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Abstract: We show, numerically and experimentally, that the presence
of weak disorder results in an enhanced energy distribution of an initially
localized wave-packet, in one- and two-dimensional finite lattices. The
addition of a focusing nonlinearity facilitates the spreading effect even
further by increasing the wave-packet effective size. We find a clear
transition between the regions of enhanced spreading (weak disorder) and
localization (strong disorder).
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1. Introduction

The simultaneous presence of disorder and nonlinearity in wave systems can give rise to a
variety of rich and complex behavior [1]. For a disordered system, it is a widespread belief that
an increase in disorder will facilitate localization, that is, the initial spreading of an evolving
wave-packet will eventually stop [2, 3]. When - in addition to disorder - a weak nonlinearity is
added to the system, it has been predicted that the nonlinearity will either promote or inhibit the
wave-packet spreading, depending on the systems details and the relative strength of disorder
and nonlinearity [4–8]. Thus, a complete picture of the effects of the interplay between disorder
and nonlinearity remains unclear. Disorder-induced localization is based on wave interference
and, hence, it is a universal concept applicable to a variety of physical systems [10], such as
the transport of acoustic waves, microwaves, spin waves and matter waves [11–15]. In this
respect, optical waveguide lattices [16] have emerged as ideal systems in which the interplay
of disorder and nonlinearity can be studied by means of simple table-top experiments. After a
preliminary experimental study of wave evolution in a weakly-disordered nonlinear 2D fiber
array [17], a genuine experimental demonstration of Anderson-localization was published [18]
where the averaging over multiple individual realizations of disorder played a key role. In that
work it was also shown that focusing nonlinearity indeed facilitates localization. Whereas this
work was performed in a two-dimensional (2D) system, in a subsequent experiment [19] the
impact of nonlinearity on localization in a one-dimensional (1D) system was experimentally
analyzed, culminating in the same result: focusing nonlinearity indeed enhances localization of
propagating waves.
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In this work we present numerical and experimental evidence that the presence of weak
disorder promotes the spreading of a wave-packet, with a more uniform distribution of the
energy across the lattice. We focus on a weak disorder regime and finite lattices, and study the
average dynamical behavior of the system in terms of the effective size of the output profile.
To our knowledge, this is the first systematic and controlled experimental study in waveguide
lattices that focusses on the effect of disorder when the localization length (lc) is larger or equal
than the system size. Moreover, in this regime, the spreading effect is further enhanced by the
addition of a weak focusing nonlinearity as we will show below.

2. Model

Longitudinal light propagation in weakly-coupled, nonlinear optical, waveguide arrays can be
modeled by a set of normalized discrete nonlinear Schrödinger (DNLS) equations [1, 16]:

−i
dun

dz
= εnun + ∑

m�=n
Vn,mum + γ|un|2un . (1)

Here, un is the amplitude of the waveguide mode in the n-th site. The coordinate n depends
on the dimension and lattice type [for example, n = (k, l) in a 2D square lattice]. The quan-
tity εn is the propagation constant (i.e., “site energy” in the quantum mechanical context)
of the n-th guide. The hopping between nearest-neighbor lattice sites, n and m, is described
by the coupling constant Vn,m. In our model we impose disorder on both, the propagation
(εn ∈ [−Wε/2,Wε/2]) and coupling (Vn,m ∈ 1+ [−Wc/2,Wc/2]) constants (on-site and inter-
site disorder, respectively); the disorder is therefore characterized by the widths Wε and Wc.
Note that Wc is limited to the interval [0,2], to insure that Vn,m is always positive. The coeffi-
cient γ describes the nonlinear response of the optical material, being proportional to the Kerr
coefficient n2.

One of the most commonly used measures for the description of localization phenomena in
finite systems is the participation ratio (PR) [22], which gives a rough estimate of the number
of sites that are effectively excited by the wave-packet; i.e., where the light has a significant
amplitude at the output facet of the sample. For example, a large PR-value implies a smoother
distribution of the energy across the lattice. As pointed out in Ref. [22], in order to get mean-
ingful data for finite lattices, one has to average over different realizations of disorder, and thus,
work with an averaged PR: R ≡ 〈

∑n |un|4/P2
〉−1

[23], where P ≡ ∑n |un|2 is a conserved quan-
tity of model (1) and corresponds to the total optical power (sums are made over an array of N
sites). We characterized the linear modes of our system by averaging the participation ratio for
growing disorder. As expected, we observe a monotonous decrement of the average effective
size of the linear modes for an increasing degree of disorder.

