
Contents lists available at ScienceDirect
Information Systems

Information Systems 45 (2014) 37–47
0306-43
http://d

n Corr
E-m

(J.M. Ba
skopal@

1 Th
PAI-781

2 Th
3 Th

Founda
journal homepage: www.elsevier.com/locate/infosys
Analyzing and dynamically indexing the query set

Juan Manuel Barrios a,b,n,1, Benjamin Bustos b,2, Tomáš Skopal c,3

a ORAND S.A., Chile
b PRISMA, Department of Computer Science, University of Chile, Chile
c SIRET Research Group, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
a r t i c l e i n f o

Available online 13 June 2013

Keywords:
Similarity search
Metric indexing
Multimedia information retrieval
Content-based multimedia retrieval
79/$ - see front matter & 2013 Elsevier Ltd.
x.doi.org/10.1016/j.is.2013.05.010

esponding author at: ORAND S.A. Tel.: +56
ail addresses: juan.barrios@orand.cl, jbarrios
rrios), bebustos@dcc.uchile.cl (B. Bustos),
ksi.mff.cuni.cz (T. Skopal).
is research has been supported by CONICYT
20426.
is research has been supported by FONDEF
is research has been supported in part
tion project GA CR 202/11/0968.
a b s t r a c t

Most of the current metric indexes focus on indexing the collection of reference. In this
work we study the problem of indexing the query set by exploiting some property that
query objects may have. Thereafter, we present the Snake Table, which is an index
structure designed for supporting streams of k-NN searches within a content-based
similarity search framework. The index is created and updated in the online phase while
resolving the queries, thus it does not need a preprocessing step. This index is intended to
be used when the stream of query objects fits a snake distribution, that is, when the
distance between two consecutive query objects is small. In particular, this kind of
distribution is present in content-based video retrieval systems, image classification based
on local descriptors, rotation-invariant shape matching, and others. We show that the
Snake Table improves the efficiency of k-NN searches in these systems, avoiding the
building of a static index in the offline phase.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the metric approach for similarity search, the most
common search methods require an example object as
query. As result, the search system returns the similar
objects to the query. For example, in a k-NN query, the
search returns the k closest objects to the query in the data
collection. For improving the efficiency of the search, the
standard approach is to preprocess the data collection
for building a metric access method. While the preproces-
sing cost for building the index may be high, this cost
is amortized during the processing of the queries.
All rights reserved.

222474691.
@dcc.uchile.cl

Project

Project D09I1185.
by Czech Science
Normally, each query is processed in an isolated way with
respect to previous or future queries. However in some
cases, it is possible to improve the efficiency by taking
advantage of inherent properties of the stream of queries.

Among the possible properties of a stream of queries,
an interesting one is when consecutive queries are similar
to each other. This property naturally arises in applications
like similarity search for videos [1], where consecutive
frames of a video may be used as query object. If the query
frames are taken from the same shot, it follows that
consecutive queries are similar to each other. Another
application is time series for shape retrieval [2], where
consecutive queries correspond to the same time series
but shifted according to the temporal dimension. This
results in consecutive queries that are also similar. There-
fore, researching techniques that exploit the similarity
between query objects to increase the efficiency becomes
relevant, as it may have a large impact in the aforemen-
tioned applications.

In this paper, we study the approach of preprocessing
the query set and indexing it dynamically. Specifically,
we present the Snake Table, which is a dynamic indexing

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2013.05.010
dx.doi.org/10.1016/j.is.2013.05.010
dx.doi.org/10.1016/j.is.2013.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.05.010&domain=pdf
dx.doi.org/10.1016/j.is.2013.05.010


J.M. Barrios et al. / Information Systems 45 (2014) 37–4738
structure designed for supporting streams of k-NN
searches. Unlike most of the metric access methods, the
Snake Table is short-lived and query-object oriented.
The index is intended to be used when the stream of
query objects fits a “snake distribution”, which we define
formally in this work. We show that the snake distribution
for query objects arises naturally in some problems (like in
the example for video similarity search) and also in other
problems can be “artificially” forced by reordering the
query set. We show experimentally that processing
a stream of queries with snake distribution using the
Snake Table can outperform a static metric access method.

An existing indexing structure with similar objectives
and properties is called the D-file [3]. In this work, we
show that the D-file suffers from high internal realtime
complexity making it unviable to use it in metric spaces
with computationally inexpensive (i.e., fast) distance func-
tions (like Manhattan distance or Euclidean distance).
We compare the Snake Table with D-file and LAESA index,
showing that Snake Table achieves the best performance
when the data follows a snake distribution.

The structure of the paper is as follows. Section 2 gives
a background of metric spaces and efficiency issues.
Section 3 analyses the properties of a query set and
presents a taxonomy for query sets. Section 4 reviews
the related work, focusing on the techniques that prepro-
cess and index the query set. Section 5 defines a snake
distribution and presents the Snake Table. Section 6
evaluates the performance achieved by indexing the
query sets using different scenarios. Finally, Section 7
summarizes the contributions of this work.

2. Background

Let M¼ ðD; dÞ be a metric space [4]. Given a collection
RDD, and a query object q∈D, a range search returns all
the objects in R that are closer than a distance threshold
ϵ to q, and a nearest neighbor search (k-NN) returns the k
closest objects to q in R.

For improving efficiency in metric spaces, Metric Access
Methods (MAMs) [5] are index structures designed to
efficiently perform similarity search queries. MAMs avoid
a linear scan over the whole database by using the metric
properties to save distance evaluations. Given the metric
space M, the object-pivot distance constraint [4] guaran-
tees that ∀a; b; p∈D:

jdða; pÞ−dðp; bÞj≤dða; bÞ≤dða; pÞ þ dðp; bÞ ð1Þ
One index structure that uses pivots for indexing is the

Approximating and Eliminating Search Algorithm (AESA) [6].
It first computes a matrix of distances between every pair of
objects x; y∈R. The structure is simply an jRj � jRj distance
matrix. In fact, only a half of the matrix needs to be stored,
due to symmetry of d. The main drawback of the AESA
approach is the quadratic space of the matrix. Linear AESA
(LAESA) [7] gets around this problem by selecting a set of
pivots PDR. The distance between each pivot to every
object is calculated and stored in a jRj � jPj distance matrix,
also known as the pivot table. LAESA reduces the required
space compared to AESA, however an algorithm for selecting
a good set of pivots is required [8].
Given a query object q (not necessarily in R), the
similarity search algorithm first evaluates the distance
dðq; pÞ for each pivot p∈P, then scans R, and for each
r∈R it evaluates the lower bound function LBP:

LBP ðq; rÞ ¼max
p∈P

fjdðq; pÞ−dðr;pÞjg ð2Þ

Note that LBP can be evaluated efficiently because
dðq; pÞ is already calculated and dðr; pÞ resides in the pivot
table. In the case of range searches, if LBP ðq; rÞ4ϵ then r
can be safely discarded because r cannot be part of the
search result. In the case of k-NN searches, if LBP ðq; rÞ≥
dðq; okÞ then r can be safely discarded, where ok is the
current kth nearest neighbor candidate to q. If r is not
discarded, the actual distance dðq; rÞ must be evaluated to
decide whether or not r is part of the search result.

