for j = 1, . . . , k + 1, it is clear that then (c1, . . . , ck+1) is an (m1, . . . ,mk+1)-generating vector
for G.

Conversely, given a Fuchsian group T presented as in (2.1) and an (m1, . . . ,mk+1)-generating vector (c1, . . . , ck+1) for G,
we can define the epimorphismψ : T → G by homomorphic extension to T of the assignmentψ(tj) = cj, j = 1, . . . , k+ 1,
for its generators; its kernelΓ is a torsion-free subgroup of T , and it defines a compact Riemann surfaceM = ∆/Γ , where∆
is the (complex) unit disk. Furthermore,M has a natural G-action, since T/Γ (isomorphic to G) acts canonically on Γ -orbits
of∆, and the G-action has signature (m1, . . . ,mk+1).

In this situation, we will say that G acts on M with generating vector (c1, . . . , ck+1).

Remark 2.5. Given a finite group G and an admissible generating vector c = (c1, . . . , ck+1) for the group, G has a presenta-
tion of the form

G = ⟨c1, . . . , ck+1 : c
mj
j , c1 . . . ck+1, Ri⟩ (2.5)

where the Ri denote extra relations among the generators cj needed to have the presentation on the right hand side define
a finite group.

If G acts on a Riemann surface M with generating vector c, then the Fuchsian group Γ uniformizing M is the normal
subgroup of T generated by the words in the relations Ri expressed in terms of the generators tj of T in the presentation
(2.1); this follows immediately from the exact sequence (2.2).

This property will be used to recover the group Γ from the fundamental polygon we will construct; see Section 4.1.

Definition 2.6. Let G be a finite group and c = (c1, . . . , ck+1) be an admissible generating vector for G. Then H = H(G, c)
will denote the set of compact Riemann surfaces of genus g admitting a G-action with generating vector c.

Remark 2.7. Riemann existence type theorems can be used to prove the existence of a Riemann surface with the action
of G with a given signature [2, Proposition 2.1]. But our work will show that there is a family of fundamental polygons
representing all Riemann surfaces with G-action and a fixed admissible generating vector; see Remark 4.1.

Remark 2.8. In order to compute the dimension of H(G, c), we look at a representative point M in Tg , the Teichmüller
space of genus g . Then, considering G (originally a subgroup of Aut(M)) as a subgroup of the mapping class group acting on
Tg , it is known that G fixes a submanifold RG of Tg of dimension n−3, where n is the number of branch points ofM −→ M/G
(see [5]). Therefore, the complex dimension of H(G, c) is k − 2 for a G-action with generating vector c = (c1, . . . , ck+1).

Example 2.9. Generating vectors are relevant.

(1) Let G = ⟨c : c7⟩ be the cyclic group of order 7. By considering the generating vector

c1 = (c, c2, c4)

H(Z/7Z, c1) is the surface of genus three with affine equation y7 = x2(x − 1) known as the Klein curve; this is the
genus three curve with action of PSL(2, 7), fulfilling the Hurwitz bound.

On the other hand, if we consider the generating vector

c2 = (c, c, c5)

then H(Z/7Z, c2) is the hyperelliptic surface of genus three with affine equation y7 = x(x − 1). Its full automorphism
group is the cyclic group of order fourteen.

To see these examples in detail (and the general case of cyclic groups of prime order p with signature (0; p, p, p))
see [17].

(2) Take G as S5, the symmetric group in five letters. By considering the generating vector

c1 = ((1, 2, 3, 4, 5), (2, 5, 4, 3), (1, 5)),

H(S5, c1) consists of a unique surface of genus four called Bring’s curve (see [18]).
However, considering the generating vector

c2 = ((1, 2)(3, 4, 5), (1, 2, 3, 4), (1, 3)(4, 5)),

H(S5, c2) consists of a unique surface of genus six called Wiman’s curve (c.f. [21]).



A. Behn et al. / Journal of Pure and Applied Algebra 217 (2013) 409–426 413

Fig. 1. Canonical fundamental polygon Q for T .

3. Step one: a fundamental polygon for the quotient

In this sectionwe consider a Fuchsian group T uniformizing the Riemann sphereCwith k+1 branch points, togetherwith
fixed generators t1, . . . , tk+1 satisfying the presentation given by (2.1). From this information we now construct a suitable
fundamental polygon F for T .

We first recall the following definition and proposition from [11]. A hyperbolic polygon that is also a fundamental region
for a Fuchsian group T is called strictly convex if all its interior angles are strictly less than π , except possibly for those at
vertices which are fixed points of elliptic transformations in T of order two.

Proposition 3.1. [11] Let k be an integer larger than or equal to 3, and let T be a Fuchsian group uniformizingC with signature
(0;m1, . . . ,mk+1), where the mj satisfy condition (2.3). Fix an ordered sequence of generators t1, . . . , tk+1 for T satisfying the
relations in (2.1).

Then there exists a strictly convex fundamental polygon Q for T with corresponding side pairing as follows; see Fig. 1.

