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a b s t r a c t

Starting with a boundary triangulation an algorithm automatically generates graded densities of
triangular elements inside arbitrary polygonal domains. Interior nodes generated inside acute triangles
receive spacing values from Bezier based nonlinear spacing functions defined on interior edges and a
nonlinear interpolant defined over triangles. Nodal spacing values, adaptive breakpoints and a single
G-value control densities of nodes and offer a range of graded meshes. Predetermined nodes with
spacing values and internal boundaries provide additional initial control of nodal densities.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

From its inception in continuum and structural mechanics [1,2,
early history] the Finite Element Method has extended its applications
to fluid dynamics, metal forming, CAD-CAM integration, geology,
manufacturing and medicine as representative examples, see [3] for
a comprehensive list of research in 40 countries. New finite element
methods can incorporate material discontinuities [4,5], be mesh free
[6, background mesh voxels], have moving meshes [7,8] and other
mesh options. These references demonstrate that triangulations have
been integral to many finite element applications and methods.

From the earliest days of numerical FEM calculations based on
triangulations of Courant, Argyris and Turner [9–11] have played
an important role. Motivated by improving numerical calculations
in daily engineering design and analyses of automotive parts, our
paper deals with triangulations used in applying FEM to con-
tinuum and structural mechanics. Each vehicle has thousands of
metal parts and whenever even small design changes occur many
interdependent parts must undergo validations which often
require finite element analyses. We present a Delaunay triangula-
tion algorithm for nonlinear graded meshes and create typical
meshes for improving three automotive applications chosen for
their frequent daily use, design engineering cycles and for adaptive
analyses in commercial finite element software.

Starting with a Delaunay boundary triangulation (the Delaunay
characteristic is not required but helpful) or a point location in an
established Delaunay triangulation, a single global parameter deter-
mines the amount of nonlinear grading by applying triangular

interpolants and Bezier curves which then assign each new node a
distance that limits encroachment from subsequent nodal insertions.
This algorithm which builds upon the structure in Frey's selective
refinement [12] differs from prominent methods such as the advan-
cing front algorithm of Suhara and Fukusa [13] and longest edge
bisections of Rivara [14,15] which were not designed for controlling
variable mesh gradations. Improvements for gradation in advancing
front methods, by solving a differential equation [16] or partitioning
the meshing domain [17] for example, do not have a control of
gradation embedded in the node generating algorithm. Algorithms
specifically designed for controlling mesh gradation, by specifying
local metrics that may overlap [18] for example, do not have global
simplicity and ease of implementation as the algorithm presented in
Section 3 of this paper.

Section 2 of this paper briefly reviews the original use of
selective refinement [12], a popular term now used to denote
the improvement of existing meshes. This section also identifies its
straightforward structure as a basis for further development.
Section 3 presents a novel nonlinear Delaunay incremental inser-
tion algorithm based on Computer aided Design concepts inde-
pendent of those used to construct finite element geometries. This
section also introduces nonlinear functions defined on edges of
triangles and uses a transfinite interpolant [19,20] on triangles,
and ends with a summary of the algorithm. Section 4 compares
the selective refinement to nonlinear Delaunay incremental inser-
tion on automotive applications. Section 5 provides a summary.

2. Selective refinement

Frey's selective refinement algorithm [12] includes methods for
locating nodes on the boundary of meshing domains. Preliminary
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to generating meshes, each boundary node receives a spacing value
equal to dividing the minimum distance to its two adjacent nodes
by the square root of two. Meshing then begins with a Delaunay
boundary triangulation.

Selective refinement continues with the following steps. Insert
nodes only inside triangles that contain their circumcenters and
on the line segment connecting the incenter and the circumcenter
of a triangle. The location on the segment depends on the
normalized shape ratio (NSR) ρ, ρ¼ 2r=R, and a linear interpola-
tion giving weight ð1�ρÞ to the incenter and ρ to the circumcen-
ter. The new node must also satisfy two other criteria. Its distance
to the vertices of the triangle cannot be less than the spacing
values at the vertices and its insertion into the mesh cannot
generate a vertex with degree less than 4 or greater than 8. Linear
interpolation of the spacing values at the vertices of the triangle
containing the new node assigns its spacing value. Laplacian
smoothing constitutes the final step.

