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Abstract: On the basis of a rigorous, nonperturbative, purely numerical
solution of the corresponding reduced Rayleigh equation for the scattering
amplitudes we have studied the scattering of a surface plasmon polariton
by a two dimensional dielectric defect on a planar metal surface. The
profile of the defect is assumed to be an arbitrary single-valued function of
the coordinates in the plane of the metal surface, and to be differentiable
with respect to those coordinates. When the defect is circularly symmetric
and the dependence of the scattering amplitudes on the azimuthal angle
is expressed by a rotational expansion, the reduced Rayleigh equation is
transformed into a pair of one-dimensional integral equations for each value
of the rotational quantum number. This approach is applied to a defect in
the form of an isotropic Gaussian function. The differential cross sections
for the scattering of the incident surface plasmon polariton into volume
electromagnetic waves in the vacuum above the surface and into other
surface plasmon polaritons are calculated, as well as the intensity of the field
near the surface. These results differ significantly from the corresponding
results for a metallic defect on a metallic substrate.
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A surface plasmon polariton incident on a surface defect is partly scattered into other surface
plasmon polaritons and is partly converted into volume electromagnetic waves in the vacuum
above the surface. The scattering out of the beam caused by the presence of surface defects
decreases the propagation length of the surface plasmon polariton, and it is important for appli-
cations of these surface electromagnetic waves to be able to calculate the cross section for such
scattering. At the same time surface defects of particular forms and sizes can scatter surface
plasmon polaritons in desirable ways, e.g. they can act as mirrors for surface plasmon polari-
tons or as flashlights, and can focus them as well [1–10]. To exploit the possibilities this offers it
is also necessary to be able to calculate the scattering of surface plasmon polaritons by surface
defects.

Until now the great majority of such calculations have been carried out for scattering by one-
dimensional defects, viz. grooves and ridges. In contrast the scattering of a surface plasmon
polariton by a localized two-dimensional surface defect has been little studied. The scattering
from indentations (dimples) or protuberances formed from the same metal as the substrate has
been studied by a rigorous approach [11]. The scattering from a dielectric rectangular paral-
lelepiped on the planar surface of metallic film in the Kretschmann attenuated total reflection
geometry [12] has been studied by a rigorous approach [13]. The scattering from a dielectric
defect in the shape of an anisotropic Gaussian and of an anisotropic hemiellipsoid on the planar
surface of a semi-infinite metal has been calculated with the use of an effective boundary con-
dition [14]. The interaction of a surface plasmon polariton with a spatially localized dielectric
surface defect is of experimental interest [14], and deserves additional study. Such a study is
presented in this paper.

Our treatment is based on the reduced Rayleigh equation for the electric field in the vacuum
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region above the metal surface and the dielectric defect on it. It is applicable to defects defined
by single-valued differentiable profile functions, is rigorous for defects with small slopes, and
is computationally tractable. It has worked well in a recent theoretical study of this scattering
of light from a planar metal surface coated with a dielectric film whose interface with the
vacuum above it is a two-dimensional randomly rough interface [15]. We expect that it will
work equally well when the incident volume wave is replaced by a surface electromagnetic
wave, and the rough dielectric film is replaced by a localized dielectric defect.

The physical system we consider consists of vacuum (ε1) in the region x3 > ζ (x‖), where
x‖= (x1,x2,0), a dielectric medium whose dielectric constant is ε2 in the region 0< x3 < ζ (x‖),
and a metal whose dielectric function is ε3, in the region x3 < 0. The surface profile function
ζ (x‖) is a non-negative, single-valued function of x‖, that is differentiable with respect to x1 and
x2, and is sensibly nonzero within a region of radius R on the metal surface x3 = 0. It therefore
defines a dielectric defect with a finite footprint on a planar metal surface. We assume that the
dielectric function ε3 is real, because the mean free path of a surface plasmon polariton on the
planar portion of the vacuum-metal interface is significantly longer than the linear dimensions
of the surface defect.

A surface plasmon polariton of frequency ω is incident on the defect from the region x1 <−R
of the plane x3 = 0, where we have a planar interface between media 1 and 3 at x3 = 0. The total
electric field in the region x3 > ζ (x‖) is the sum of the incident field and the scattered field,

E(x|ω) =
c
ω
[−iβ1(k‖)k̂‖+ k‖x̂3]Eop(k‖)exp[ik‖ ·x‖−β1(k‖)x3]

+
∫ d2q‖

(2π)2

{
c
ω
[iβ1(q‖)q̂‖−q‖x̂3]

ap(q‖)
ε3β1(q‖)+ ε1β3(q‖)

+(x̂3× q̂‖)
as(q‖)

β1(q‖)+β3(q‖)

}
exp[iq‖ · x‖−β1(q‖)x3]. (1)

In obtaining this equation a time dependence of the field of the form exp(−iωt) has been
assumed but not indicated explicitly. The two-dimensional wave vector k‖ is given by

k‖ = k‖(cosφ0,sinφ0,0), (2a)

where

k‖ =
ω

c

(
ε1ε3

ε1 + ε3

) 1
2

(2b)

is the wavenumber of the surface plasmon polariton of frequency ω at the planar interface
between vacuum (ε1) and a metal (ε3). It is the solution of the equation ε3β1(k‖)+ε1β3(k‖)= 0.
The angle φ0 is the azimuthal angle of incidence of the surface plasmon polariton, measured
counterclockwise from the positive x1 axis. The functions β j(q‖) ( j = 1,2,3) are defined by

β j(q‖) = [q2
‖− ε j(ω/c)2]

1
2 , Reβ j(q‖)> 0, Imβ j(q‖)< 0. (3)

A caret over a vector indicates that it is a unit vector. Finally, ap,s(q‖) are the amplitudes of the
p- and s-polarized components of the scattered field with respect to the local scattering plane
defined by the vectors x̂3 and q̂‖. The amplitudes ap(q‖) and as(q‖) satisfy the pair of coupled
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reduced Rayleigh equations [17]:

ap(p‖)−
ε2− ε1

2ε2β2(p‖)

∫ d2q‖
(2π)2

{
(ε2β3(p‖)+ ε3β2(p‖))

×[p‖q‖−β2(p‖)(p̂‖ · q̂‖)β1(q‖)]
J(+)(β2(p‖)−β1(q‖)|p‖−q‖)

β2(p‖)−β1(q‖)

+(ε2β3(p‖)− ε3β2(p‖))[p‖q‖+β2(p‖)(p̂‖ · q̂‖)β1(q‖)]

×
J(−)(β2(p‖)+β1(q‖)|p‖−q‖)

β2(p‖)+β1(q‖)

}
ap(q‖)