(1) The boundary of Q is composed by 2k consecutive geodesic segments {s1, s2, . . . , sk, s′k, s
′

k−1, . . . , s
′

1}, with

t1t2 . . . tj(sj) = s′j for 1 ≤ j ≤ k;

(2) the corresponding vertices {q1, q2, . . . , qk, qk+1, q′

k, q
′

k−1, . . . , q
′

2} satisfy

tj(qj) = qj for 1 ≤ j ≤ k + 1;

(3) the angle at q1 is 2π/m1, the angle at qk+1 is 2π/mk+1, and the sum of the angles at qi and q′

i is 2π/mi for i = 2, . . . , k.

We now modify this fundamental polygon Q to one more suitable to our needs. Note that Q has 2k sides, and all its
vertices are elliptic fixed points: qj is the fixed point of tj, for j in {1, . . . , k+ 1}, and q′

i = (t1 . . . ti−1)(qi) is the fixed point of
the conjugate of ti by (t1 . . . ti−1)

−1, for i in {2, . . . , k}. Our polygon will still have 2k sides, but its vertices will be the fixed
points of all the tj and some conjugates of tk+1, as shown next.

Proposition 3.2. Let k be an integer larger or equal to 3, and let T be a Fuchsian group uniformizing C with signature
(0;m1, . . . ,mk+1), where the mj satisfy the condition (2.3). Fix an ordered sequence of generators t1, . . . , tk+1 for T satisfying
the relations in (2.1).

Then there exists a fundamental polygon F for T with corresponding side pairing as follows; see Fig. 2.

(1) The boundary of F is composed by 2k consecutive geodesic segments {s1, s2, . . . , s2k}, with

tj(s2j−2) = s2j−1 for 2 ≤ j ≤ k, and t1(s2k) = s1;

(2) the corresponding vertices {q1, q1k+1, q2, q
2
k+1, . . . , qk, q

k
k+1} satisfy

tj(qj) = qj for 1 ≤ j ≤ k, and tk+1(qkk+1) = qkk+1;

(3) the interior angle at each qj is 2π
mj

for 1 ≤ j ≤ k, and the sum of the interior angles θl at qlk+1 is
k

l=1

θl =
2π
mk+1

.
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Fig. 2. Adapted fundamental polygon F for T .

Fig. 3.Modifying Q to obtain F (with k = 3).

Proof. Given T and t1, . . . , tk+1 satisfying the hypotheses, consider the corresponding polygon Q from Lemma 3.1.
For j in {1, . . . , k} set

qjk+1 = (t1t2 . . . tj)−1(qk+1);

note that qkk+1 = (t1 . . . tk)−1(qk+1) = tk+1(qk+1) = qk+1.
The following hyperbolic triangles (given by their vertices) are congruent in pairs by elements of T :

T ′

1 = (q1, qk+1, q′

2) T1 = (q1, qk+1,1, q2)

T ′

2 = (q′

2, qk+1, q′

3) T2 = (q2, qk+1,2, q3)
...

...

T ′

k−1 = (q′

k−1, qk+1, q′

k) Tk−1 = (qk−1, qk+1,k−1, qk).

It is clear that

F =


Q r

k−1
j=1

T ′

j


∪

k−1
j=1

Tj

satisfies the required conditions (Fig. 3). �

Definition 3.3. Wemay always assume that the fundamental polygon F constructed in Proposition 3.2, has the vertex q1 at
the origin, and the next vertex q1k+1 on the positive real axis, by conjugating T and its given generators by an automorphism
of the unit disk. This unique F will be called an adapted fundamental polygon for T and its fixed set of generators.

Definition 3.4. For the excluded case k = 2 in Proposition 3.2, F is the unique hyperbolic quadrilateral with one vertex at
the origin and angle 2π/m1 there, the second vertex on the positive real axis and angle π/m3, the third vertex in the upper
half-plane with angle 2π/m2 and the fourth vertex with angle π/m3.

Example 3.5. Consider Example 2.9(1). The polygon F for the corresponding quotient surfaces for both actions by the cyclic
group of order seven is exactly the same (see Fig. 4).

Remark 3.6. The converse to Proposition 3.2 also holds, by Poincaré’s theorem.

Proposition 3.2 may also be proved directly by construction, in which case the (real) moduli for the family of adapted
polygons become explicit.

The proof of the following result uses hyperbolic geometry, we will not include it here because it falls out of the scope of
this work.
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Fig. 4. Adapted polygon F in the triangular case, with signature (7, 7, 7).

Proposition 3.7. Let k be any integer greater than two and let m1, . . . ,mk+1 be integers greater than or equal to two satisfying the
condition in (2.3).

Then, for each (ℓ1, . . . , ℓk, θ1, . . . θk−4) in an open set in R2k−4 (if k is greater than three; (ℓ1, ℓ2) in R2 if k is three), there
exists a hyperbolic polygon with 2k consecutive edges of corresponding lengths ℓ1 , ℓ1, . . . , ℓk , ℓk and corresponding interior
angles 2π

m1
, θ1, 2π

m2
, θ2, . . . , 2π

mk
, θk, where θk−3 (if k greater than three), θk−2 , θk−1 and θk are uniquely determined and satisfy

k
i=1

θi =
2π
mk+1

.