The efficiency of some MAM in M is related to: (1) the
number of distance evaluations that are discarded when it
performs a similarity search; and (2) the internal cost for
deciding whether some distance can be discarded or not.
A similarity search using any MAM will be faster than a
linear scan when the time saved due to the discarded
distances is greater than the time spent due to the internal
cost. For example, in the case of LAESA, the internal cost
for a similarity search comprises the evaluation of dðq; pÞ
for each pivot p in P, and the evaluation of LBP ðq; rÞ for
each object r in R, thus it increases linearly with jPj.
The amount of distances discarded by LAESA depends on
the metric space itself and on the size and quality of P.

In order to analyze the efficiency that any MAM can
achieve in a collection R, Chávez et al. [5] propose to
analyze the histogram of distances of d. A histogram of
distances is constructed by evaluating dða; bÞ for a random
sample of objects a; b∈R. The histogram of distances reveals
information about the distribution of objects in M. Given a
histogram of distances for M, the intrinsic dimensionality ρ
is defined as ρðMÞ ¼ μ2=2s2, where μ and s2 are the mean
and the variance of histogram of distances for M. The
intrinsic dimensionality estimates the efficiency that any
MAM can achieve in M, therefore it tries to quantify
the difficulty in indexing a metric space. A histogram of
distances with small variance (i.e., a high value of ρ) means
that the distance between any two objects dða; bÞ with high
probability will be near μ, thus the difference between any
two distances with high probability will be a small value. In
that case, for most of the pivots the lower bound from Eq.
(1) will become ineffective at discarding objects. Increasing
the number of pivots will improve the value of the lower
bounds, however the internal cost of the MAM will also
increase.

3. Streams of k-NN searches

MAMs can be classified as static or dynamic depending
on how they manage the insertion or deletion of objects in
R during the online phase. A dynamic MAM can update its
structures to add or remove any object, hence it can
remain online even for growing collections. Usually, the
tree-based MAMs are dynamic, like the M-Tree [9]. A static
MAM cannot manage large updates in its structures,
thus after many modifications of R the whole indexing



Table 1
Taxonomy for query sets. Columns correspond to the similarity between
query objects. Rows correspond to the way the query set is discovered.

Query set taxonomy Similar Random

Full e
Groups a,c,d
ByOne b

J.M. Barrios et al. / Information Systems 45 (2014) 37–47 39
structure must be rebuilt. LAESA is able to manage the
insertion or deletion of objects and pivots by adding or
removing rows or columns from the pivot table [10].
Nevertheless, LAESA is usually a static index, mainly
because the actual implementation of the table might
not support dynamic updates to its structure. Additionally,
after many modifications in R the set of pivots can begin
to perform poorly and a new set of pivots should be
selected.

In the traditional use case, MAMs are created during
the offline phase, i.e., the index structure is created by
a time-expensive process prior to resolving any search.
This indexing process has access toR (or a subset of it) and
usually does not have any prior information about the
query objects that will be resolved afterwards. It is
expected that the MAM will amortize its construction
time by resolving efficiently subsequent searches. During
the online phase, the MAM receives query objects poten-
tially from different sources and users. All the searches
share the same MAM, and the MAM should achieve good
performance at every search.

Depending on the domain, the query set Q may have
some special properties that can be exploited to improve
the performance of the MAM. In particular, we analyze two
independent criteria. First, regarding the way in which the
objects in Q are discovered or received from the user, we
differentiate three types:
1.
 Full: Q is fully determined during the offline phase.
In the online phase Q is static.
2.
 Groups: Q is unknown during the offline phase. In the
online phase the query objects are received or defined
incrementally in groups. The groups do not have to be
the same length.
3.
 ByOne: Q is unknown during the offline phase. In the
online phase the query objects are defined incremen-
tally one by one. The value of the ith query object may
depend on the result of the (i−1)th search.
Second, regarding the existence of some kind of simi-
larity between objects in Q, we differentiate the positive
and the negative case:
1.
 Similar: The objects in Q have some degree of similarity
or some correlation between them. The kind of simi-
larity is usually inherent to the nature of the domain.
For example, the query objects may correspond to
variations or evolution of some source model.
2.
 Random: The objects in Q are indistinguishable from a
random sample of R.
Table 1 summarizes the proposed taxonomy. The tradi-
tional use case assumes a query set type Groups=n or
ByOne=n, hence the indexing process cannot access Q.
However, if the query set is type Full=n the indexing
process is able to access both Q and R, therefore it can
create a static MAM optimized to resolve Q. For example,
LAESA could select pivots either from Q or R and evaluate
the resulting lower bounds considering the query objects
that will be resolved.
In the following we present some domains and scenar-
ios identifying the type of query set according to the
previous taxonomy:
a
 In the domain of video similarity, the content-based
video retrieval systems and the video copy detection
systems usually divide a query video into shots, extract
one or more keyframes from each shot, and perform a
similarity search for each keyframe [1,11]. In this
scenario, because many consecutive keyframes are
extracted from a single video and consecutive key-
frames frequently are similar, the query set is type
Groups/Similar.
b
 In the case of interactive content-based multimedia
retrieval systems [12–14], a user starts a search (either
with some visual example, some text or tags), a k-NN
search is performed and the answers are shown. Then,
iteratively the user selects a new query object among
those shown, and a new search is performed refining
the results. Because the new queries are selected from
the answers of a previous search, it can be expected
that two consecutive query objects will be similar.
In this case the query set is type ByOne/Similar.
c
 In image classification and in image retrieval based on
local descriptions [15], a set of local descriptors is
extracted from the query image, and for each local
descriptor a similarity search is performed in the whole
collection of local descriptors. Each local descriptor
represents the content of a small independent patch
in the image, hence it might be expected that the query
set would be type Groups/Random. However, as we
shown in the experimental section, because the local
patches proceed from the same image they have a
higher degree of similarity than patches from random
images, therefore in practice the query set is type
Groups/Similar.
d
 The time series similarity can be used to address the
problem of rotation-invariant shape matching [2].
A shape can be represented by a time series (e.g., as
the distance of the shape contour from the shape
centroid, sampled clock-wise). In order to obtain
rotation-invariant matching with a query shape
(rotated arbitrarily), a sequence of time series is created
by using a sliding window on the query series. As
consecutive time series coming from the sliding win-
dow vary only slightly, they are very similar, hence the
query set is type Groups/Similar.
e
 In image forgery detection a typical approach consists in
detecting the “copy-move” forgery [16]. This technique
focuses on determining whether some patch of the
image has been duplicated and pasted into another part