ε3β1(q‖)+ ε1β3(q‖)

− ε2− ε1

2ε2β2(p‖)

∫ d2q‖
(2π)2

{
− i

ω

c
β2(p‖)(p̂‖× q̂‖)3

×[(ε2β3(p‖)+ ε3β2(p‖))
J(+)(β2(p‖)−β1(q‖)|p‖−q‖)

β2(p‖)−β1(q‖)

−(ε2β3(p‖)− ε3β2(p‖))
J(−)(β2(p‖)+β1(q‖)|p‖−q‖)

β2(p‖)+β1(q‖)
]

×
as(q‖)

β3(q‖)+β1(q‖)

=− ε2− ε1

2ε2β2(p‖)

{
(ε2β3(p‖)+ ε3β2(p‖))[p‖k‖−β2(p‖)(p̂‖ · k̂‖)β1(k‖)]

×
J(+)(β2(p‖)−β1(k‖)|p‖−k‖)

β2(p‖)−β1(k‖)

+(ε2β3(p‖)− ε3β2(p‖))[p‖k‖+β2(p‖)(p̂‖ · k̂‖)β1(k‖)]

×
J(−)(β2(p‖)+β1(k‖)|p‖−k‖)

β2(p‖)+β1(k‖)

}
Eop(k‖) (4a)

as(p‖)−
(

ω

c

)2 ε2− ε1

2β2(p‖)

∫ d2q‖
(2π)2 i

c
ω
(p̂‖× q̂‖)β1(q‖)

×
[
(β3(p‖)+β2(p‖))

J(+)(β2(p‖)−β1(q‖)|p‖−q‖)
β2(p‖)−β1(q‖)

+(β3(p‖)−β2(p‖))
J(−)(β2(p‖)+β1(q‖)|p‖−q‖)

β2(p‖)+β1(q‖)
]

×
ap(q‖)

ε3β1(q‖)+ ε1β3(q‖)

−
(

ω

c

)2 ε2− ε1

2β2(p‖)

∫ d2q‖
(2π)2 (p̂‖ · q̂‖)

×[(β3(p‖)+β2(p‖))
J(+)(β2(p‖)−β1(q‖)|p‖−q‖)

β2(p‖)−β1(q‖)
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+(β3(p‖)−β2(p‖))
J(−)(β2(p‖)+β1(q‖)|p‖−q‖)

β2(p‖)+β1(q‖)
]

×
as(q‖)

β3(q‖)+β1(q‖)

=−
(

ω

c

)2 ε2− ε1

2β2(p‖)
i
( c

ω

)
(p̂‖× k̂‖)3β1(k‖)

×[(β3(p‖)+β2(p‖))
J(+)(β2(p‖)−β1(k‖)|p‖−k‖)

β2(p‖)−β1(k‖)

+(β3(p‖)−β2(p‖))
J(−)(β2(p‖)+β1(k‖)|p‖−k‖)

β2(p‖)+β1(k‖)
]Eop(k‖), (4b)

where

J(±)(β2(p‖)∓β1(q‖)|p‖−q‖)

=
∫

d2x‖ exp[−i(p‖−q‖) ·x‖]{exp[(±β2(p‖)−β1(q‖))ζ (x‖)]−1}. (5)

A derivation of these equations is outlined in the Appendix.
Equations (4a) and (4b) are valid for any localized surface defect whose profile function

ζ (x‖) satisfies the assumptions about it stated above. However, they simplify significantly when
ζ (x‖) is a function of x‖ only through its magnitude x‖. In this case we introduce the expansions

ap,s(p‖) =
∞

∑
k=−∞

a(p,s)
k (p‖)exp(ikφp), (6)

where φp is the azimuthal angle of the vector p‖, measured counterclockwise from the positive
x1 axis. We also have the expansions

J(+)(β2(p‖)−β1(q‖)|p‖−q‖) =
∞

∑
k=−∞

c(+)
k (p‖|q‖)exp[ik(φp−φq)] (7a)

J(−)(β2(p‖)+β1(q‖)|p‖−q‖) =
∞

∑
k=−∞

c(−)k (p‖|q‖)exp[ik(φp−φq)] (7b)

where

c(+)
k (p‖|q‖) = 2π

∞

∑
n=1

(β2(p‖)−β1(q‖))n

n!

×
∫

∞

0
dx‖x‖ζ

n(x‖)Jk(p‖x‖)Jk(q‖x‖) (8a)

c(−)k (p‖|q‖) = 2π

∞

∑
n=1

(−1)n (β2(p‖)+β1(q‖))n

n!

×
∫

∞

0
dx‖x‖ζ

n(x‖)Jk(p‖x‖)Jk(q‖x‖), (8b)

and Jk(z) is a Bessel function of the first kind and order k. The equations satisfied by the
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amplitudes {a(p,s)
k (p‖)} are

a(p)
k (p‖)−

ε2− ε1

2ε2β2(p‖)

∫
∞

0

dq‖
2π

q‖

{
ε2β3(p‖)+ ε3β2(p‖)

β2(p‖)−β1(q‖)

×[p‖q‖c
(+)
k (p‖|q‖)−

1
2

β2(p‖)β1(q‖)(c
(+)
k−1(p‖|q‖)

+c(+)
k+1(p‖|q‖))+

ε2β3(p‖)− ε3β2(p‖)
β2(p‖)+β1(q‖)

×[p‖q‖c
(−)
k (p‖|q‖)+

1
2

β2(p‖)β1(q‖)(c
(−)
k−1(p‖|q‖)

+c(−)k+1(p‖|q‖))]
}

a(p)
k (q‖)

ε3β1(q‖)+ ε1β3(q‖)

−ε2− ε1

4ε2

ω

c

∫
∞

0

dq‖
2π

q‖

{
ε2β3(p‖)+ ε3β3(p‖)

β2(p‖)−β1(q‖)

×[c(+)
k−1(p‖|q‖)− c(+)

k+1(p‖|q‖)]

−
ε2β3(p‖)− ε3β2(p‖))

β2(p‖)+β1(q‖)
[c(−)k−1(p‖|q‖)− c(−)k+1(p‖|q‖)]

}
a(s)k (q‖)

β3(q‖)+β1(q‖)

=− (ε2− ε1)

2ε2β2(p‖)

{
ε2β3(p‖)+ ε3β2(p‖)

β2(p‖)−β1(k‖)
[p‖k‖c

(+)
k (p‖|k‖)

−1
2

β2(p‖)β1(k‖)(c
(+)
k−1(p‖|k‖)+ c(+)

k+1(p‖|k‖))]

+
ε2β3(p‖)− ε3β2(p‖)

β2(p‖)+β1(k‖)
[p‖k‖c

(−)
k (p‖|k‖)