Moreover, for each such polygon, the group T generated by the elliptic elements tj which pair consecutive edges of lengths
ℓj, ℓj , j = 1, . . . , k, is a Fuchsian group with the given fundamental polygon; furthermore, T uniformizes C with signature
(0;m1, . . . ,mk+1) and has a presentation of the form given in (2.1).

Definition 3.8. We will denote by F = F ((0;m1, . . . ,mk+1)) the family of hyperbolic polygons constructed in
Proposition 3.7. This is the family of adapted fundamental polygons for all Fuchsian groups T uniformizingC with signature
(0;m1, . . . ,mk+1), together with a given set of generators (t1, . . . , tk+1) satisfying the presentation given in (2.1).

4. Step two: fundamental polygons for the surfaces

In this section, we prove that given G together with an admissible generating vector c = (c1, . . . , ck+1) (see Defini-
tion 2.2), there exists a family of hyperbolic polygons which uniformize the surfaces admitting this action, and from which
the following data may be obtained: a basis for the homology of the corresponding surface, its intersection matrix, and the
action of the generators of G on this basis.

We start with a group G together with an admissible generating vector c = (c1, . . . , ck+1). Recall from Section 2 that for
eachM ∈ H(G, c) (see Definition 2.6), there exists a Fuchsian group T uniformizingM/G, together with a set of generators
(t1, . . . , tk+1) satisfying the presentation given on (2.1). From Proposition 3.2 we obtain a corresponding adapted polygon
F in F (see Definition 3.8).

A fundamental polygon D for M is obtained by taking |G| images of F under adequate elements of T .
In order to simultaneously choose the suitable images of F and obtain the side pairing forD, we follow the ideas proposed

by Dehn, (c.f.[4]).
Consider the group T and its given generators (t1, . . . , tk+1) satisfying presentation (2.1).

Since

t1t2 . . . tk+1 = 1,

we may consider the infinite directed Cayley diagram associated to the group T and its generators t1, . . . , tk; that is, we
forget the generator tk+1.

This is an infinite planar graph whose vertices are the elements of T , and two such vertices g and h are joined by an edge
from g to h if there exists j in {1, . . . , k} such that g = htj; this edge is colored by tj, and directed from g to h.

Then consider its dual tessellation of the unit disk, given by the images under all elements t of T of the adapted
fundamental polygon F under T constructed in the previous section, making F correspond to the identity vertex of the
diagram and t(F) to the vertex t .

Now, from this tessellation we choose one copy of F for each element of G, or, equivalently, for each coset representative
of T/Γ . The result is, of course, a fundamental set for the action of Γ onM .

The algorithm we use to obtain a subset S ⊆ T corresponding to coset representatives so that the result is actually a
polygon is the following.

(1) First include in S the whole orbit tk1(F) under the subgroup generated by the generator t1 of T corresponding to the
element t1Γ of G of greatest order; in this way the polygon will start with rotational symmetry at the origin.
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(2) Continue by letting ti be the next generator of T , right-multiply each element s ∈ S by ti and append sti to S in case
the corresponding class in G is not yet represented there. Note that we only consider those elements of s ∈ S which were
present before the current iteration of (2).

(3) Repeat step (2) until |S| = |G|.

The result is a fundamental polygon D for Γ .
An example is shown in Figs. 8 and 9.

Remark 4.1. The set D = D(G, c) of all fundamental polygons D as constructed above parameterizes the set of all
normalized Fuchsian groups uniformizing the Riemann surfaces M with the given G-action, marked by the choice c of
generators; that is, we have obtained a covering of H(G, c), where the lengths of the edges q1q1k+1, q2q

2
k+1, . . . , qkq

k
k+1 of F

and the angles at the vertices {q1k+1, q
2
k+1, . . . , q

k−4
k+1} of F are the required 2k− 4 real parameters, for k ≥ 4 (see Remarks 2.8

and 3.8).

Definition 4.2. Given G and an admissible generating vector c = (c1, . . . , ck+1) for G, any D in D(G, c) will be called an
adapted fundamental polygon for the action of G.

Remark 4.3. Note that each adapted fundamental polygon D is tessellated by |G| copies of F , labeled by the elements of G.
We will denote the copy corresponding to g in G by F g , or, sometimes, just by g .
Furthermore, the boundary of D is composed of geodesic arcs, each such arc belonging to one copy of F inside D and one

copy of F outside D.
The vertices of D project to ramification points in the surface M; they are naturally grouped into Γ -orbits, that may be

determined once the side pairing is deduced; this will be done next.

4.1. The side pairing for D

The side pairing for D is obtained as follows. Let e denote a side of D; then there exist two unique copies of F sharing the
side e: F1 inside D and F2 outside D.

But there is a unique copy F3 of F inside D and corresponding to the same coset of T/Γ as F2: the side of F3 corresponding
to e, which necessarily lies on the boundary of D, is paired to e.