J.M. Barrios et al. / Information Systems 45 (2014) 37–4740
of the same image. This kind of forgery can be detected
by computing descriptors using an overlapping sliding
window on the image and then searching for duplicated
windows. The query set produced by this technique can
be classified as type Full/Similar.
The existence of these scenarios shows the relevance of
considering the query set beyond the traditional use case,
we specifically focus on query sets with some degree of
internal similarity (type n/Similar). In these query sets, it
can be expected that two consecutive query objects are
similar, i.e., the distance between the ith and (i+1)th
objects in Q is small compared with the median distance
between objects in R. In order to profit from this internal
similarity we propose to resolve Q sequentially using
a dynamic MAM, hence the distances evaluated while
resolving the first i searches can potentially be used to
save computation during the (i+1)th search. In particular,
we propose a dynamic pivot table that stores a subset of
the distances computed during previous searches to
improve the performance of the current search.
4. Related work

In this section we review a few existing approaches that
consider batches or streams of similarity queries.
4.1. Batch of queries

A general approach for improving the efficiency of
MAMs for streams of k-NN searches is the simultaneous
processing of multiple queries [17]. Instead of issuing
many single queries, the idea is to process a batch of
similarity queries aiming at reducing I/O cost and compu-
tation cost. The proposed technique reduces the I/O cost by
reading each disk page only once per batch of similarity
queries, and it reduces the CPU cost by avoiding distance
computations. An avoidable distance computation is
detected by computing the distances between query
objects and then using these distances, together with the
triangle inequality, to compute lower bounds of the dis-
tances between queries and database objects. If the lower
bound distance is greater than a given tolerance radius for
the similarity search, then the distance calculation is
avoidable. The proposed technique is general, and it can
be implemented based on a MAM or using a sequential
file. However, besides the requirement to know all the
queries beforehand (i.e., type Full), it also requires comput-
ing the distances between each pair of query objects to
reduce the CPU cost, and it does not take advantage of
evaluated distances between queries and database objects.

Paredes et al. [18] propose an approach to compute the k
nearest neighbor graph in metric spaces which is equivalent
to compute n k-NN queries, in (empirical) subquadratic time.
However, the set of query objects was restricted to the
database objects which is only marginally meaningful for
this work.
4.2. Query result caching

In order to speed up the similarity searches, another
approach provides a mechanism of caching query results
[19,20]. Basically, the metric cache stores a history of
similarity queries and their answers (identifiers and
descriptors of database objects returned by the query).
When a subsequent query is to be processed, the metric
cache either returns the exact answer in case the same
query was processed in the past and its result still sits in
the cache. Or, in case of a new query, such old queries are
determined from the metric cache, that spatially contain
the new query object inside their query balls. If the new
query is entirely bounded by a cached query ball, a subset
of the cached query result is returned as an exact answer
of the new query. If not, the metric cache is used to
combine the query results of spatially close cached queries
to form an approximate answer. In case the approximate
answer is likely to exhibit a large retrieval error, the metric
cache gives up and forwards the query processing to the
underlying MAM (updating the metric cache by the query
answer afterwards).

4.3. D-file and D-cache

To take advantage of the online indexing process and
a stream of correlated queries, there is a recently proposed
structure called D-file [3]. The D-file is the database file
itself accompanied by a main-memory structure, called the
D-cache. The D-cache stores a sample of every evaluated
distance between query and database objects. When the qn
object in Q is processed, the D-cache evaluates the
distance between qn and a previous qi in Q, treats qi as a
pivot and calculates a lower-bound distance for dðqn; ojÞ.
Hence, if the lower bound is large enough, oj can be
discarded without evaluating the actual distance to qn.
D-cache content is modeled as a sparse dynamic pivot
table, where each table row is constructed with the stored
distances. If there are not enough distances stored in the
D-cache, some rows are incomplete, resulting in zeros on
some cells. Using the reconstructed rows, the D-file tries to
filter out each database object using the same approach as
a regular pivot table. The D-file does not need an offline
indexing step, as the D-cache is being built during query
processing. As the D-cache uses the previously processed
queries as dynamic pivots, the authors recommend that
previous queries should be as close to the current query as
possible.

The D-cache consists of: (1) a fixed-size hash table that
stores triplets ðqi; oj; dðqi; ojÞÞ; (2) a hash function hðqi; ojÞ
for accessing the bucket where a triplet is stored; (3) a
collision interval, for searching a near available bucket
when some triplet is mapped into an already used bucket;
and (4) a replacement policy, that decides whether or not
a new triplet should replace an old triplet when a collision
occurs and there is not an available bucket in the collision
interval.

The D-file is a dynamic structure that can be used for
indexing queries type Groups/Similar and ByOne/Similar.
However, as we show in the experimental section,
the D-file suffers from high internal complexity. The main



J.M. Barrios et al. / Information Systems 45 (2014) 37–47 41
problem arises when the distance function is not time-
expensive. In that case, the internal complexity associated
with the hash function and collision resolution dominates
the search times rendering it unviable to use in many
scenarios. In order to solve this problem, we introduce the
Snake Table that preserves the idea and advantages of
D-file and D-cache, but exhibits lower internal complexity.
5. Snake Table

In this work we propose a new dynamic indexing
structure called Snake Table, which is designed to: (1)
improve the search time for streams of queries where
consecutive objects in the query set are similar (i.e., for
query sets n/Similar); and (2) have low internal complexity
in order to worth indexing metric spaces based on fast
distance functions. We should stress that by stream of
queries we mean a query set with unknown length whose
query objects are incrementally discovered (either one by
one or in groups) during the online phase.