Another relevant quantity to study localization problems is the divergence of the wave packet
width or second moment (m2). This quantity decreases even for weak disorder [24], showing
that waves propagate slower and that diffusion is inhibited. In the present work, we are not
concerned with diffusion properties and their dependence on disorder and nonlinearity, but
rather with the dynamical behavior of the effective area or energy distribution of the profile
(∼ R), for finite propagation distances in disordered lattices.

3. Numerical results for 1D lattices

We start our analysis by carrying out extended numerical simulations in 1D lattices. We inte-
grate Eq. (1), using a standard 4th-order Runge-Kutta integrator, for several random realiza-
tions, and perform an averaging process of the relevant quantities. In the 1D case, we consider
an array of N = 81 waveguides with an initially localized excitation: un(0) =

√
Pδn,nc , being
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Fig. 1. (a) Sketch of light propagation through a 1D waveguide array, when only the center
waveguide is initially excited. (b)-(d) Simulated intensity output distribution for lattices
with on-site disorder level Wε = 0 (b), Wε = 0.36 (single realization) (c), and Wε = 1 (single
realization) (d), respectively.

nc the input site. The participation ratio is computed at the propagation distance zmax = 20 (in
normalized units) to avoid reflexions from surfaces. In order to simulate linear propagation, a
very small (< 0.01) total optical power P is chosen. Figure 1(a) shows light propagation in an
ordered waveguide array. We show in Figs. 1(b)-1(d) output distributions for the ordered lattice
and two levels of pure on-site disorder, showing a ballistic spreading for the ordered (Wε = 0)
case [Fig. 1(b)]. The diffraction pattern exhibits distinct side lobes and small amplitudes around
the initially excited central site. When weak disorder is introduced [Fig. 1(c)], the power con-
tained in these lobes is redistributed to the waveguides close to the center. By increasing the
disorder further, a localization around the excited site is observed with exponentially decreasing
amplitudes on both sides [Fig. 1(d)]. However, an important aspect here is the occupation of the
individual lattice sites, that defines the PR; i.e., the effective area occupied by the diffraction
pattern. Our simulations show something very interesting: as the (weak) disorder strength is
increased, the average PR increases [black solid line in Fig. 2(a)]. Upon further increment of
the disorder, the spatial profile reduces its expansion and the PR decreases. The figure shows
a clear maximum that separates regimes of spreading (lc � N) and localization (lc < N). We
note that, even though this phenomenon was numerically encountered before [24] in the linear
regime, it was neither discussed in depth nor experimentally observed.

We also investigate the role of mixed disorder by increasing the amount of the inter-site
disorder Wc. Results for Wc = Wε/3,Wε/2, and Wε , are shown in Fig. 2(a) with red-dashed,
blue-dotted, and pink-dash-dotted lines, respectively. From our simulations it is evident that, as
the inter-site disorder increases, the initial growth of the PR is reduced, and eventually vanishes
(i.e. R/R0 < 1 for all disorder levels) for sufficiently high inter-site disorder.

Next, we analyze the impact of nonlinearity by increasing the power of the input beam (it is
easy to show that an increment of P with a fixed value of γ is equivalent to fixing the power and
increasing the nonlinearity). In general, one expects that a focusing nonlinear term [γ > 0 in
Eq. (1)] facilitates the self-focusing of the excitation around the initially excited site [25]. We
find that, in the weak-disorder regime the increase of the PR is enhanced in the presence of a
small amount of nonlinearity. Figure 2(b) shows the averaged participation ratio of the profile
after propagating a distance zmax in the presence of on-site disorder Wε and power P in a 1D
lattice. Interestingly, when disorder is switched off and only nonlinearity remains, the picture
is similar: the PR increases up to some maximum value due to the redistribution of the power
in the waveguides, and then drops as the wave-packet self-traps [26–28]; i.e., below a critical
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Fig. 2. (a) Simulated disorder-averaged PR vs. on-site disorder width for different levels
of inter-site disorder after linear (low power) propagation. (b) Simulated disorder-averaged
PR vs. power P and onsite-disorder Wε after nonlinear propagation (thick contour denotes
R = R0). In all cases, the PR is normalized to R0 ≡ R(Wε =Wc = 0).

value (P ∼ 4) nonlinearity facilitates the delocalization process. Therefore, when weak disorder
and small nonlinearity are simultaneously present, a larger number of excited sites is observed
[a larger R-value in Fig. 2(b)] and the spreading/distribution of the wave-packet is enhanced.