Note that a path along the underlying Cayley graph from one side of D to its paired side represents an element of T that
belongs to the kernel of the homomorphismψ : Γ → T given in (2.2): also a relation in G satisfied by the given generators
for G. In this way we recover the group Γ uniformizing M: it is the normal closure in T of the subgroup generated by these
paths, choosing one for each pair of sides; see Remark 2.5.

We now illustrate the construction with several examples.

Example 4.4. Continuing with Example 2.9(1) and Example 3.5, the polygons D for the Klein surface and the hyperelliptic
one look exactly the same, as seen in Fig. 6; the difference lies in the side pairing, that comes from the relation satisfied by
the chosen generators for G.

In the Klein case, the generating vector is (c, c2, c4), and the corresponding presentation for the group G = Z/7Z is as
follows.

Z/7Z = ⟨c1, c2 : c7j , (c1c2)
7, c2c−2

1 ⟩.

The group Γ uniformizing the Klein surface is then given by the normal closure in T of t2t−2
1 ; all the paths along the

Cayley diagram joining paired sides are T -conjugate to this one.
Following the Cayley graph depicted on Fig. 5, and looking at the labeling in Fig. 6, the side pairing for the Klein surface

is 1–6, 2–11, 3–8, 4–13, 5–10, 7–12, 9–14.
In the hyperelliptic case, the generating vector is (c, c, c5), and the corresponding presentation for the group G = Z/7Z

is as follows.

Z/7Z = ⟨c1, c2 : c7j , (c1c2)
7, c2c−1

1 ⟩.

Therefore the group Γ uniformizing the hyperelliptic surface is given by the normal closure in T of t2t−1
1 , and the side

pairing for D is: 1–4, 2–13, 3–6, 5–8, 7–10, 9–12, 11–14.
Here lies another difference with Gilman’s method (see [7, Remark 3.7]). In her case, these two automorphisms will have

the same matrix representation with respect to an adapted basis. As we have mentioned, we are not adapting the basis to
fulfill any condition on the shape of the matrix representation for the automorphisms group. We will use the same polygon
D to represent the action on the homology (see Section 5) for both situations. The difference between the side pairings will
be reflected immediately on the different (nonconjugate) representations we obtain.

The following example illustrates all the previous constructions in the case of the action of the symmetric group S4 of
degree four on genus four. We will carry on this example throughout the rest of the paper.
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Fig. 5. Tessellation of the unit disk with copies of F obtained from the action of T , and the associated Cayley graph.

Fig. 6. Adapted fundamental polygon D for the cyclic group of order 7 with signature (0; 7, 7, 7).

Example 4.5. Consider the action of S4 on a surface S of genus four with generating vector c = ((1 2 3 4), (3 4), (2 4), (1 4)).
The signature of the quotient surface S/S4 is then (0; 4, 2, 2, 2). In this case, T has a presentation of the form

T = ⟨r, s, t, u : r4 = s2 = t2 = u2
= rstu = 1⟩,

and it uniformizes the sphere with one branch point of order four and three branch points of order two.
Recall from Section 3 that to obtain the adapted fundamental polygon F for the quotient surface S/S4 we forget the last

generator, and work only with r, s, t .
F is depicted in Fig. 7, where θ1 + θ2 + θ3 = 2π/2 (corresponding to m4 = 2 in the signature), and the central angle is

2π/4 (corresponding tom1 = 4 in the signature);m2 = 2 andm3 = 2 correspond to the vertices marked with dots.
In Fig. 8 we see, as described in Section 4, the tessellation of the unit disk by T -images of F , indicating a corresponding

word w ∈ T for each copy of F . To clarify the selection process of coset representatives for the elements in G = T/Γ , we
also present a labeling of the polygon where each number from 0 to 23 corresponds to a distinct element of G (see Fig. 9).
Solid lines indicate copies of F that will be selected for D, while dotted lines indicate copies of F which are identified with
others inside D (this determines the side pairing for D).
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Fig. 7. Adapted polygon F with signature (0; 4, 2, 2, 2).

Fig. 8. Tessellation of the unit disk with copies of F obtained from the action of T .

Fig. 9. Tessellation of the unit disk with copies of F obtained from the action of T , and the Cayley graph.

To illustrate the identification of the edges of the resulting polygon D (Fig. 10), we label identified edges with the same
number, just changing the sign to illustrate a reversal of orientation. To avoid cluttering the figure, we only present some of
the labels, the complete ordered list being
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Fig. 10. Side pairing and labeling for the adapted fundamental polygon D.

Fig. 11. Vertex labeling for the adapted fundamental polygon D.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,−9,−8,−7, 18, 19, 20,
−1, 21, 22, 23, 24, 25,−13,−12,−20,−19,−18, 26, 27, 28,−15,−14,−3,−2,
−11,−10,−23,−22,−28,−27,−26,−6,−5,−4,−25,−24,−17,−16,−21].