The life cycle of the Snake Table is as follows: First,
when a new session starts, an empty Snake Table is
created and associated with it. When a query object q1 is
received, a k-NN search is performed. The distances
between q1 and the objects in the collection are added to
the Snake Table, and the result is returned. When a new
query object qi is received, a k-NN is performed using the
previous query objects qi−p;…; qi−1 as pivots to accelerate
the search. Finally, when the session ends, the Snake Table
is discarded. Therefore, like D-file and unlike most of
MAMs, the Snake Table is a session-oriented and short-
lived MAM, see Fig. 1.

The Snake Table is implemented with a fixed-size jRj � p
matrix used as a dynamic pivot table. As in LAESA, the jth
row in the dynamic pivot table represents the object oj in R
and contains the distances between oj and up to p previously
processed query objects. Each cell in the jth row of the table
contains a pair ðq; dðq; ojÞÞ for some query object q (not
necessarily in order). When processing a new query object qi,
the lower bound LBP ðqi; ojÞ is calculated (see Eq. (2)), with P
dynamically determined by the query objects and distances
in the jth row. As in the traditional exact search, the object oj
is discarded when LBPðqi; ojÞ is greater than the distance
between qi and the current kth nearest neighbor candidate
(obtained between o1 and oj−1). If oj is not discarded, the
actual distance dðqi; ojÞ is computed, added to some cell in
the jth row, and the NN candidates are updated if necessary.
Fig. 1. Snake tables created for stream of queries Q1 and Q2.
We present three different replacement strategies to
assign a distance dðqi; ojÞ to one of the p cells in the jth
row:
1.
 FIFO/Sparse: Each query qi picks a column in round-
robin mode, i.e., the distance dðqi; ojÞ is stored in the
(i mod p) column of jth row, eventually replacing the
stored distance dðqi−p; ojÞ. If the distance was not
evaluated because it was discarded by LBPðqi; ojÞ then
the corresponding cell is not used. This behavior can be
implemented following two options: (1) the cell is
updated with an ∞ distance; or (2) the cell is left
unmodified, but before any read operation the query
stored in the cell is matched with the last query for that
column (the experimental section uses the latter). This
strategy produces sparse rows containing at most
p distances between dðqi−p; ojÞ and dðqi; ojÞ. As a con-
sequence, if p¼1 and most of the distances for qi−1
were discarded, then qi will achieve poor efficiency.
In order to diminish this “min-max effect” a larger p or
a different strategy should be chosen.
2.
 Highest/Compact: The distance dðqi; ojÞ is compared to
every distance in the jth row and the lowest distance
is replaced, independently of its position in the row.
With this strategy, every row stores the highest p
distances between dðq1; ojÞ and dðqi; ojÞ that have not
been discarded.
3.
 FIFO/Compact: The distance dðqi; ojÞ is stored in a cell
chosen in an independent round-robin for every row.
With this strategy, the jth row stores the last
p computed distances for oj, discarding the old ones.
LBP starts its evaluation from the last stored distance
and goes backwards, therefore favoring the most recent
stored distances.

For strategy FIFO/Sparse, distances dðqi; qjÞ with
j∈fi−p;…; i−1g are calculated and stored in memory at
the beginning of every search. For strategies Highest/
Compact and FIFO/Compact, distances dðqi; qjÞ with
j∈f1;…; i−1g are calculated on-demand by LBP . Note that
the internal complexity of strategy FIFO/Compact is
slightly higher than strategy FIFO/Sparse because it needs
to manage an independent index for each row to mark the
position of the last stored distance.

D-file uses a combination of FIFO/Sparse and Highest/
Compact. It always replaces an old distance (older than
qi−p), but if there is no old distance in the collision interval,
it replaces the worst distance (defined as the distance
closer to the median or some predefined percentile).

The performance achieved by these three replacement
strategies is compared in the experimental section. How-
ever, despite the replacement strategy used by the Snake
Table, the overall performance of the Snake Table mainly
depends on the distribution of the query objects.
5.1. Snake distribution

The Snake Table is intended to be used when the query
objects in a stream fit a “snake distribution”. Intuitively,
we define that a set of objects fits a snake distribution



Fig. 2. Stream of queries Q¼ fq1;…; q12g with a snake distribution: most
of distances dðqi; qiþ1Þ are smaller than dðx; yÞ for randomly selected pairs
x, y in R.

J.M. Barrios et al. / Information Systems 45 (2014) 37–4742
when the distance between two consecutive objects in Q
is small compared to the median distance between any
two objects (see Fig. 2). To measure and compare this fit,
we define an indicator using the histogram of distances of
d for Q and R.

Because the area of the histogram of distances is
normalized to 1, the histogram can be seen as a probability
distribution of the distances calculated by d. Then, we
define the cumulative distribution in a similar way as in
probabilities:

Definition 1 (Cumulative distribution). Let H be a normal-
ized histogram of distances, the Cumulative Distribution of
Distances F : Rþ-½0;1� is defined as

FðxÞ ¼
Z x

0
HðtÞ dt

For comparing the distribution of distances of two sets
of objects, we compare their cumulative distributions:

Definition 2 (Difference Δ). Let F1 and F2 be two cumula-
tive distributions, the difference Δ between F1 and F2 is
defined as

ΔðF1; F2Þ ¼
Z ∞

0
F1ðtÞ−F2ðtÞ dt

The difference Δ is meaningful only when both F1 and
F2 originate from the same metric space. Note that ΔðF1; F2Þ
is greater than zero when the distances accumulated by F1
are smaller than distances accumulated by F2.

Definition 3 (Snake distribution). Let M¼ ðD; dÞ be a
metric space, let R⊂D be the collection of objects, and
let Q⊂D be a set of m query objects Q¼ fq1;…; qmg. Let F
be the cumulative distribution of dðx; yÞ with random pairs
x; y∈Q∪R, p be a number between 1 and m−1, and FpQ be
the cumulative distribution of dðqi; qi−pÞ ∀ i∈fpþ 1;…;mg.
Q fits a snake distribution of order p if ΔðFpQ; FÞ4s, for
some threshold value s∈Rþ.