4. Experimental results for 1D lattices

The above numerical predictions are nicely confirmed by our experiments (see Fig. 3). The
experiments are carried out in waveguide arrays fabricated by the direct-writing laser technol-
ogy [29] in polished bulk fused silica wafers. The dimensions of each guide are 4× 12 μm2

with a refractive index contrast of ≈ 5× 10−4 and a propagation length of 100 mm. For the
analysis of 1D samples, we fabricated several arrays with N = 81 sites each: one ordered lat-
tice and nine with different degrees of disorder (we considered 30 realizations for each de-
gree of disorder). Disorder was created by varying the spacing between the guide centers:
d = (23± δd)[μm] with δd = (0,0.25,0.5,0.75,1,1.5,2,3,4,6). A microscope image of the
front facet of an ordered and a disordered 1D lattice is shown in Fig. 3(a). For pure inter-site
disorder no spreading-peak was observed numerically, we therefore conclude that the experi-
mental variation of the inter-site spacing results in a mixed disorder in the fabricated samples.
The fluctuations in the overlap of the individual waveguide modes generate a statistic detuning
of the guides and, therefore, create an additional on-site disorder. At the input facet, light at
λ = 800 nm from a Ti:Sapphire laser was launched into a single waveguide at the center of
the array using a standard microscope objective. At the end facet of the sample, the intensity
patterns were recorded with a CCD camera. Fig. 3(b) shows different propagation patterns of
an ordered array (upper row), weak-disorder (middle row), and a strong-disorder level real-
ization (lower row). Whereas the linear regime (Plin) was measured by using the continuous
wave-mode of the laser (i.e., the laser power was only a few mW), the nonlinear case was
studied in the pulsed regime with pulse peak power of Pnl1 	 1MW and Pnl2 	 2.7MW. The
participation number R and its standard deviation were computed for all the different settings,
and normalized to the value of the linear single-site excitation in an ordered array (R0,lin). From
each realization, the PR was computed and then averaged. Fig. 3(c) shows that, for the lin-
ear regime (black curve), there is a delocalization tendency of the wave-packet when disorder
increases, with a clearly defined spreading-peak at a disorder level of δd = 1.5 μm. When
nonlinearity comes into play, the spreading-peak shifts towards smaller disorder levels, and its
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Fig. 3. (a) Microscope images of an ordered (upper row) and disordered (bottom row) 1D
array. (b) Experimental linear intensity output patterns: ordered array - averaged (upper
row), weak disorder δd = 1.5μm - averaged (middle row), and strong disorder δd = 6μm
- single realization (bottom row). (c) Experimental averaged R versus disorder strengths
for different levels of input power, normalized to R0,lin. Errors bars indicate the standard
deviation of R.

height increases significantly [see red-dashed and blue-dotted lines in Fig. 3(c)]. Therefore, the
delocalization (distribution) of the wave-packet is indeed enhanced in the presence of disorder
and nonlinearity, as our numerical results have predicted. If we further increase the nonlinear-
ity, the delocalization effect vanishes as the self-focusing is sufficiently strong to inhibit any
diffusion/expansion process [26–28]. Errors bars in Fig. 3(c) and Fig. 4(d) indicate the standard
deviation of R/R0,lin. Close to the region of enhanced spreading (peak), the average value and
error bars are always above R0,lin showing that this effect is robust and well defined.

5. Numerical and experimental results for 2D lattices

One of the simplest two-dimensional structures is the square lattice, where each site is cou-
pled to four nearest-neighbors only. We fabricated lattices with 21×21 sites, one ordered array
and three with different levels of disorder. Disorder was implemented by varying the mean
distances dhor = (17±δh)[μm], with δh = (0,2,4,6). (Although the vertical distance was kept
fixed at dv = 23[μm], this setting has shown to be equivalent to a 2D fully disordered lat-
tice [30]). Figure 4(a) shows a microscope image of an ordered square waveguide lattice, while
Fig. 4(b) shows its experimental output intensity pattern for a single-guide input excitation,
exhibiting four distinct side lobes. Figure 4(c) shows our numerical results for the averaged
PR versus the degree of disorder. They are qualitatively similar to the ones obtained in 1D lat-
tices, with the corresponding “spreading-peak” and the decreasing tendency of delocalization
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Fig. 4. (a) Microscope image of the fabricated ordered square lattice. (b) Output inten-
sity profile for a single-site excitation. (c) Numerical simulation of the PR for different
mixed disorder widths: Wc = 0 (black-solid line), Wc =Wε/4 (red-dashed line), Wc =Wε/2
(blue-dotted line). (d) Experimental results for single-site (black-solid line) and gaussian
(red-dashed line) input excitations, averaged over 25 realizations. All data is normalized to
R0,lin. Errors bars indicate the standard deviation of R.