We see the adapted fundamental polygon D (see Definition 4.2) for the action of S4 with signature (0; 4, 2, 2, 2) and
generating vector c = ((1 2 3 4), (3 4), (2 4), (1 4)) in Fig. 10.

Fig. 11 depicts the Γ -equivalence classes of vertices in D, where each class is represented by an integer.

5. Step three: the homology basis and its G-action

We now have a hyperbolic polygon D reflecting the given G-action on M = ∆/Γ . We will use it to represent the action
on a specially suited homology basis forM .
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Lemma 5.1. Let D be a suitable fundamental region for the action of G on M = ∆/Γ . Denote by β1, . . . , βN the curves on M
corresponding to the sides on the boundary of D, and by U = {P1, . . . , Pv} the set of points in M corresponding to the vertices of
the boundary of D.

Then there exists a basis B of H1(M) such that every curve γ in B is an integral combination γ =
N

j=1 njβj of the β ’s and

δ


N
j=1

nj βj


= 0, (5.1)

where δ : H1(M,U) → H0(U) is the natural map on homology.

Proof. It follows from the following exact sequence for relative homology

0 // H1(M)
j // H1(M,U)

δ // H0(U)
i // H0(M) // 0

that 2g + v = N + 1, where g is the genus ofM .
Since j is injective, the dimension of Im(j) is 2g; hence the dimension of Ker(δ) is also 2g . The inverse image under j of a

basis for ker δ will be a basis for H1(M)with the required properties. �

Note that Eq. (5.1) provides an algorithm to explicitly find a basis B, which is not an adapted homology basis in the sense
of [7]: it does capture the action, but not necessarily in a nice way.

Example 5.2. Let K and H be the Klein and the hyperelliptic surfaces of Example 2.9(1). We will compute a basis for their
(first) homology groups, following Lemma 5.1.

For H , consider Fig. 6 and the corresponding side pairing for this surface. Eq. (5.1) is

δ(n1 · 1 + n2 · 2 + n3 · 3 + n5 · 5 + n7 · 7 + n9 · 9 + n11 · 11) = 0,

from where we obtain one single relation:

n2 = n1 + n3 + n5 + n7 + n9 + n11.

Hence a basis BH for H1(H,Z) is

{γ1 = 1 + 2, γ2 = 3 + 2, γ3 = 5 + 2, γ4 = 7 + 2, γ5 = 9 + 2, γ6 = 11 + 2}.

An analogous procedure for K gives a basis BK for its first homology group:

{γ1 = 1 + −9, γ2 = 2 + 9, γ3 = 3 + −9, γ4 = 4 + 9, γ5 = 5 + −9, γ6 = 7 + −9}.

In both cases the numbers denote the sides of the polygon D of Fig. 6, remember that the identification of them is not the
same in both cases.

Example 5.3. Continuing with Example 4.5, we solve Eq. (5.1) considering the boundary of D from Fig. 10. We obtain the
following basis B for the homology

γ1 = 11 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
γ2 = 13 + −3 + −2 + 12
γ3 = 17 + −9 + −8 + −7 + −6 + −5 + −4 + 14 + 15 + 16
γ4 = 20 + 2 + 3 + 4 + 5 + 6 + 18 + 19
γ5 = 21 + −15 + −14 + −3 + −2 + −1
γ6 = 23 + −9 + −8 + −7 + −6 + −5 + −4 + 14 + 15 + 22
γ7 = 25 + 4 + 5 + 6 + 7 + 8 + 9 + 24
γ8 = 28 + −15 + −14 + 4 + 5 + 6 + 26 + 27,

where the numbers represent the corresponding sides of D given in Fig. 10 and the complete list of the boundary labeling
given there.

5.1. The G-action on the homology basis

Recall from Remark 4.3 that the adapted fundamental polygon D is a union of copies F g of F for g in G, and therefore the
action of any element h in G on D corresponds to a permutation of the copies as follows.

h(F g) = F gh. (5.2)

Consider the homology basis B constructed in the previous section, and let γ be an element of B.
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Fig. 12. Action on a curve on the boundary of D.

Fig. 13. Action on homology.

A representative for γ in the polygon D is a linear combination of sides of D. Its image onM is a closed curve, starting and
ending at the image of one of the Pk in U , where we follow the notation of Lemma 5.1.

The image of γ under one of the fixed generators cj for G is a nontrivial closed curve inM , and hence its preimage in D is
a curve δ contained in D, that starts and ends at vertices in D belonging to the same Γ -orbit. Note that the image curve δ is
composed by sides of (some of) the copies F g in D, determined by the permutation of the original copies corresponding to
cj as in (5.2).

By a homotopy with fixed end points, this image curve δ may be deformed to lie on the boundary of D, and then it may
be written as a linear combination of the elements of B.

In this way we associate a 2g × 2g integral matrix to each generator of G, thus obtaining the rational representation for
G; that is, the representation of the induced action of G on H1(M,Z). It is an integral representation of G in dimension 2g ,
leaving invariant the intersection matrix JB for B, to be computed from D in the next section.

We illustrate the process in the following examples.