Note that when both Q and R are random samples of D
without any special ordering (i.e., the ith sample does not
depend on previous samples), then ΔðFpQ; FÞ≈0. When
a distribution fits a Snake Distribution of order 1 to p then
a Snake Table can be created with a sliding window
containing up to p query objects.
5.2. Re-ordering the query set

In cases when a set of query objects is a priori known or
is discovered in groups, and the snake distribution is not
strong enough (i.e., a query set Full/Random or Groups/
Random), one technique usually worth trying is to apply
some reordering to the query set in order to produce or
enhance the similarity between consecutive queries.

Following this idea, we propose a simple approach
which consists in reordering Q by consecutively selecting
the first nearest neighbor, as depicted in Algorithm 1.
We should note that the reordering approach is affordable
only when jQj⪡jRj, otherwise the reordering step may
turn out to be more expensive than directly resolving Q.

Algorithm 1. Reordering algorithm based on consecutive
Nearest Neighbors.

Input: Q¼ fq1 ;…; qmg an unordered set of query objects.
Output: Q′¼ ðq′1 ;…; qmÞ an ordered list of query objects.
Q′ ← empty list;
object←q1; // seed object

add object to Q′;
Q←Q−fobjectg;
while Q≠| do
qj←NNðobject;QÞ; // object’s NN in Q
add qj at the end of Q′;
Q←Q−fqjg;
object←qj;

66666664
return Q′;
6. Experimental evaluation

In this section we compare the performance achieved
by the Snake Table using the three replacement strategies,
with the performance achieved by D-file and LAESA under
different scenarios.
6.1. Video copy detection scenario

We tested the Snake Table on our frame-based CBVCD
system [1]. The MUSCLE-VCD-2007 [21] is a publicly
available and widely-used video copy dataset. The refer-
ence collection contains 101 videos with 59 h total length,
and the query collection (ST2) contains three videos with
45 min total length.

In this evaluation, each reference and query video is
partitioned into short fixed-length segments of 1 s.
For each segment, four global descriptors are calculated:
the Edge Histogram (EH), captures the spatial distribution
of edges in a frame [22]. We used 10 orientations and 8-
bits linear quantization, producing a vector of 160 bytes.
The Ordinal Measurement (OM), captures the spatial
distribution of intensities in a frame [11]. We used 9�9
blocks, producing a vector of 81 bytes. The Keyframe (KF),
reduces the frame to 11�9 pixels and uses the value for
each pixel, producing a vector of 99 bytes. These descrip-
tors are calculated for all the frames in a segment and then
averaged. Finally, the set of query segments Q contains
2692 objects, and the set of reference segments R contains
211,479 objects.



J.M. Barrios et al. / Information Systems 45 (2014) 37–47 43
6.1.1. Configurations
We present three configurations, each one defining

a distance function dðr; sÞ between the video segments
r and s. The distances are based on linear combinations
of L1 (Manhattan) distance between descriptors, where
L1ð x!; y!Þ¼∑n

i ¼ 1jxi−yij for n-dimensional vectors x!
and y!:
1.
Tab
Me

C

O

E

E

OM: compares OM descriptors dðr; sÞ ¼ L1ðOMðrÞ;
OMðsÞÞ.
2.
 EH: compares EH descriptors dðr; sÞ ¼ L1ðEHðrÞ;EHðsÞÞ.

3.
 EK3: temporal combination of EH and KF descriptors:

gðr; sÞ ¼ 0:5 � L1ðEHðrÞ;EHðsÞÞ �
1

7996

þ0:5 � L1ðKFðrÞ;KFðsÞÞ �
1

24;721
dðri; sjÞ ¼ 1

3½gðri−1; sj−1Þ þ gðri; sjÞ
þgðriþ1; sjþ1Þ�

where constants 7996 and 24,721 are the maximum
distances for EH and KF, respectively, and ri−1 and riþ1

are the previous and the next segments of ri in a video.

We compare the efficiency of six indexes with p pivots
(static pivots for LAESA and dynamic pivots for D-file and
the Snake Table), where p varies between 1 and 20:
1.
 D-file: It uses a D-cache with a fixed size hash table of
jRjnp cells, collision interval 1, and hash function
hðqi; ojÞ ¼ ðrndinrndjÞmodðjRjnpÞ, where rndi and rndj
are unique random IDs assigned to each object.
2.
 LAESA: The selection of static pivots follows the SSS
algorithm [8] and assumes the query set is Full/n. Four
different sets are selected and the average value of LBP
is calculated for each one by sampling pairs from
Q�R. The set of pivots with higher average LBP is
selected while the other sets are discarded. LaesaQ
chooses p static pivots from Q. LaesaR chooses p static
pivots from R.
3.
0.2

0.3
Snake Table: We test the three strategies depicted in
Section 5. SnakeFS uses FIFO/Sparse strategy (sparse
row with the last p queries), SnakeHC uses Highest/
Compact strategy (compact row containing p prior
query in any order), and SnakeFC uses FIFO/Compact

strategy (compact row with the last p evaluated
distances for each object).

Table 2 shows some indicators for themetric space defined
by each configuration, including the total time spent by a
le 2
tric spaces for the video copy detection scenario.

onfiguration Time (s) μ r ρ Hd

M 282 1489 416 6.4

H 541 3198 751 9.1

K3 2214 0.347 0.08 10.2
linear scan (in seconds). The histogram of distances was
created by evaluating dðx; yÞ with pairs x, y sampled from
Q∪R. If we compare the time spent by a linear scan,OM takes
less amount of time, EH takes about twice as much time as
OM, and EK3 is slower by one order of magnitude thanOM. In
the following experiments, the performance of each index is
presented as a ratio with the performance of the linear scan
for that configuration.

6.1.2. Snake distribution
Fig. 3 analyzes the snake distribution for the three

configurations by showing the difference ΔðFpQ; FÞ for
p∈f1;…;20g. The three configurations present a difference
Δ higher than zero, hence the streams of queries have
a snake distribution (distances between qi and qi−p are
smaller than distances between random sampled pairs).
The first orders show a good fit for the three configura-
tions, but as p increases, the snake distribution tends to
disappear. As shown in the following experiments, the
different configurations present satisfactory results for
roughly between 1 and 5 pivots.

6.1.3. Performance comparison
Fig. 4 shows the efficiency achieved by the six indexes

for OM, EH, and EK3 configurations varying the number of
pivots from 1 to 20. It shows the amount of distance
evaluations as a proportion of the evaluations required by
the linear scan (i.e., a fraction of jQjnjRj). This value
includes the distances between query and pivots, but does
not include the distance required for pivot selection in
LAESA. It also shows the search time as a proportion of the
time spent by a linear scan. The instability in LAESA
indexes for consecutive p is due to the random-base pivot
selection. In order to reduce this effect we calculated three
different sets of pivots with SSS and the average values for
evaluated distances and search time are presented.