+
1
2

β2(p‖)β1(k‖)(c
(−)
k−1(p‖|k‖)+ c(−)k+1(p‖|k‖))]

}
×exp(−ikφ0)Eop(k‖). (9a)

a(s)k (p‖)+
ω

c
(ε2− ε1)

4β2(p‖)

∫
∞

0

dq‖
2π

q‖

{
β3(p‖)+β2(p‖)
β2(p‖)−β1(q‖)

×[c(+)
k−1(p‖|q‖)− c(+)

k+1(p‖|q‖)]+
β3(p‖)−β2(p‖)
β2(p‖)+β1(q‖)

×[c(−)k−1(p‖|q‖)− c(−)k+1(p‖|q‖)]
}

β1(q‖)a
(p)
k (q‖)

ε3β1(q‖)+ ε1β3(q‖)

−ω2

c2
ε2− ε1

4β2(p‖)

∫
∞

0

dq‖
(2π)

q‖

{
β3(p‖)+β2(p‖)
β2(p‖)−β1(q‖)

×[c(+)
k−1(p‖|q‖)+ c(+)

k+1(p‖|q‖)]+
β3(p‖)−β2(p‖)
β2(p‖)+β1(q‖)

×[c(−)k−1(p‖|q‖)+ c(−)k+1(p‖|q‖)]
}

a(s)k (q‖)
β3(q‖)+β1(q‖)
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=
ω

c
ε2− c1

4β2(p‖)

{
β3(p‖)+β2(p‖)
β2(p‖)−β1(k‖)

[c(+)
k−1(p‖|k‖)− c(+)

k+1(p‖|k‖)]

+
β3(p‖)−β2(p‖)
β2(p‖)+β1(k‖)

[c(−)k−1(p‖|k‖)− c(−)k+1(p‖|k‖)]
}

×β1(k‖)exp[−ikφ0]Eop(k‖). (9b)

Thus, for a circularly symmetric defect the equations for different k values decouple, reducing
the problem to one of solving one-dimensional integral equations.

Equations (9) for each value of the azimuthal integer k were solved by transforming them into
linear matrix equations following the spirit of the method used in Ref. [18]. The integration over
the wavenumber q‖ was carried out over a dimensionless variable y defined by q‖ = 2

√
y/R,

where R is the effective radius of the defect, and a dimensionless frequency Ω was introduced
through (ω/c) = 2

√
Ω/R. The integration over the wavenumber variable y was split into six

intervals: (0,Ω), (Ω,yp−δ ), (yp +δ ,2yp−Ω), (2yp−Ω,ε2Ω), (ε2Ω,KΩ), (KΩ,∞), where K
is an integer (chosen to be 7) and ε2 is the dielectric constant of the defect, plus the contribution
from the pole corresponding to the wavenumber of the surface plasmon polariton at y = yp.
This separation of the region of integration was based on the behavior of β1(q‖) and β3(q‖)
as functions of the wave numbers q‖, namely on the values of the latter variable at which they
change from purely imaginary to purely real, on the location of the surface plasmon polariton
pole, as well as on how the integration to infinite wave number was to be carried out. The inte-
gral over the range (KΩ,∞) was calculated by Gauss-Laguerre integration, while the integrals
over the preceding five intervals were calculated by Gauss-Legendre integration. The number of
discretization points in each interval was determined by evaluating the integrals over q‖ on the
left-hand sides of Eqs. (9a) and (9b), with the expressions for ap,s

k (q‖) (with k = 1) appearing
in the integrands given by the right-hand sides of these equations, by two different methods. In
one method the integral over each interval was evaluated by an integration software package
(Mathematica, that uses a method with iteration until it attains a specified accuracy). In the
second method a Gaussian integration scheme was used, with the number of abscissas being in-
creased until the same accuracy was achieved. In both of these methods the integrand is known
analytically, but the discretization used by them is different. The total number of abscissas used
in carrying out the q‖ integrations in the region (0,∞) produced by this approach was 180. The
contribution from the surface plasmon polariton pole, i.e. from the interval (yp− δ ,yp + δ ),
was calculated by the use of the prescription presented in Ref. [11], namely

1
fp(q‖)

= P
(

1
fp(q‖)

)
+ iπ

ε1β3(k‖)

(ε2
1 − ε2

3 )k‖
δ (q‖− k‖), (10a)

where

fp(q‖)≡ ε3β1(q‖)+ ε1β3(q‖), (10b)

P denotes the Cauchy principal part, ε(ω) = ε3 is the dielectric function of the metal, and k‖ is
the zero of fp(q‖). Finally, in carrying out these calculations we set the amplitude Eop(k‖) =
1/(2πR).

When ap,s(q‖) have been determined we can use the results to calculate the scattered field in
the vacuum region in the far zone by the use of the method described in Ref. [19]. The result
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has the form of an outgoing spherical wave

E(sc)
vac (x|ω) = =−i

√
ε1

ω cosθx

2πc
ei
√

ε1(ω/c)x

x

×[
√

ε1êpAp(
√

ε1x̂‖
(

ω

c

)
sinθx)

+êsAs(
√

e1x̂‖
(

ω

c

)
sinθx)],

√
ε1(ω/c)x� 1. (11)

In this expression êp and ês are unit vectors defined by

êp = (cosθx cosφx,cosθx sinφx,−sinθx) (12a)
ês = (−sinφx,cosφx,0), (12b)

with

cosθx =
x3

x
, sinθx =

x‖
x

(13a)

cosφx =
x1

x‖
, sinφx =

x2

x‖
, (13b)

where (θx,φx) are the polar and azimuthal angles of the vector x̂, while

Ap(q‖) =
ap(q‖)

ε3β1(q‖)+ ε1β3(q‖)
(14a)

As(q‖) =
as(q‖)

β1(q‖)+β3(q‖)
. (14b)

The surface plasmon polariton contribution to the scattered field is given by the residue at
the pole of the integrand in Eq. (1) at q‖ = k‖. It is given by an outgoing cylindrical wave

E(sc)
spp (x|ω) = −i

eik‖x‖−β1(k‖)x3−i π
4

(2πk‖x‖)
1
2

×
cε1β3(k‖)

ω

ix̂‖β1(k‖)− x̂3k‖
ε2

3 − ε2
1

ap(x̂‖k‖), k‖x‖� 1. (15)

We introduce the differential cross sections, measured in units of length, for scattering into
the vacuum and into other surface waves by

σvac(θx,φx) =
Pvac(θx,φx)

Pinc
(16)

σspp(φx) =
Pspp(φx)

Pinc
, (17)

where Pvac(θx,φx) is the power scattered into the vacuum away from the surface in the direction
x̂,Pspp(φx) is the power scattered into other surface waves in the direction x̂‖, and Pinc is the
incident power per unit length in the x2 direction. These powers are given by

Pvac(θx,φx) =
c

8π
ε1

(
ω

2πc

)2
cos2

θx

×{ε1|Ap(
√

ε1x̂‖
(

ω

c

)
sinθx)|2

+|As(
√

ε1x̂‖
(

ω

c

)
sinθx)|2} (18)
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Pspp(φx) =
1
2

ε
3
1

( c
4π

)2 β 2
3 (k‖)

ωβ1(k‖)
|ap(x̂‖k‖)|2

(ε2
3 − ε2

1 )
2 (19)

Pinc = ε1
c2

8πω

k‖
2β1(k‖)

(
1− 1

ε2
3 (ω)

)
|Eop(k‖)|2. (20)

In what follows we will neglect the second term on the right-hand side of Eq. (20) due to its
smallness relative to the first term.