Example 5.4. Consider Example 4.5 and the homology basis obtained in Example 5.3.
Fig. 12 shows the permutation of the copies of F contained in D corresponding to the second generator of S4: (3, 4). The

second curve γ2 in the basis B and its image under (3, 4) are also depicted there.
The result of changing the image curve by fixed ends homotopy in D to a curve lying on the boundary of D is shown in

Fig. 13. Finally we see that

(3 4)(γ2) = −γ2 + γ5 + γ6 + γ7.
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Applying the algorithm to our fixed set of generators for G, the following integral representation (with respect to the
basis B) is obtained.

[c1]B =



0 0 0 0 0 0 −1 0
0 0 −1 0 0 0 0 0
1 −1 0 1 −1 0 0 0
1 0 −1 0 0 −1 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 −1 1 0 −1
0 0 0 1 0 0 0 0



[c2]B =



0 0 −1 1 1 −1 0 1
1 −1 −1 1 1 −1 0 1
0 0 −1 0 0 0 0 0
1 0 −1 0 1 −1 0 1
0 1 −1 0 0 0 1 0
0 1 −1 0 1 −1 1 0

−1 1 0 −1 0 1 0 −1
0 0 0 0 0 0 0 −1



[c3]B =



0 0 0 0 0 0 1 −1
1 −1 −1 1 0 −1 1 0
0 0 0 −1 0 1 0 −1
1 0 −1 0 0 −1 1 0
0 0 1 −1 −1 1 0 −1
0 0 1 −1 0 0 0 −1
0 0 1 −1 0 1 −1 −1

−1 0 1 −1 0 1 −1 −1


Example 5.5. Consider the surface K of Example 5.2 and the basis BK obtained there. The action of the cyclic group G of
order 7 on K is given by the generating vector (c, c2, c4) (see Example 2.9(1)).

By Fig. 6, the action of c on BK is given as follows

c(γ1) = 3 − 11 = 3 + 2 = γ3 + γ2,

c(γ2) = 4 + 11 = 4 − 2 = γ4 − γ2,

c(γ3) = 5 − 11 = 5 + 2 = γ5 + γ2,

c(γ4) = 6 + 11 = −1 − 2 = −γ1 − γ2,

c(γ5) = 7 − 11 = 7 + 2 = γ6 + γ2,

c(γ6) = 9 − 11 = 9 + 2 = γ2,

where the numbers represent the sides of D as in Fig. 6. The corresponding matrix representation for c on the basis BK is
then

[c]BK =


0 0 0 −1 0 0
1 −1 1 −1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



6. Step four: the intersection matrix for the homology basis

The intersection matrix JB =

γi · γj


may be found from D, by considering that if two curves in B intersect each other in

M , they may be deformed (inside their homotopy class) so they do so only at points in U = {P1, . . . , Pv}, the projection to
M of the vertices of D; that is, it is enough to analyze the intersections of the edges of the boundary of D appearing in the
basis B at different vertex orbits under Γ .

The procedure is as follows.

(1) Draw a full neighborhood Dj of each vertex Pj in M , including the numbered sides of D that meet at Pj, and their
orientation.

(2) On each such picture, draw the curves in the basis B that pass through Pj, including their orientation.
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Fig. 14. Zoom in at neighborhoods of three vertices of D.

(3) To compute the intersection number of the two curves γi and γj in B, for i < j, the drawings Dk are modified in the
following case: if both curves pass through Pk, and they share a common side e ending or beginning at Pk.

In this case the same situation will hold at some other Ps, and the two drawings Dk and Ds have to be considered
simultaneously. The curve γj is deformed in Dk keeping Pk fixed, moving it counterclockwise away from side e, so that
it now lies between the edge e and the next edge in Dk in the counterclockwise direction. Then the corresponding
deformation is applied in Ds.

(4) Once all drawings satisfying the condition in (3) have been modified, the intersection numbers are counted by looking
at each vertex, as ±1 according to the given orientations of γi and γj, and then added to obtain the total intersection
number γi · γj.

Remark 6.1. The basis B will not be a symplectic basis in general; the relation between the intersection matrix JB and the
integral matrices found in Section 5.1 for the chosen generators of G is, of course,

[cj]tB JB [cj]B = JB.

We illustrate the process with two examples.

Example 6.2. Recall Examples 4.5 and 5.3. To compute the intersection matrix, we need to study the intersection of the
curves of B at different vertices of D. In Fig. 14 we show full neighborhoods for the three vertices V1, V2 and V3 of Dwhere
γ1 and γ2 intersect; these vertices are labeled as 1, 2 and 3 in Fig. 11. γ1 has been deformed so that it lies in the interior of D,
except where it goes through the vertices of ∂D.

Compare Fig. 14 with Fig. 8.
In this example the intersection matrix is given as follows.