In the case of static pivots, LaesaQ shows an almost
identical performance as LaesaR for the three configura-
tions, hence knowing a priori the set of queries does not
produce a noticeable improvement in the quality of the
index. This behavior shows that a static index cannot profit
from snake distributions. LAESA achieves good perfor-
mance for OM, which is a configuration with low intrinsic
dimensionality, but the performance decreases for EH
and EK3. These two configurations have higher intrinsic
0

0.1

1 5 9 13 17

OM EH EK3

Fig. 3. Snake distribution of order p∈f1;…;20g for the three
configurations.



20%

30%

40%

50%

60%

70%

80%

90%

1 5

di
st

an
ce

ev
al

s. 
/ l

in
.sc

an

number of pivots

Distance evaluations OM

20%

30%

40%

50%

60%

70%

80%

90%

1 5

number of pivots

Search time OM

20%

30%

40%

50%

60%

70%

80%

90%

1 5

number of pivots

Distance evaluations EH

20%

30%

40%

50%

60%

70%

80%

90%

1 5

number of pivots

Search time EH

20%

30%

40%

50%

60%

70%

80%

90%

1 5

number of pivots

Distance evaluations EK3

20%

30%

40%

50%

60%

70%

80%

90%

1 5

9 13 17 9 13 17

9 13 17 9 13 17

9 13 17 9 13 17

se
ar

ch
tim

e 
/ l

in
.sc

an

number of pivots

Search time EK3

LaesaQ

LaesaR

D-file

SnakeFS

SnakeHC

SnakeFC

di
st

an
ce

ev
al

s. 
/ l

in
.sc

an
di

st
an

ce
ev

al
s. 

/ l
in

.sc
an

se
ar

ch
tim

e 
/ l

in
.sc

an
se

ar
ch

tim
e 

/ l
in

.sc
an

Fig. 4. Comparison of indexes performance (distance evaluations and search times) for three configurations (OM, EH, and EK3). This experiment uses the
MUSCLE-VCD-2007 dataset.

J.M. Barrios et al. / Information Systems 45 (2014) 37–4744
dimensionality than OM, implying that any static selection
of pivots will achieve worse performance. In fact, increas-
ing the number of pivots from 5 to 20 pivots produces
almost no improvement on the performance even though
the required memory space increases four times.

In the case of D-file, the disparity between saved
distances and saved time reveals that it suffers from high
internal complexity. In OM and EH, it can discard most of
the distance computations, but the search time increases
even beyond the time required by a linear scan. In EK3,
due to the more expensive distance, the saved computa-
tions pay for the internal complexity and D-file decreases
its search times compared with linear scan, even outper-
forming LAESA.

In the case of the Snake Table, it achieves the best
performance due to its good pivot selection and low
internal complexity. There is not a clear difference in
performance between SnakeHC and SnakeFC. However,
the “min-max” effect described in Section 5 for FIFO/
Sparse strategy becomes apparent: SnakeFS with one and
two pivots cannot achieve high performance because
every discarded distance implies an empty cell in the pivot
table, which affects the performance for subsequent
pivots. This undesired effect decreases as the number of
pivots increases. On the other hand, Highest/Compact and
FIFO/Compact strategies do not suffer the “min-max”
effect because a compact pivot table prevents harming
the performance with empty cells.

In summary, this experiment shows that the exploita-
tion of snake distributions is a remarkable approach for
improving the efficiency: while LAESA struggles with high
intrinsic dimensionality, discarding about 25% of distance



J.M. Barrios et al. / Information Systems 45 (2014) 37–47 45
computations in EH and EK3, the Snake Table and D-file
discard more than 50% of distance computations with just
a few pivots. However, D-file fails at transferring those
savings into faster searches due to its high internal com-
plexity. The graphs also show that the Snake Table
achieves better performance with just a few pivots. In
fact, a large window size p mostly adds redundant pivots,
hence discarding almost no new objects and worsening
the search times.
6.2. Image similarity using local descriptors

In this experiment, we test the Snake Table in the
scenario of similarity search based on local descriptors.
Given a collection of images, the local descriptors are
extracted from every image, and the whole set corre-
sponds to R. Given a query image, its local descriptors
fl1;…; lng are calculated, and for every li a similarity search
is performed in R for i∈f1;…;ng. This is a straightforward
approach used by some image classification systems [15]
and object recognition systems [23].

The Pisa Dataset [24] is a publicly available image
classification dataset. It comprises 1127 images of 12
constructions located in Pisa, Italy. The images were
crawled from Flickr and have a maximum resolution of
500�500 pixels. Using the extraction software in [25]
we extracted for each image many 192-d color SIFT
descriptors using the Hessian-Laplace detector. The whole
dataset produced near 470,000 vectors with an average of
418 vectors per image. This experiment works as follows:
first, it chooses one image I at random and defines Q as the
local descriptors of I (removing them from R); then, it
resolves the jQj similarity searches using LAESA and the
Snake Table; and finally, it compares the number of
computed distances and search time against the linear
scan. This process is repeated several times for different
query images and the results are averaged.

The result for this experiment is summarized in Fig. 5.
Seven indexes were used to resolve the searches: LaesaR
chooses p static pivots from R using the SSS algorithm.
30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17

di
st

an
ce

ev
al

s. 
/ l

in
.sc

an

number of pivots

Distance evaluations

SnakeFS-NN

SnakeFS-RND

SnakeHC-NN

SnakeHC-RND

Fig. 5. Distance evaluations and search times for local descriptors, comparing
SnakeFS-RND, SnakeHC-RND, and SnakeFC-RND corre-
spond to the Snake Table using the three strategies
depicted in Section 5 and processing Q in random order;
and SnakeFS-NN, SnakeHC-NN, and SnakeFC-NN corre-
spond to the Snake Table using the three replacement
strategies and processing reordering Q according to the
algorithm depicted in Section 5.2.