We present numerical results for a dielectric defect of Gaussian form defined by the surface
profile function

ζ (x‖) = Aexp(−x2
‖/R2), (21)

In this case the coefficients c(±)k (p‖|q‖) are given by

c(±)k (p‖|q‖) = πR2
∞

∑
n=1

[±A(β2(p‖)∓β1(q‖))]n

n ·n!

×Ik

(
R2 p‖q‖

2n

)
exp
[−R2(p2

‖+q2
‖)

4n

]
, (22)

where Ik(z) is a modified Bessel function of the first kind of order k. The Gaussian defect is
characterized by a 1/e half width R = 0.25µm. It is assumed to be deposited on a planar alu-
minum surface. It is illuminated by a surface plasmon polariton propagating in the positive
x1 direction (φ0 = 0◦). The wavelength of the incident surface plasmon polariton is λ =632.8
nm, and the dielectric function of aluminum at this wavelength is ε3 = εr

3(ω)+ iε i
3(ω) = −

57.19 +i11.19 [20] of which we used only the real part. The energy mean free path of
the surface plasmon polariton at a planar vacuum-aluminum interface at this wavelength is
`spp(ω) = (λ/2π)|εr

3(ω)| 12 (|εr
3(ω)| − ε1)

3/2/[ε
3/2
1 ε i

3(ω)] = 28.67µm. This is more than two
orders of magnitude longer than the 0.25µm radius of the surface defect, and justifies our treat-
ing ε3 as real. In these calculations the rotational quantum k ranged in integer setps from −30
to +30.

In Fig. 1 we present a contour plot of σvac(θx,φx) for a value of the dielectric constant of the
defect ε2 = 2.69 and (a) A/R = 0.1, (b) A/R = 0.2, (c) A/R = 0.3. For each of these values of
A/R the maximum of the intensity of the field radiated into the vacuum occurs at θx = 70◦, φx =
0◦. More radiation into smaller values of θx with increasing values of A/R is seen, especially
in Fig. 1(c). The total cross sections for the waves radiated into the vacuum are (a) 0.0021µm,
(b) 0.0057µm, (c) 0.0099 µm respectively. Thus they increase as the amplitude of the defect
increases, with the values of the other parameters kept fixed.

When the dielectric constant of the defect is increased to ε2 = 5.0, with the remaining param-
eters maintaining the values they have in Fig. 1 (Fig. 2), the maximum of the intensity of the
field scattered into the vacuum remains at θx = 70◦,φx = 0◦, but the strength of the scattering
is nearly doubled in comparison with the corresponding results presented in connection with
Fig. 1. The total cross sections for the waves radiated into the vacuum are (a) 0.0040µm, (b)
0.0125µm, (c) 0.0290µm. Some radiation into the backward directions is seen in Fig. 2(c).

The angular dependence of σspp(φx) is presented in Fig. 3. The dielectric constant of the
defect is ε2 = 2.69, and (a) A/R = 0.1, (b) A/R = 0.2, (c) A/R = 0.3. We see that there is no
scattering of the surface plasmon polariton into the backward direction for all three values of
A/R: all of the scattering is into the forward direction. These results are due presumably to the
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Fig. 1. A contour plot of σvac(θx,φx). The concentric dashed circles are the lines of constant
θx, with θx = 0◦ at the center, and θx = 90◦ at the boundary. The azimuthal angle φx varies
from 0◦ to 360◦. ε2 = 2.69;A/R = 0.1 (a), 0.2 (b), 0.3 (c).

transparency of the dielectric defect. The shapes of these scattering patterns do not change with
increasing values of A/R, but the strength of the scattering does. The total cross sections for the
scattering of the incident surface plasmon polariton into other surface plasmon polaritons are
(a) 0.0019 µm, (b) 0.0053 µm, (c) 0.0087 µm. These values are nearly the same as the values
of σvac(θx,φx) for the corresponding parameter values in Fig. 3.

The same qualitative behavior of σspp(φx) is observed when ε2 is increased to ε2 = 5.0.
This is seen from the results presented in Fig. 4. The values of A/R for which these results are
calculated are (a) A/R= 0.1, (b) A/R= 0.2, (c) A/R= 0.3. All of the scattering is in the forward
direction. The shapes of the scattering patterns do not change as the value of A/R increases,
while the strength of the scattering increases with increasing values of A/R. The total cross
sections for the scattering of the incident surface plasmon polariton into other surface plasmon
polaritons are (a) 0.0035µm, (b) 0.0100µm, (c) 0.0176µm. For each value of A/R increasing
ε2 from 2.69 to 5.0 nearly doubles the total scattering cross section from the value it has for the
data used in obtaining the corresponding results in connection with Fig. 3.

The forward scattering of the surface plasmon polariton is clearly seen in the results presented
in Figs. 5 and 6 which show the field intensity |E(x|ω)|2 as a function of x‖ at 5 nm above the
surface profile (x3 = ζ (x‖)+ 5nm), for ε2 = 2.69 and 5.0, respectively, while (a) A/R = 0.1,
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Fig. 2. The same as Fig. 1, but with ε2 = 5.0.

(b) A/R = 0.2, (c) A/R = 0.3. Both figures show a weak diffractive spreading of the intensity
of the field after its interaction with the defect. There is very little indication of the scattering of
the surface plasmon polariton in backward directions, in agreement with the results presented
in Figs. 1-2 and 3-4.

The present results qualitatively resemble analogous results obtained in Ref. [14], bearing in
mind that in that reference the surface profile functions of the dielectric surface defects were an
anisotropic Gaussian and an anisotropic hemiellipsoid.