Authors subsequent to Frey use the term selective refinement.
Their methods often require a stopping criterion or a proof that
their algorithms end, see [21–23] for examples. Though not
mentioned in [12] Frey's selective refinement intrinsically stops
because each node in the mesh lies at the center of a circular disk
with radius equal to the spacing value at the node and no new
node can be inserted inside this disk. Since the smallest disk
cannot have a radius less than the least spacing value at a
boundary node, the minimum number of disks having this
smallest radius that can cover the entire mesh provides an upper
bound for the number of nodes that can be inserted.

The radii of these disks perform another crucial role. According
to [12], since the spacing value at a node defined as the distance to
its nearest node produces a mesh with “larger spacings than
desired” especially “near the boundary nodes”, division by the
square root of 2 becomes necessary to “produce triangles which
are as well shaped as possible.” Fig. 1 justifies these unsupported
assertions. In Fig. 1 the vertices a and b on the boundary each have
minimum distances of one unit from their nearest boundary node.
The gray area in the top portion of Fig. 1 indicates the area within
the meshing domain where new nodes cannot be inserted due to
defining spacing values at boundary nodes a and b equal to the
minimum distances to their neighbors. The smaller gray area at
the bottom portion of Fig. 1 indicates the commensurate area
using spacing values which divide these minimum distances at a
and b by the square root of two. Consequently, this division allows
insertions into the area enclosed by the dots. A node inserted at e,
the apex of this area, produces an equilateral triangle and a node
at r, the bottom, produces a 451 right triangle.

In summary, this linear selective refinement method relies on five
core ideas that enable nonlinear gradation of meshes: (1) start with a
boundary triangulation, (2) insert new nodes in acute triangles,
(3) locate a node inside a triangle based on its shape, (4) constrain
the insertion of a node in a triangle by the spacing values assigned to
its vertices, and (5) smooth the generated mesh.

3. Nonlinear interpolation and spacing

The algorithm in the previous section restricts spacing values at
nodes not to exceed the maximum and minimum spacing values
on the boundary. We will add a nonlinear dimension to (3) in this
structure that automatically allows greater spacing values among
nodes and use the Laplace Delaunay smoothing [24] to maintain
Delaunay triangulations. Furthermore a single parameter will
control nonlinearity.

The following two subsections use barycentric coordinates in
standard linear interpolation and its extension to nonlinear
transfinite interpolation over a triangle. The third subsection
defines nonlinear spacing functions required for nonlinear trans-
finite interpolation on the edges of triangles. One parameter will
dictate nodal densities implemented by the nonlinear interpolant.
The fourth subsection summarizes the new nonlinear algorithm.

3.1. Linear interpolation

For a point p in the triangle τ with vertices v1, v2 and v3 the
standard linear finite element uses the ratios

bi ¼
ΔðvjpvkÞ
Δðv1v2v3Þ

; ia j; iak; jak; 1r ir3; 1r jr3 and 1rkr3;

ð3:1Þ
where ΔðabcÞ denotes the area of a triangle with vertices a, b and c
to define the barycentric coordinates ðb1; b2; b3Þ of p in τ. For a
triangle with spacing values d1, d2 and d3 at the vertices v1, v2 and v3

calculate the linear spacing value LðpÞ at an arbitrary point p in τ by

LðpÞ ¼ b1d1þb2d2þb3d3: ð3:2Þ

3.2. Nonlinear interpolation over triangles

Many nonlinear interpolation schemes over triangles have been
constructed to interpolate values at the vertices of triangles, see
[25–27] for established references that introduce interpolants on
triangles. We have chosen Nielson's side-vertex method [20]
incorporating the finite elements attributed to Marshall [19]. The
side vertex method has the advantage of interpolating arbitrary
nonlinear functions defined on edges without imposing derivative
conditions. It also conveniently relies on barycentric coordinates
described in the previous subsection.