The graphs show that static pivots in R can be out-
performed by dynamic pivots. The fact that SnakeXX-RND
indexes outperform LaesaR proves that query sets have
some degree of internal similarity, i.e., the local descriptors
from the same image are more similar than local descrip-
tors from random images. Moreover, SnakeXX�NN indexes
outperform SnakeXX�RND because the reordering applied
to query objects enhances the snake distribution in the
query stream. In particular, the fastest search times are
achieved by SnakeHC-NN and SnakeFC-NN using a single
dynamic pivot, both reducing search times by more than
50%. In order to achieve this improvement it is necessary to
consider the cost of reordering query sets: a reordering
implemented with linear scans requires jQj � ðjQj−1Þ=2
distance computations which is usually negligible com-
pared to the saving in the search (some fraction of
jQj � jRj). For instance, in this experiment the reordering
needed 87,153 distance evaluations, while discarding 10% of
the distances of the linear scan implies 20 million
evaluations less.
6.3. Image similarity using global descriptors

The following experiment tests the existence of snake
distributions on near-random data. The MIRFLICKR-1M
[26] is a widely known image dataset consisting of one
million images downloaded from Flickr website. In this
experiment we extracted a global visual descriptor from
the content of each image. The extracted global descriptor
is a color histogram by zones: it divides the image into
3�3 zones, and for each zone it calculates an RGB
histogram of 3�3�3 bins, i.e., the RGB color space is
divided into 27 regular regions, and the pixels for each
30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17

se
ar

ch
tim

e 
/ l

in
.sc

an

number of pivots

Search time

SnakeFC-NN

SnakeFC-RND

LaesaR

the effect of reordering query sets. This experiment uses Pisa Dataset.



20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17

di
st

an
ce

ev
al

s. 
/ l

in
.sc

an

number of pivots

Distance evaluations

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17

se
ar

ch
tim

e 
/ l

in
.sc

an

number of pivots

Search time

SnakeFS-NN

SnakeHC-NN

SnakeFC-NN

LaesaR

Fig. 6. Distance evaluations and search times for reordering query sets for a random sample of global descriptors. This experiment uses MIRFLICKR-1M
dataset.

J.M. Barrios et al. / Information Systems 45 (2014) 37–4746
color region and zone are counted. The final descriptor is a
243-d vector which is compared with L1 distance.

The experiment extracts a random sample of images
and produces the query dataset Q and the rest of the
images define R. Then, a similarity search is performed for
each query object in order to retrieve its nearest neighbor
from R. The Q similarity searches are resolved using four
different index structures: LaesaR, SnakeFS-NN,
SnakeHC-NN, and SnakeFC-NN, i.e., the Snake Table with
the three replacement strategies using the reordering of
the query set. As in the previous experiments, the number
of distance evaluations and the search time is presented as
a fraction of the linear scan. This process is repeated
several times with random samples of jQj ¼ 1000 images.

Fig. 6 summarizes the results. In general, the graphs
show that Snake Table with reordering of queries behaves
relatively similar to LAESA. This is an expected result
because Q is just a random sample of R, thus the query
set does not show a strong snake distribution to profit
from. However, an interesting behavior occurs with the
redundancy of pivots: in the previous experiments, the
Snake Table with p410 showed just increases in search
times due to little savings in distance computations.
On the other hand, in this experiment, even considering
p¼20, the Snake Table does not show that redundancy
behavior, hence the reordering of random objects pro-
duces a weak snake distribution. Despite this, SnakeFC-NN
is able to outperform LaesaR by about 10% in distance
computations and about 5% in search time.

This result shows the potentialities of dynamically
indexing the query set: even in random samples of query
objects, a reordering of the query set produces a weak
snake distribution from which the Snake Table may profit
from, achieving a performance that can outperform static
pivots.

7. Conclusions and future work

In this work we have studied the problem of indexing
the query set instead of the reference set. Following
this approach, we presented the Snake Table, which is
a dynamic pivot table for query objects that achieves high
performance at processing streams of queries with snake
distribution. This satisfactory performance is due to its
properties of dynamic selection of good pivots and low
internal complexity. The Snake Table is able to reduce the
search time for both fast and time-expensive distances,
even in spaces with high intrinsic dimensionality.
In particular, the Snake Table is a better alternative to
LAESA and D-file in the tested scenarios.

The Snake Table presents an approach to index spaces
when consecutive queries are similar to each other. This
behavior usually arises in content-based video retrieval
(when the queries are consecutive keyframes), interactive
multimedia retrieval systems (when the user selects a new
query object from the answers of a previous query), and
similarity searches using local descriptors. In a more
general domain, given an unsorted set of queries, the test
of snake distribution presented in this work may be useful
to determine an optimal ordering of queries which will
achieve a high performance in the Snake Table.

One usage of the Snake Table is to create an index for
each stream of queries. When a user starts a session, an
empty Snake Table is associated with it. As the user
performs queries with snake distribution, the index
improves its performance because it will select pivots
close to following queries. However, the Snake table is
not memory efficient as it requires space proportional to
the size of the dataset and to the number of sessions
connected. This approach is more suitable for medium-
sized databases with long k-NN streams. Moreover,
because it does not need to use a central shared index
structure, it is also suitable for highly dynamic datasets.

On one hand, pivots in a sliding window with snake
distribution satisfy one desirable property: they should be
close to either the query or the collection objects. On the
other hand, those pivots do not satisfy another desirable
property: they should be far away from each other. Hence,
using a Snake Table with many pivots will only increase
the internal complexity without increasing the efficiency
because pivots will be mostly redundant. In order to
overcome this issue, the Snake Table and LAESA can



J.M. Barrios et al. / Information Systems 45 (2014) 37–47 47
seamlessly be combined by with a unique pivot table
containing both static and dynamic pivots. Moreover, the
SSS algorithm can also be combined with the Snake Table
by fixing one pivot when it is far away from all the
previous ones. This combined approach enables to profit
from both dynamic pivots close to queries and non-
redundant static pivots.

LAESA can benefit from multi-core architectures by
sharing the pivot table and resolving each query in
different threads. In the case of Snake Table, in order to
efficiently resolve parallel queries we recommend parti-
tioning the queries into independent subsets, and resol-
ving each subset by a Snake Table in an independent
thread.

References

[1] J.M. Barrios, B. Bustos, Competitive content-based video copy
detection using global descriptors, Multimedia Tools and Applica-
tions 62 (1) (2013) 75–110.

[2] E.J. Keogh, L. Wei, X. Xi, S.-H. Lee, M. Vlachos, Lb_keogh supports exact
indexing of shapes under rotation invariance with arbitrary represen-
tations and distance measures, in: VLDB, 2006, pp. 882–893.