The preceding results can be understood if in Eqs. (18) and (19) we substitutee for ap(q‖)
and as(q‖) the expressions for them obtained in the small roughness limit of the first Born
approximation, namely

ap(q‖) = −ε2− ε1

ε2
ζ̂ (q‖−k‖)[ε3q‖k‖− ε2β3(q‖)(q̂‖ · k̂‖)β1(k‖)]E0p(k‖) (23a)

as(q‖) = −i(ε2− ε1)ζ̂ (q‖−k‖)
ω

c
(q̂‖× k̂‖)3β1(k‖)E0 p(k‖), (23b)

where

ζ̂ (Q‖) =
∫

d2x‖ζ (x‖)exp(−iQ‖ ·x‖)

= πAR2 exp(−R2Q2
‖/4). (24)
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Fig. 3. Plots of σspp(φx). ε2 = 2.69;A/R = 0.1 (a), 0.2 (b), 0.3 (c).

The second of Eqs. (24) gives the expression for ζ̂ (Q‖) corresponding to the Gaussian surface
profile function (21).

On substituting Eqs. (23) into Eq. (18) and making use of Eqs. (16) and (20) we obtain
σvac(θx,φx) in the form

σvac(θx,φx) =
1
2

R
(

A
R

)2(
ωR
c

)5
ε

5/2
1

ε2
2 |ε3|

1
2

(ε2− ε1)
2

(ε2
3 − ε2

1 )
cos2

θx

×exp[−R2

2
(k2
‖−2
√

ε1
ω

c
k‖ sinθx cosφx + ε1

ω2

c2 sin2
θx)]

×a0(θx)+a1(θx)cosφx +a2(θx)cos2 φx

[|ε3|− (|ε3|− ε1)sin2
θx]

, (25)

where

a0(θx) = ε
2
2 |ε3|cos2

θx +(|ε3|3 + ε
2
2 ε1)sin2

θx (26a)

a1(θx) = 2ε2|ε3|3/2 sinθx(|ε3|+ ε1 sin2
θx)

1
2 (26b)

a2(θx) = ε
2
2 |ε3|sin2

θx. (26c)
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Fig. 4. The same as Fig. 3, but with ε2 = 5.0.

This cross section is proportional to the square of the aspect ratio (A/R) of the defect. It is an
increasing function of ε2, and has a maximum at (θx,φx) = (70.75◦,0◦) for the values of the
parameters assumed in obtaining Fig. 1, and at (70.5,0◦) for the values assumed in obtaining
Fig. 2. The insensitivity of these angles to changes of ε2, and their closeness to the angular
position of the maximum in these figures, namely (70◦,0◦), is gratifying, given the simplicity
of this approximate calculation.

When Eq. (23a) is substituted in Eq. (19), and Eqs. (17) and (20) are used, we obtain σspp(φx)
in the form

σspp(θx) =
π

2
R
(

A
R

)(
ωR
c

)5 |ε3|7/2ε
7/2
1

ε2
2

(ε2− ε1)
2

(|ε2|− ε1)9/2(|ε2|+ ε1)2

×exp(−2R2k2
‖ sin2 1

2
φx)(|ε3|+ ε2 cosφx)

2. (27)

Although the factor (|ε3|+ ε2 cosφx)
2 favors scattering into the forward direction by a small

amount, because of the large value of |ε3|, the suppression of scattering into backward directions
is due entirely to the factor exp(−2R2k2

‖ sin2 1
2 φx), which is a consequence of the Gaussian form

of ζ̂ (Q‖), Eq. (24). The cross section (27) is proportional to the square of the defects aspect
ratio, and is an increasing function of ε2.
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Fig. 5. The field intensity |E(x|ω)|2 as a function of x‖ at x3 = ζ (x‖)+5 nm. ε2 = 2.69;A/R
= 0.1 (a), 0.2 (b), 0.3 (c).

The proportionality of the cross sections (25) and (27) to ω5 can be understood in the
following way. The cross section for the Rayleigh scattering of a volume wave from a d-
dimensional object is proportional to ωd+1. Since the scatterer in the present case is defined
by x3−ζ (x‖) = 0, it is a three-dimensional scatterer as far as Rayleigh scattering is concerned.
The additional factor of ω arises because the decay length of the surface plasmon polariton into
the vacuum is proportional to its wavelength parallel to the surface, which reduces the volume
within which its interaction with the defect occurs [21].

In this paper we have derived a pair of coupled two-dimensional integral equations – reduced
Rayleigh equations – for the amplitudes of the p- and s-polarized components of the scattered
elsctric field produced when a surface plasmon polariton is incident on a localized dielectric
surface defect on a planar metal surface. When the defect is circularly symmetric with respect
to the normal to the surface a rotational expansion of these scattering amplitudes transforms the
reduced Rayleigh equations into an infinite set of uncoupled one-dimensional integral equations
that have been solved numerically. We have applied this approach to calculate the near-field and
far-field angular distributions of the intensity of the field scattered by a dielectric defect in the
form of an isotropic Gaussian on a metal surface for two values of its dielectric constant, and
three values of its aspect ratio. It is found that the intensity of the volume electromagnetic field
scattered into the vacuum above the surface and defect is a maximum for in-plane scattering at a
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Fig. 6. The same as Fig. 5, but with ε2 = 5.0.

polar scattering angle of θx = 70◦. This value is independent of the aspect ratios and dielectric
constants of the defect assumed in our work. It is a significantly larger angle than the angle
θx = 28◦ at which the corresponding maxima occurs in the scattering of a surface plasmon
polariton from a circularly symmetric Gaussian indentation (dimple) in a planar metal surface
[11]. This result suggests that the excitation of a surface plasma polariton by illuminating this
dielectric defect by a p-polarized volume electromagnetic wave will be most efficient for a polar
angle of incidence θ0 = 70◦ [22]. It is also found that the surface plasmon polariton is scattered
into other surface plasmon polaritons primarily in the forward direction. There is no shadow
behind the defect as in the case of the scattering of a surface plasmon polariton from a circularly
symmetric indentation in a metal surface [11]. This is due presumably to the transparency of
the dielectric defect. Thus there are significant differences between the cross section for the
scattering of a surface plasmon polariton from a metallic defect on a metallic surface and for
its scattering from a dielectric defect on a metallic surface.