Using a standard triangle U with vertices ð0;0Þ, ð1;0Þ and ð0;1Þ,
the side-vertex transfinite interpolation method reproduces func-
tions defined on the edges of U with the following equation:

Fðx; yÞ ¼ ð1�xÞF 0;
y

1�x

� �
þð1�yÞF x

1�y
;0

� �

þðxþyÞF x
xþy

;
y

xþy

� �
�xFð1;0Þ�yFð0;1Þ�ð1�x�yÞFð0;0Þ; ð3:3Þ

where y=ð1�xÞ ¼ 0 at ð1;0Þ, x=ð1�yÞ ¼ 0 at ð0;1Þ and x=ðxþyÞ ¼
y=ðxþyÞ ¼ 0 at ð0;0Þ. On the right-hand side of Eq. (3.3) the values
of F on the boundary of U are located at the intersections of the
cevians from the vertices through (x,y) inside the triangle.

On an arbitrary triangle τ with vertices v1, v2 and v3 let
gijðvijðtÞÞ denote a nonlinear spacing function defined on the edge

Fig. 1. The top gray area contains the forbidden area of node insertion when using
minimum spacing values at boundary nodes a and b. Minimum spacing values divided
by

ffiffiffi
2

p
generate a smaller gray area enabling insertions e and r that create an

equilateral triangle and a 451 right triangle in the area bounded by sample nodes.
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vivj where vijðtÞ ¼ ð1�tÞviþtvj, 0rtr0. The functions defined on
the edges of the triangle τ that share a common vertex must have
the same spacing value at the shared vertex. Note that the function
gijðvijðtÞÞ is defined on the edge opposite to the vertex vk where
iaka j.

Let v1 correspond with ð1;0Þ, v2 with ð0;1Þ, and v3 with ð0;0Þ in
Eq. (3.3). Using the barycentric coordinates p¼ ðb1; b2;b3Þ defined
in Eq. (3.1), let b1 ¼ x and b2 ¼ y in Eq. (3.3). Associate the function
g32 on edge v3v2, where b1 ¼ 0, with Fð0; y=ð1�xÞÞ and let
t ¼ b2=ð1�b1Þ. Associate the function g31 on edge v3v1, where
b2 ¼ 0, with Fðx=ð1�yÞ;0Þ and let t ¼ b1=ð1�b2Þ. Associate the
function g21 on edge v2v1, where b3 ¼ 0, with Fðx=ðxþyÞ; y=ðxþyÞÞ
and let t ¼ b1=ðb1þb2Þ. With these correspondences Eq. (3.3)
becomes

FðpÞ ¼ ð1�b1Þg32 v32
b2

1�b1

� �� �
þð1�b2Þg31 v31

b1
1�b2

� �� �

þðb1þb2Þg21 v21
b1

b1þb2

� �� �

�b1g31ðv1Þ�b2g32ðv2Þ�ð1�b1�b2Þg31ðv3Þ: ð3:4Þ

The side-vertex method has an intrinsic drawback common to
many interpolation schemes. Whereas linear interpolation over a
triangle attains its extremal values at the vertices, the side-vertex
method can attain its extrema inside the triangle when the
extrema on the edges do not occur at the vertices. For example,
the early stages of inserting nodes into a boundary triangulation
can create nearly isosceles triangles with large base angles at
vertices on the boundary. Such triangles can be chosen for
inserting new nodes before these triangles have been destroyed
by previous insertions.