[3] T. Skopal, J. Lokoč, B. Bustos, D-cache: universal distance cache for
metric access methods, IEEE Transactions on Knowledge and Data
Engineering 24 (5) (2012) 868–881.

[4] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The
Metric Space Approach (Advances in Database Systems), Springer,
2005.

[5] E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in
metric spaces, ACM Computing Surveys 33 (3) (2001) 273–321.

[6] E. Vidal, New formulation and improvements of the nearest-
neighbour approximating and eliminating search algorithm (AESA),
Pattern Recognition Letters 15 (1) (1994) 1–7.

[7] M. Micó, J. Oncina, E. Vidal, A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear
preprocessing time and memory requirements, Pattern Recognition
Letters 15 (1) (1994) 9–17.

[8] B. Bustos, O. Pedreira, N. Brisaboa, A dynamic pivot selection
technique for similarity search, in: Proceedings of the International
Workshop on Similarity Search and Applications (SISAP'08), IEEE,
2008, pp. 105–112.

[9] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for
similarity search in metric spaces, in: Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB'97), Morgan
Kauffman, 1997, pp. 426–435.

[10] L. Micó, J. Oncina, A constant average time algorithm to allow
insertions in the LAESA fast nearest neighbour search index, in:
Proceedings of the International Conference on Pattern Recognition
(ICPR'10), IEEE, 2010, pp. 3911–3914.

[11] C. Kim, B. Vasudev, Spatiotemporal sequence matching for efficient
video copy detection, IEEE Transactions on Circuits and Systems for
Video Technology 15 (1) (2005) 127–132.

[12] J.M. Barrios, B. Bustos, Text-based and content-based image retrieval
on Flickr: demo, in: Proceedings of the International Workshop on
Similarity Search and Applications (SISAP'09), IEEE, 2009, pp. 156–157.

[13] M. Batko, V. Dohnal, D. Novak, J. Sedmidubsky, Mufin: a multi-
feature indexing network, in: Proceedings of the International
Workshop on Similarity Search and Applications (SISAP'09), IEEE,
2009, pp. 158–159.

[14] M. Batko, F. Falchi, C. Lucchese, D. Novak, R. Perego, F. Rabitti,
J. Sedmidubsky, P. Zezula, Building a web-scale image similarity
search system, Multimedia Tools and Applications 47 (2010)
599–629.

[15] G. Amato, F. Falchi, C. Gennaro, Geometric consistency checks for
KNN based image classification relying on local features, in:
Proceedings of the International Workshop on Similarity Search
and Applications (SISAP), ACM, 2011, pp. 81–88.

[16] G. Muhammad, M. Hussain, G. Bebis, Passive copy move image
forgery detection using undecimated dyadic wavelet transform,
Digital Investigation 9 (1) (2012) 49–57.

[17] B. Braunmüller, M. Ester, H.-P. Kriegel, J. Sander, Multiple similarity
queries: a basic DBMS operation for mining in metric databases,
IEEE Transactions on Knowledge and Data Engineering 13 (1) (2001)
79–95.

[18] R. Paredes, E. Chávez, K. Figueroa, G. Navarro, Practical construction
of k-nearest neighbor graphs in metric spaces, in: Proceedings of the
5th International Workshop on Experimental Algorithms (WEA'06),
Lecture Notes in Computer Science, vol. 4007, Springer, 2006,
pp. 85–97.

[19] F. Falchi, C. Lucchese, S. Orlando, R. Perego, F. Rabitti, A metric cache
for similarity search, in: LSDS-IR '08: Proceedings of the 2008 ACM
Workshop on Large-Scale Distributed Systems for Information
Retrieval, ACM, 2008, pp. 43–50.

[20] F. Falchi, C. Lucchese, S. Orlando, R. Perego, F. Rabitti, Caching
content-based queries for robust and efficient image retrieval, in:
EDBT '09: Proceedings of the 12th International Conference on
Extending Database Technology, ACM, 2009, pp. 780–790.

[21] J. Law-To, A. Joly, N. Boujemaa, MUSCLE-VCD-2007: a live benchmark
for video copy detection, 〈http://www-rocq.inria.fr/imedia/civr-
bench/〉, 2007.

[22] B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, A. Yamada, Color and
texture descriptors, IEEE Transactions on Circuits and Systems for
Video Technology 11 (6) (2001) 703–715.

[23] J.M. Barrios, B. Bustos, Prisma-orand team: instance search based on
parallel approximate searches, in: TRECVID, NIST, 2012.

[24] Pisa landmarks dataset, 〈http://www.fabriziofalchi.it/pisaDataset/〉, 2011.
[25] Feature detection code, 〈http://www.featurespace.org/〉, 2010.
[26] Mirflickr, 〈http://press.liacs.nl/mirflickr/〉, 2008.

http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref1
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref1
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref1
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0005
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0005
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0005
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref3
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref3
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref3
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref4
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref4
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref4
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref5
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref5
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref6
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref6
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref6
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref7
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref7
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref7
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref7
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0010
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0010
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0010
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0010
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0015
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0015
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0015
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0015
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0020
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0020
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0020
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0020
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref11
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref11
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref11
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0025
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0025
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0025
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0030
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0030
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0030
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0030
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref14
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref14
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref14
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref14
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0035
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0035
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0035
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0035
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref16
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref16
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref16
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref17
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref17
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref17
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref17
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0040
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0040
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0040
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0040
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0040
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0045
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0045
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0045
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0045
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0050
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0050
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0050
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0050
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0055
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0055
http://www-rocq.inria.fr/imedia/civr-bench/
http://www-rocq.inria.fr/imedia/civr-bench/
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref22
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref22
http://refhub.elsevier.com/S0306-4379(13)00079-3/sbref22
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0060
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0060
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0065
http://www.fabriziofalchi.it/pisaDataset/
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0070
http://www.featurespace.org/
http://refhub.elsevier.com/S0306-4379(13)00079-3/othref0075
http://press.liacs.nl/mirflickr/

	Analyzing and dynamically indexing the query set
	Introduction
	Background
	Streams of k-NN searches
	Related work
	Batch of queries
	Query result caching
	D-file and D-cache

	Snake Table
	Snake distribution
	Re-ordering the query set

	Experimental evaluation
	Video copy detection scenario
	Configurations
	Snake distribution
	Performance comparison

	Image similarity using local descriptors
	Image similarity using global descriptors

	Conclusions and future work
	References