The approach developed here can also be applied to dielectric surface defects that are not
circularly symmetric. In this case a rotational expansion of the scattering amplitudes produces
a set of one-dimensional integral equations that, unlike Eqs. (9), are coupled for different values
of the rotational quantum number k [14].
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APPENDIX

In this Appendix we outline the derivation of Eqs. (4). We begin by considering the scattering of
a volume electromagnetic wave incident from a dielectric medium in the region x3 > d+ζ (x‖),
where x‖ = (x1,x2,0), whose dielectric constant is ε1, on a dielectric film in the region 0 <
x3 < d+ζ (x‖) whose dielectric constant is ε2, that is deposited on a semi-infinite metal whose
dielectric constant is ε3 in the region x3 < 0. The electric fields in these regions are given by

E>(x|ω) = E0(k‖)exp(iQ0 ·x)+
∫ d2q‖

(2π)2 A(q‖)exp(iQ1 ·x) (A.1)

for x3 > d +ζ (x‖),

E( f )(x|ω) =
∫ d2q‖

(2π)2 [F
+(q‖)exp(iQ+ ·x)+F−(q‖)exp(iQ− ·x)] (A.2)

for 0 < x3 < d +ζ (x‖), and

E<(x|ω) =
∫ d2q‖

(2π)2 B(q‖)exp(iQ2 ·x) (A.3)

for x3 < 0. In these equations we have introduced the wave vectors

Q0(k‖) = k‖−α1(k‖)x̂3 (A.4a)
Q1(q‖) = q‖+α1(q‖)x̂3 (A.4b)

Q±(q‖) = q‖±α2(q‖)x̂3 (A.4c)
Q2(q‖) = q‖−α3(q‖)x̂3, (A.4d)

where ( j = 1,2,3)

α j(q‖) = [ε j(ω/c)2−q2
‖]

1
2 Reα j(q‖)> 0, Imα j(q‖)> 0. (A.5)

The boundary conditions on the fields at the interface x3 = d +ζ (x‖) can be written

n×E>(x|ω) = n×E( f )(x|ω) (A.6)

n× (∇×E>(x|ω)) = n× (∇×E( f )(x|ω))) (A.7)

ε1n ·E>(x|ω) = ε2n ·E( f )(x|ω), (A.8)

where

n =

(
−

∂ζ (x‖)
∂x1

,−
∂ζ (x‖)

∂x2
,1
)
. (A.9)

We now take the vector cross product of Eq. (A.6) with ε2P+(p‖)exp[−iP+(p‖) ·xζ ]; we then
take the product of Eq. (A.7) with −iε2 exp[−iP+(p‖) · xζ ]; and we finally multiply Eq. (A.7)
by−P+(p‖)exp[−iP+(p‖) ·xζ ]. In these expressions we have introduced the vectors P+(p‖) =
p‖+α2(p‖)x̂3, where p‖ is an arbitrary two-dimensional wave vector, and xζ = x‖+ζ (x‖)x̂3.
We add the three equations obtained in this manner and integrate the sum over x‖. In this way
we obtain the equation

(ε2− ε1)e
−iα1(k‖)d

I(α2(p‖)+α1(k‖)|p‖−k‖)
α2(p‖)+α1(k‖)

[P+(p‖)× (P+
‖ (p‖)×E0(k‖))]

+(ε2− ε1)
∫ d2q‖

(2π)2 eiα1(q‖)d
I(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)
[P+(p‖)× (P+(p‖)×A(q‖))]

=−2ε2α2(p‖)e
iα2(p‖)dF+(p‖), (A.10)
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where

I(γ|Q‖) =
∫

d2x‖e
−iQ‖·x‖e−iγζ (x‖). (A.11)

We now return to Eqs. (A.6)-(A.8). We take the vector cross product of Eq. (A.6) with
ε2P−(p‖)exp[−iP−(p‖) · xζ ]; we next multiply Eq. (A.7) by −iε2 exp[−iP−(p‖) · xζ ]; and we
finally multiply Eq. (A.8) by −P−(p‖)exp[−iP−(p‖) ·xζ ]. Here, the vector P−(p‖) is defined
by P−(p‖) = p‖−α2(p‖)x̂3. We add the resulting three equations and integrate the sum over
x‖ to obtain

−(ε2− ε1)e
−iα1(k‖)d

I(−(α2(p‖)−α1(k‖))|p‖−k‖|)
α2(p‖)−α1(k‖)

[P−(p‖)× (P−(p‖)×E0(k‖))]

−(ε2− ε1)
∫ d2q‖

(2π)2 eiα1(q‖)d
I(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)
[P−(p‖)× (P−(p‖)×A(q‖))]

= 2ε2α2(p‖)e
−iα2(p‖)dF−(p‖). (A.12)

We now turn to the boundary conditions at x3 = 0, which can be written

x̂3×E( f )(x|ω) = x̂3×E<(x|ω)) (A.13)

x̂3× (∇×E( f )(x|ω)) = x̂3× (∇×E<(x|ω)) (A.14)

ε2x̂3 ·E( f )(x|ω) = ε3x̂3 ·E<(x|ω). (A.15)

These three equations yield three equations for the Fourier amplitudes F+(q‖),F−(q‖),B(q‖),
namely

x̂3×F+(q‖)+ x̂3×F−(q‖) = x̂3×B(q‖) (A.16)

ix̂3× [Q+(q‖)×F+(q‖)]+ ix̂3× [Q−(q‖)×F−(q‖)] = ix̂3× [Q2(q‖)×B(q‖)] (A.17)

ε2x̂3 · [F+(q‖)+F−(q‖)] = ε3x̂3 ·B(q‖). (A.18)

We eliminate B(q‖) from these equations and obtain the pair of equations

dp(q‖)[q‖ ·F+(q‖)]−∆p(q‖)[q‖ ·F−(q‖)] = 0 (A.19)

ds(q‖)[x̂3 · (q‖×F+(q‖))]+∆s(q‖)[x̂3 · (q‖×F−(q‖))] = 0, (A.20)

where

dp(q‖) = ε2α3(q‖)+ ε3α2(q‖) (A.21a)
∆p(q‖) = ε2α3(q‖)− ε3α2(q‖) (A.21b)
ds(q‖) = α3(q‖)+α2(q‖) (A.21c)
∆s(q‖) = α3(q‖)−α2(q‖). (A.21d)
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When we substitute the expressions for F+(q‖) and F−(q‖) obtained from Eqs. (A.10) and
(A.12), respectively, into Eqs. (A.19) and (A.20) we obtain the pair of equations for A(q‖)

p‖ ·
{

dp(p‖)e
−i[α2(p‖)+α1(k‖)]d [P+(p‖)× (P+(p‖)×E0(k‖))]

×
I(α2(p‖)+α1(k‖)|p‖−k‖)

α2(p‖)+α1(k‖)
−∆p(p‖)e

i[α2(p‖)−α1(k‖)]d

×[P−(p‖)× (P−(p‖)×E0(k‖))]
I(−(α2(p‖)−α1(k‖))|p‖−k‖)

α2(p‖)−α1(k‖)

}
+p‖ ·

∫ d2q‖
(2π)2

{
dp(p‖)e

−i[α2(p‖)−α1(q‖)]d [P+(p‖)× (P+(p‖)×A(q‖))]