JB =



0 1 0 −1 1 0 0 0
−1 0 1 0 −1 1 0 −1
0 −1 0 1 0 0 −1 1
1 0 −1 0 1 −1 1 0

−1 1 0 −1 0 1 0 −1
0 −1 0 1 −1 0 0 1
0 0 1 −1 0 0 0 −1
0 1 −1 0 1 −1 1 0


6.1. Step five: the symplectic representation for G

In Section 5 we obtained an integral 2g-dimensional representation of G in SL(2g,Z) for the action of G on the basis B,
and the intersection matrix JB for Bwas found in Section 6.

In order to obtain a symplectic representation for G, we follow a process which is analogous to the one used to find an
orthogonal basis for a symmetric form.
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Lemma 6.3. Let E be an alternating non-degenerate bilinear form on a free Z-module L, having values in Z. Then L is an
E-orthogonal direct sum L = [e1, v1] ⊕ · · · ⊕ [en, vn] of 2-dimensional submodules [ej, vj], such that E(ej, vj) = dj is an
integer> 0 and d1|d2| . . . |dn.

Proof. See [12, Chapter VI, Lemma 1], where a constructive algorithmic proof of the existence of such a basis {e1, . . . , en,
v1, . . . , vn} is given. �

This basis is called a Frobenius basis for L with respect to E. It is clear that the intersection matrix JB found in Section 5
satisfies the hypothesis for Lemma6.3, hence the corresponding Frobenius basisBF for Lwith respect to JB will be a symplectic
one; that is, with intersection matrix

Jcan =


0 Ig×g

−Ig×g 0


.

The method from Lemma 6.3 also provides a change of basis matrix P from B to BF .
To obtain the symplectic representation for G, we conjugate by P the integral representation obtained in Section 5.

Example 6.4. We continue with Example 4.5.
In Example 6.2 we computed the intersection matrix JB for the basis B found in Example 5.3.
Applying Lemma 6.3 to JB we obtain the corresponding change of basis matrix P to the symplectic basis BF , so that

P t JBP = Jcan = JBF . Finally, conjugating by P the integral representation for G = S4 found in Example 5.4 we obtain the
required symplectic representation for G as follows.

For j = 1, 2, 3

[cj]BF = P−1
[cj]BP =


Cj 0
0 C−t

j


where C−t

j is the transposed inverse of the matrix Cj, and each Cj is given by

C1 =

 0 0 −1 0
−1 0 0 0
1 1 1 1
0 0 0 −1

 , C2 =

 0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 −1

 ,

C3 =

1 1 1 1
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

7. Applications

For any integer g ≥ 1, the Siegel upper half-space of degree g is

Hg = {Z ∈ Mg×g(C) : Z t
= Z,ℑZ >> 0},

the set of symmetric complex g × g matrices with positive definite imaginary part.
The symplectic group Sp(2g,Z) acts on Hg as follows,

Sp(2g,Z)× Hg −→ Hg
@A B
C D


, Z


99K (AZ + B)(CZ + D)−1,

and themoduli spaceAg of principally polarized complex Abelian varieties of dimension g is parameterized byHg/Sp(2g,Z).
See for instance [12, Chapter VIII, Section 2].

The symplectic representation of G = S4 obtained in the previous section will be used now to find all the Riemann
matrices Z in H4 fixed under this action, thus explicitly describing a family in the singular locus of A4, corresponding to the
principally polarized abelian varieties with given G-action.

Theorem 7.1. Consider the symmetric group S4 of degree four, with generating vector c = ((1 2 3 4), (3 4), (2 4), (1 4)).
Then there exists a two-dimensional family A(G, c) of principally polarized abelian varieties of dimension four admitting the

given group action. It is given by the matrices Zτ1,τ2 in H4 of the following form.

Zτ1,τ2 =

 τ1 −τ2 −τ2 −τ1 + 3 τ2
−τ2 τ1 −τ2 −τ1 + 3 τ2
−τ2 −τ2 τ1 −τ1 + 3 τ2

−τ1 + 3 τ2 −τ1 + 3 τ2 −τ1 + 3 τ2 4 τ1 − 12 τ2
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Furthermore, A(G, c) contains the one-dimensional family parameterized by H(G, c).
Additionally, there are only two Riemann surfaces in H(G, c) whose automorphism group is larger than S4; one is Bring’s

curve, the unique compact Riemann surface of genus four admitting an action by the symmetric group S5; the other one has as full
automorphism group S4 × Z/3Z.

The Riemann matrix for Bring’s curve in the above family is Z4τ0,τ0 , with τ0 in H1 defined modulo Γ0(5) by j(τ0) = −25/2 and
j(5τ0) = −293

· 5/25. The Riemann matrix for the other curve is obtained by setting τ1 =
5
12 i

√
3 and τ2 =

1
12 i.

Proof. Consider the symplectic representation for G found in Example 6.4. Its set of fixed points in H4 gives the two-
dimensional family.

That A(G, c) contains the one-dimensional family parameterized by H(G, c) holds by construction.
The fact that H(G, c) contains only two Riemann surfaces with automorphism group larger than G, and the description

of the larger groups, come from [14].
To compute the Riemann matrices for these two curves, the method is applied again, this time to the larger groups S5

and S4 × Z/3Z, with their corresponding generating vectors.
The first case was done in [18], by hand calculations at the time, and it provided the results quoted here.
The second casewas verifiedwith our program, obtaining the following symplectic representation associated to the extra

generator of order three.