when mixed disorder is increased. The overall expansion tendency is enhanced for 2D-lattices
because there are more escaping possibilities for the wave-packet. Our experimental results,
summarized in Fig. 4(d) (black-solid line), validate this scenario: for weak disorder the PR sig-
nificantly grows, and for further increase of the disorder the PR drops, resulting into localization
of the wave-packet. Importantly, distinct side lobes in the diffraction pattern only occur when
a single waveguide is excited [1, 16]. Numerical simulations show that a wide Gaussian beam
creates a propagation pattern with a single lobe at the center, whose height (width) decreases
(increases) continuously during propagation. Its PR decreases monotonically with increasing
disorder. This was experimentally verified by using a Gaussian input beam that covered ≈ 9
sites [see Fig. 4(d), red-dashed line]. We clearly see that there is no delocalization enhancement
for such initial condition.

6. Discussion

Most explanations concerning diffusion processes in disordered lattices resort to band structure
changes. Such is the case of disordered quasicrystal structures [22]. However, in that case the
reduction of the pseudo-gaps due to disorder does not necessarily imply that a particular exci-
tation located at any input position will be able to excite more states. For weak disorder it is not
possible to claim that, by considering a single-site excitation, a particular state will get excited;
this may be only possible for strong disorder when all states are very localized. Therefore, in
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our view it is not useful to discuss a precise excitation of states, as this would be certainly a
matter of probability [21] and it will not correspond to a representative case. Instead, we rely on
standard localization length arguments [31]: In the absence of disorder, during propagation the
wave-packet forms the typical side lobes of the diffraction pattern [see Fig. 1(b)], and most of
the propagating power is concentrated in these lobes. For weak disorder, the initial excitation
can be decomposed into a superposition of localized eigenmodes with different localization
lengths, many of which will be larger than the dimensions of the finite lattice. These will con-
tinue to support the side-lobe structure, while the rest will begin to concentrate energy around
the vicinity of the initial site. As a consequence, a more uniform power distribution will form,
joining the side-lobe and the center site [see Fig. 1(c)]. This is the regime in which the partic-
ipation ratio R grows. As the disorder grows further, the number of modes whose localization
length is smaller than the dimensions of the lattice will increase, causing power to concentrate
more and more in the vicinity of the initial site, causing R to stop growing (see Fig. 1(d) and
Refs. [17–19]). Finally at strong disorder levels, the localization length of all modes will be
smaller than the system, and R will decrease steadily with the strength of the disorder.

It is important to clarify that this process does not have implications in the edge-to-edge-
diameter (m2) of the wave-packet, which decreases steadily for growing disorder [24]; it rather
implies a smoother distribution of the light and, therefore, a larger PR.

In the absence of disorder, the side lobe-dominated energy distribution mechanism is also
found in higher dimensional lattices: 2D square and honeycomb, and 3D lattices - all of these
structures will therefore exhibit the initial increase of the PR for small disorder and, therefore, a
spreading-peak. One exception is the triangular lattice which, due to its high coordination num-
ber (6), possesses an unusual discrete diffraction pattern with no distinct lobes, resembling the
diffraction pattern of a continuous medium. Our numerical simulations of these lattices found
no enhancement of the PR, even at weak disorder, in agreement with recent experiments [18].

For a disorder level in the vicinity of the spreading-peak, the addition of a weak nonlinearity
will increase the (random) refractive index at each site, in an amount proportional to the light
intensity on the site. This causes the high-intensity side lobes to be affected the most, whereas
the waves in the center are not affected much. Thus, the nonlinear deepening of the random
potential wells, renormalizes the disorder strength of the individual lattice sites. This, in turn,
causes an increment of the participation ratio which occurs now at smaller values of disorder
strength than in the linear case, in agreement with our experimental and numerical results.

7. Conclusions

In summary, we have shown, both numerically and experimentally, that the presence of weak
disorder can lead to a more uniform distribution/spreading of an initially localized optical beam
in 1D and 2D waveguide arrays. Moreover, we found that the addition of a focusing nonlinearity
facilitates this effect even further. The regions separating enhanced spreading (weak disorder)
and localization (strong disorder) are clearly identified and explained in terms of standard lo-
calization length arguments. Our findings apply to any lattice that displays discrete diffraction
features - with distinct side lobes - in the ordered regime.
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