×
I(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)
−∆p(p‖)e

i[α2(p‖)+α1(q‖)]d

×[P−(p‖)× (P−(p‖)×A(q‖))]
I(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)

}
= 0. (A.22)

x̂3 ·p‖×
{

ds(p‖)e
−i[α2(p‖)+α1(k‖)]d [P+(p‖)× (P+(p‖)×E0(k‖))]

×
I(α2(p‖)+α1(k‖)|p‖−k‖)

α2(p‖)+α1(k‖)
]+∆s(p‖)e

i[α2(p‖)−α1(k‖)]d

×[P−(p‖)× (P−(p‖)×E0(k‖))]
I(−(α2(p‖)−α1(k‖))|p‖−k‖)

α2(p‖)−α1(k‖)

}
+x̂3 ·p‖×

∫ d2q‖
(2π)2

{
ds(p‖)e

−i[α2(p‖)−α1(q‖)]d

×[P+(p‖)× (P+(p‖)×A(q‖))]
I(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)

+∆s(p‖)e
i[α2(p‖)+α1(q‖)]d [P−(p‖)× (P−(p‖)×A(q‖))]

×
I(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)

}
= 0. (A.23)

We now write the amplitude vectors E0(k‖) and A(q‖) in the forms

E0(k‖) =
c
ω
[α1(k‖)k̂‖+ k‖x̂3]Eop(k‖)+(x̂3× k̂‖)E0s(k‖) (A.24)

A(q‖) =
c
ω
[α1(q‖)q̂‖−q‖x̂3]Ap(q‖)+(x̂3× q̂‖)As(q‖). (A.25)

The coefficients E0p,s(k‖) and Ap,s(q‖) are the amplitudes of the p- and s-polarized compo-
nents of the incident and scattered fields with respect to the planes of incidence and scattering,
respectively. The substitution of these representations into Eqs. (A.22) and (A.23) yields a pair
of equations for Ap(q‖) and As(q‖), which we write as∫ d2q‖

(2π)2 [Mpp(p‖|q‖)Ap(q‖)+Mps(p‖|q‖)As(q‖)]

=−[Npp(p‖|k‖)E0p(k‖)+Nps(p‖|k‖)E0s(k‖)] (A.26)
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∫ d2q‖
(2π)2 [Msp(p‖|q‖)Ap(q‖)+Mss(p‖|q‖)As(q‖)]

=−[Nsp(p‖|k‖)E0p(k‖)+Nss(p‖|k‖)E0s(k‖)], (A.27)

where

Mpp(p‖|q‖) = dp(p‖)e
−i[α2(p‖)−α1(q‖)]d

×[α2(p‖)(p̂‖ · q̂‖)α1(q‖)+ p‖q‖]
I(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)

−∆p(p‖)e
i[α2(p‖)+α1(q‖)]d

×[α2(p‖)(p̂‖ · q̂‖)α1(q‖)− p‖q‖]
I(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)
(A.28a)

Mps(p‖|q‖) = −ω

c
α2(p‖)(p̂‖× q̂‖)3

×
{

dp(p‖)e
−i[α2(p‖)−α2(q‖)]d

I(α2(p‖)−α1(q‖)|p‖−q‖)
α2(p‖)−α1(q‖)

−∆p(p‖)e
i[α2(p‖)+α1(q‖)]d

I(−(α2(p‖)+α1(q‖))|p‖−q‖)
α2(p‖)+α1(q‖)

}
(A.28b)

Msp(p‖|q‖) =
c
ω

α1(q‖)(p̂‖× q̂‖)3

×
{

ds(p‖)e
−i[α2(p‖)−α1(q‖)]d

I(α2(p‖)−α1(q‖)|p‖−q‖)
α2(p‖)−α1(q‖)

+∆s(p‖)e
i[α2(p‖)+α1(q‖)]d

I(−(α2(p‖)+α1(q‖))|p‖−q‖)
α2(p‖)+α1(q‖)

}
(A.28c)

Mss(p‖|q‖) = (p̂‖ · q̂‖)

×
{

ds(p‖)e
−i[α2(p‖)−α1(q‖)]d

I(α2(p‖)−α1(q‖)|p‖−q‖)
α2(p‖)−α1(q‖)

+∆s(p‖)e
i[α2(p‖)+α1(q‖)]d

I(−(α2(p‖)+α1(q‖))|p‖−q‖)
α2(p‖)+α1(q‖)

}
(A.28d)

Npp(p‖|k‖) = dp(p‖)e
−i[α2(p‖)+α1(k‖)]d

×[α2(p‖)(p̂‖ · k̂‖)α1(k‖)− p‖k‖]
I(α2(p‖)+α1(k‖)|p‖−k‖)

α2(p‖)+α1(k‖)

−∆p(p‖)e
i[α2(p‖)−α1(k‖)]d

×[α2(p‖)(p̂‖ · k̂‖)α1(k‖)+ p‖k‖]
I(−(α2(p‖)−α1(k‖))|p‖−k‖)

α2(p‖)−α1(k‖)
(A.29a)
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Nps(p‖|k‖) = −ω

c
α2(p‖)(p̂‖× k̂‖)3

×
{

dp(p‖)e
−i[α2(p‖)+α1(k‖)]d

I(α2(p‖)+α1(k‖)|p‖−k‖)
α2(p‖)+α1(k‖)

−∆p(p‖)e
i[α2(p‖)−α1(k‖)]d

I(−(α2(p‖)−α1(k‖))|p‖−k‖)
α2(p‖)−α1(k‖)

}
(A.29b)

Nsp(p‖|k‖) =
c
ω

α1(k‖)(p̂‖× k̂‖)3

×
{

ds(p‖)e
−i[α2(p‖)+α1(k‖)]d

I(α2(p‖)+α1(k‖)|p‖−k‖)
α2(p‖)+α1(k‖)

+∆s(p‖)e
i[α2(p‖)−α1(k‖)]d

I(−(α2(p‖)−α1(k‖))|p‖−k‖)
α2(p‖)−α1(k‖)

(A.29c)

Nss(p‖|k‖) = (p̂‖ · k̂‖)
{

ds(p‖)e
−i[α2(p‖)+α1(k‖)]d

I(α2(p‖)+α1(k‖)|p‖−k‖)
α2(p‖)+α1(k‖)

+∆s(p‖)e
i[α2(p‖)−α1(k‖)]d

I(−(α2(p‖)−α1(k‖))|p‖−k‖)
α2(p‖)−α1(k‖)

}
. (A.29d)