−1 0 0 1 1 2 2 −7
0 −1 0 1 2 1 2 −7
0 0 −1 1 2 2 1 −7
0 0 0 −5 −7 −7 −7 28
2 1 1 1 0 0 0 0
1 2 1 1 0 0 0 0
1 1 2 1 0 0 0 0
1 1 1 0 −1 −1 −1 4


The determination of its fixed points in H4 leads to the result. �

8. The routine

We have implemented the method described in this paper using the computer algebra system SAGE, following the
procedure outlined in Sections 3 and 4 to implement the graphical aspect.

It is worth mentioning that there was a previous implementation available on the web, developed by C. O’Ryan in his
thesis under our direction, which could produce drawings of fundamental regions for particular cases (http://www.geom.
uiuc.edu/apps/unifweb). Unfortunately this site is no longer functional.

The algebraic procedures described in Sections 5, 6.1 and 7, have also been implemented as SAGE routines. In this section
we briefly outline the inner works of the SAGE routines and we list some of the basic commands needed to produce the
examples. A worksheet containing these commands is publicly available at http://www.sagenb.org/home/pub/2756.

Since the polygon D is the dual of the Cayley graph of the group G, we implemented it internally this way. The faces are
therefore labeled as group elements. Edges are identified by the face to its left plus the precise generator ai which glues it
to the face on its right. Given this representation, we choose coset representatives as described in Section 4 making all the
necessary edge identifications. The next step is to label the vertices lying on the border of the whole polygon taking care to
use the same label for identified vertices. Once we have done this, we solve a simple linear system (see Eq. (5.1)) to obtain
the basis B. For this basis we compute the action of G and the intersection matrix. Now we have to find the new basis B′

for which the intersection matrix is canonical. In order to get a simpler output, we attempt to find G invariant subspaces of
dimension g for which all elements have zero intersection. If we can find at least one such subspace then the representation
will have a g × g block of zeros in the lower left corner. If we can find two of them whose sum is the whole space and such
that the change of basis lies in GL(2g,Z), then the resulting representation will have blocks of zeros in the upper right and
lower left corners.

The problem of finding invariant Riemann matrices involves solving a system of nonlinear equations in many variables.
In the particular case when the representation has at least a g × g block of zeros in the lower left corner, the equations
become linear and the program returns a basis for the linear (affine) space of invariant matrices.

To find invariant Riemann matrices for those representations which do not have blocks of zeros, the program creates a
generic symmetric matrix and returns the ideal generated by the necessary conditions on the coefficients of the matrix. It
is likely though that the equations rapidly become intractable in this case.

http://www.geom.uiuc.edu/apps/unifweb
http://www.geom.uiuc.edu/apps/unifweb
http://www.geom.uiuc.edu/apps/unifweb
http://www.geom.uiuc.edu/apps/unifweb
http://www.geom.uiuc.edu/apps/unifweb
http://www.geom.uiuc.edu/apps/unifweb
http://www.geom.uiuc.edu/apps/unifweb
http://www.sagenb.org/home/pub/2756
http://www.sagenb.org/home/pub/2756
http://www.sagenb.org/home/pub/2756
http://www.sagenb.org/home/pub/2756
http://www.sagenb.org/home/pub/2756
http://www.sagenb.org/home/pub/2756
http://www.sagenb.org/home/pub/2756
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Example 8.1. What follows is a list of some of the commands implemented in SAGE to get the results presented in the
examples.

sage: FundamentalPoligon([4,2,2,2]).draw()
sage: G=SymmetricGroup(4)
sage: P=Poly(G,[4,2,2,2])
sage: P.draw()
we obtain Fig. 10 without the labeling.
It may be noticed that we just entered the signature and let the program choose a suitable generating vector for the

group.
The list of generators actually used can be found by
sage: P.generators
The symplectic representation for the set of generators is
sage: P.symplectic_group_generators()
The matrix which generates the space of invariant Riemann matrices under the action of G is found as follows.
sage: m=P.moebius_invariant()
It is also possible to obtain further information about the hyperbolic polygon generated internally by the program in

SAGE; for instance, the border with identified edges and the set of curves chosen as a basis for the homology.
sage: P.border sage: P.loops

Example 8.2. To specify the generators to be used, we define the group G and pick a generator:
sage: G=CyclicPermutationGroup(7)
sage: x=G.0
Now the two possible actions are studied by
sage: R1=Poly(G,[x,x,xˆ5])
sage: R2=Poly(G,[x,xˆ2,xˆ4])

Remark 8.3. We have also programmed some additional routines, such as:
Given a group G, presented as a group of permutations, and a genus g , it returns all possible signatures for which there

is an appropriate generating vector for G acting on a curve of genus g . For example:
sage: suggest_signatures(SymmetricGroup(4),3)
A generating vector for one of the suggested signatures can be found
sage: find_generators(SymmetricGroup(4),[4,4,3])
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