Fig. 2 illustrates an isosceles triangle (not to scale), where
v1 ¼ ð0; �1Þ, v2 ¼ ð0;1Þ and v3 ¼ ð tan ðθÞ;0Þ. The triangle has base
angles θ, π=4oθoπ=2 to guarantee that it contains its circum-
center and be eligible for insertion of a new node p. Let the
spacing values equal s at the vertices v1 and v2 on the boundary
and u at v3 where u4s. In Fig. 2 the cevians from vertices vi,
i¼ 1;2;3, through p intersect the opposite edges at si. Let the
spacing values at s1; s2 and s3 equal z; z and s, respectively. To
evaluate FðpÞ in Eq. (3.4) the symmetry of the isosceles triangle
and the constant spacing value s on the boundary produce

FðpÞ ¼ z�b3ðu�zÞ: ð3:5Þ

When u4z4s, even though as the base angle θ approaches π=2
the normalized shape ratio approaches zero so that the location of
p approaches the incenter and b3 approaches zero since
tan ðθ=2Þ= tan ðθÞ approaches zero, appropriate values of θ, u, z,
and s can easily imply FðpÞos. Due to this inequality, our
implementation of the side-vertex method imposes a lower bound
on FðpÞ in (3.5) to prevent p from receiving a spacing value lower
than the smallest spacing value at the vertices of the triangle
containing p. This lower bound, greater than or equal to the
minimum spacing value on the boundary triangulation, adds the
important benefit that nonlinear selective refinement must termi-
nate due to avoiding random loci of progressively smaller trian-
gles. To exceed this lower bound at a particular location either a
priori or a posteriori to initial mesh generation, insert an interior
node with a desired spacing value at a desired location. Section 4

contains an important application of mesh generation using an a
posteriori insertion.

3.3. Nonlinear edge functions

To produce nonlinear spacing values, the transfinite interpolant
in Section 3.2 requires nonlinear interpolations of the spacing
values at the endpoints of each edge in a triangle. Based upon
many experiments, we define edge functions that receive input
from the spacing values at the endpoints, from the length of the
edge and from a parameter that controls the density of nodes in
the mesh. We represent these functions with Bezier curves.

Denote the endpoints of an edge by v1 and v2 and let their
respective spacing values equal d1 and d2. Without loss in general-
ity suppose d1rd2 and the edge has length dlen. Unless the
boundary of the triangulation has a predetermined nonlinear
spacing function, if v1 and v2 are adjacent vertices on the
boundary then define a linear spacing function between v1 and
v2. An interior edge v1v2 has linear spacing only when
dlenrd1þd2. Otherwise split the edge at the midpoint or adap-
tively at

m¼ d1
d1þd2

v1þ
d2

d1þd2
v2: ð3:6Þ

At the point m define a spacing value dm by

dm ¼ d2þG
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d1dlen

p
; 0oG; ð3:7Þ

where G regulates the spacing values assigned to inserted nodes.
dm depends on dlen because the longer the edge the greater the
space between the nodes at the ends of the edge. dm should be
higher than d2 and should also depend on d1. A sufficiently high
G-value will prevent the insertion of any nodes. G¼1 can be such
a value.

On each normalized segment of the edge split by m, define a
cubic Bezier function:

B3ðtÞ ¼ b0ð1�tÞ3þb1ð1�tÞ2tþb2ð1�tÞt2þb3t3; 0rtr1: ð3:8Þ
Define functions B½1�ðtÞ and B½2�ðtÞ having control points b0, b1, b2,
b3, and b3, b4, b5, b6, respectively, as follows:

b0 ¼
0
d1

 !
; b1 ¼

w1

d1

 !
; b2 ¼

w1

dm

 !
; b3 ¼

1
dm

 !
ð3:9Þ

and

b3 ¼
0
dm

 !
; b4 ¼

w2

dm

 !
; b5 ¼

w2

d2

 !
; b6 ¼

1
d2

 !
: ð3:10Þ

Even though each function has repeated values in their coordi-
nates, d1, w1 and dm in B½1�ðtÞ and dm, w2 and d2 in B½2�ðtÞ, the two
segmented Bezier Curve maintains 2nd-degree continuity at the
join m. Locating these control points close to m enhances the
ability of G in Eq. (3.7) to regulate the number of inserted nodes.