These equations are the basis for the calculations reported in Ref. [16].
To transform them into equations describing the scattering of a surface plasmon polariton

from a localized dielectric defect on a planar metallic surface we first set d = 0 and restrict
ζ (x‖) to be a non-negative function of x‖. We also set E0s(k‖)≡ 0 because the incident field is
p polarized, and then rewrite I(γ|Q‖) as

I(γ|Q‖) = (2π)2
δ (Q‖)+ J(γ|Q‖), (A.30a)

where

J(γ|Q‖) =
∫

d2x‖e
−iQ‖·x‖(e−iγζ (x‖)−1). (A.30b)

The relevant elements of the matrices M(p‖|q‖) and N(p‖|k‖) then become

Mpp(p‖|q‖) = (2π)2
δ (p‖−q‖)

2ε2α2(p‖)
ε2− ε1

[ε1α3(p‖)+ ε3α1(p‖)]+ M̃pp(p‖|q‖)

(A.31a)
Mps(p‖|q‖) = M̃ps(p‖|q‖) (A.31b)

Msp(p‖|q‖) = M̃sp(p‖|q‖) (A.31c)

Mss(p‖|q‖) = (2π)2
δ (p‖−q‖)

c2

ω2

2α2(p‖)
ε2− ε1

[α3(p‖)+α1(p‖)]+ M̃ss(p‖|q‖) (A.31d)

Npp(p‖|k‖) = (2π)2
δ (p‖−k‖)

2ε2α2(k‖)
ε2− ε1

[ε3α1(k‖)− ε1α3(k‖)]+ Ñpp(p‖|k‖)

(A.32a)
Nsp(p‖|k‖) = Ñsp(p‖|k‖), (A.32b)
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where

M̃pp(p‖|q‖) = dp(p‖)[α2(p‖)(p̂‖ · q̂‖)α1(q‖)+ p‖q‖]

×
J(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)

−∆p(p‖)[α2(p‖)(p̂‖ · q̂‖)α1(q‖)− p‖q‖]

×
J(−(α2(p‖)+α1(q‖))|p‖−k‖)

α2(p‖)+α1(q‖)
(A.33a)

M̃ps(p‖|q‖) = −ω

c
α2(p‖)(p̂‖× q̂‖)3

×
{

dp(p‖)
J(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)

−∆p(p‖)
J(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)

}
(A.33b)

M̃sp(p‖|q‖) =
c
ω
(p̂‖× q̂‖)3α1(q‖)

×
{

ds(p‖)
J(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)

+∆s(p‖)
J(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)

}
(A.33c)

M̃ss(p‖|q‖) = (p̂‖ · q̂‖)
{

ds(p‖)
J(α2(p‖)−α1(q‖)|p‖−q‖)

α2(p‖)−α1(q‖)

+∆s(p‖)
J(−(α2(p‖)+α1(q‖))|p‖−q‖)

α2(p‖)+α1(q‖)

}
(A.33d)

Ñpp(p‖|k‖) = dp(p‖)[α2(p‖)(p̂‖ · k̂‖)α1(k‖)− p‖k‖]

×
J(α2(p‖)+α1(k‖)|p‖−k‖)

α2(p‖)+α1(k‖)

−∆p(p‖)[α2(p‖)(p̂‖ · k̂‖)α1(k‖)+ p‖k‖]

×
J(−(α2(p‖)−α1(k‖))|p‖−k‖)

α2(p‖)−α1(k‖)
(A.34a)

Ñsp(p‖|k‖) =
c
ω
(p̂‖× k̂‖)3α1(k‖)

×
{

ds(p‖)
J(α2(p‖)+α1(k‖)|p‖−k‖)

α2(p‖)+α1(k‖)

+∆s(p‖)
J(−(α2(p‖)−α1(k‖))|p‖−k‖)

α2(p‖)−α1(k‖)

}
. (A.34b)

#185132 - $15.00 USD Received 11 Feb 2013; revised 26 Mar 2013; accepted 2 Apr 2013; published 12 Apr 2013
(C) 2013 OSA 22 April 2013 | Vol. 21,  No. 8 | DOI:10.1364/OE.21.009734 | OPTICS EXPRESS  9754



Equations (A.26) and (A.27) now become

[ε1α3(p‖)+ ε3α1(p‖)]Ap(p‖)

+
ε2− ε1

2ε2α2(p‖)

∫ d2q‖
(2π)2 [M̃pp(p‖|q‖)Ap(q‖)+ M̃ps(p‖|q‖)As(q‖)]

=−
{
(2π)2

δ (p‖−k‖)[ε3α1(k‖)− ε1α3(k‖)]+
ε2− ε1

2ε2α2(p‖)
Ñpp(p‖|k‖)

}
E0p(k‖)

(A.35)

[α3(p‖)+α1(p‖)]As(p‖)

+
ω2

c2
ε2− ε1

2α2(p‖)

∫ d2q‖
(2π)2 [M̃sp(p‖|q‖)Ap(q‖)+ M̃ss(p‖|q‖)As(q‖)]

=−ω2

c2
ε2− ε1

2α2(p‖)
Ñsp(p‖|k‖)E0p(k‖). (A.36)

We now make use of the analytic continuations

α1(k‖) = −iβ1(k‖) (A.37a)
α1(q‖) = iβ1(q‖) (A.37b)
α2(q‖) = iβ2(q‖) (A.37c)
α3(q‖) = iβ3(q‖), (A.37d)

where

β j(q‖) = [q2
‖− ε j(ω/c)2]

1
2 , Reβ j(q‖)> 0, Imβ j(q‖)< 0. (A.38)

With the definitions

J(i(β2(p‖)−β1(q‖))|p‖−q‖)

=
∫

d2x‖e
−i(p‖−q‖)·x‖(e(β2(p‖)−β1(q‖))ζ (x‖)−1)

= J(+)(β2(p‖)−β1(q‖)|p‖−q‖) (A.39a)

J(−i(β2(p‖)+β1(q‖))|p‖−q‖)

=
∫

d2x‖e
−i(p‖−q‖)·x‖(e−(β2(p‖)+β1(q‖))ζ (x‖)−1)

= J(−)(β2(p‖)+β1(q‖)|p‖−q‖) (A.39b)

and

Ap(q‖) =
ap(q‖)

ε3β1(q‖)+ ε1β3(q‖)
(A.40a)

As(q‖) =
as(q‖)

β1(q‖)+β3(q‖)
, (A.40b)

the substitution of Eqs. (A.37)-(A.40) into Eqs. (A.35) and (A.36) yields Eqs. (4). We have
used the result that ε3β1(k‖)+ε1β3(k‖) = 0. This is the dispersion relation for surface plasmon
polaritons at a planar vacuum (ε1)-metal (ε3) interface.
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