The evaluation of the Bezier curve defined on an edge vivj
begins by parameterizing the edge starting from the vertex with

Fig. 2. I, CC and P denote the incenter, the circumcenter and the insertion point,
respectively, in the special case of evaluating Eq. (3.4) with edge v1v2 on the
boundary and spacing value at v3 greater than at v1 and v2 .

Fig. 3. The circles denote Bezier points used to define the edge function on edge
v1v2 with an adaptive breakpoint m and unequal spacing values at its endpoints
and G¼ 1=8.
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the smallest spacing value. Fig. 3 shows an edge function with an
adaptive m when w1 ¼ 15=16, w2 ¼ 1=16 and G¼ 1=8. Note how
much of the edge function lies below the gray line that indicates
the spacing values of a linear edge function. The flatness at the
ends of the Bezier curve contributes to the smooth transition of
spacing values calculated along edges sharing a common node.

To evaluate B½1�ðtÞ and B½2�ðtÞ at x on an edge v1v2 of length dlen,
let ‖v1�x‖¼ dx and tx ¼ dx=dlen. Letting t ¼ tx=tm, where tm equals
1/2 when m lies fixed at the midpoint of edge v1v2 and equals
d2=ðd1þd2Þ when adaptively locating m on edge v1v2, evaluate
B½1�ðtÞ if 0rtxrtm. Otherwise, let t ¼ ðtx�tmÞ=ð1�tmÞ and evalu-
ate B½2�ðtÞ.
Remark. Different nonlinear triangular interpolants and edge
functions such as higher order finite elements can be applied to
generate nonlinear graded meshes.

3.4. Algorithm for nonlinear Delaunay graded meshes

� Initializations
Create a Delaunay boundary triangulation.
Create a list of acute triangles.
Assign each boundary node a spacing value equal to dividing
its minimum distance to all other boundary nodes by

ffiffiffi
2

p
.

(The spacing value at a node defines the radius of a disk
centered at the node within which no other node may be
inserted.)
Choose a G-value, 1

8rGr 1
32.

� Incremental Delaunay insertions (Repeat until the list of acute
triangles is empty.)
Choose the first triangle in the list of acute triangles.
Using the normalized shape ratio ρ, ρ¼ 2r=R, and linear
interpolation giving weight ð1�ρÞ to the incenter and ρ to
the circumcenter define a new node in the acute triangle.
Test whether the node lies inside any of the discs centered at
the vertices of the triangle.
If the new node lies in any of the discs eliminate the triangle
from the list and choose the next acute triangle.
Otherwise, evaluate Eqs. (3.6)–(3.10) to determine the
nonlinear spacing interpolation function along each edge of
the acute triangle.
Assign the new node its spacing value by evaluating Eqs. (3.3)
and (3.4) without exceeding the lowest spacing value at the
vertices.

Insert the new node into the triangulation and reinitialize the
list of acute triangles.

� Perform Laplace Delaunay Smoothing.

Remark. This algorithm produces nonlinear graded Delaunay
meshes implemented as an iterative method. A slight simplifica-
tion in the algorithm can produce a stationary method by using the
triangles in the boundary triangulation to assign a spacing value to
every new node. In this case the boundary triangle containing a
new node in a current acute triangle determines the spacing value
of the new node. This dependency on the boundary triangulation
has the advantage of not requiring a lower bound on the nonlinear
interpolation in Eqs. (3.4) and (3.5). However, the dependency
echoes initial boundary triangulations and produces patchy trian-
gulations that necessitate using the iterative algorithm.

4. Nonlinear Delaunay graded meshes

This section begins by discussing the iterative implementation
of the algorithm in Section 3.4 along with numerical characteriza-
tions of graded meshes. The section then illustrates nonlinear
Delaunay graded meshes with examples that improve FEM ana-
lyses for continuum and structural mechanics in the automotive
industry.

4.1. Implementing and quantifying nonlinear Delaunay graded
meshes

The iterative algorithm in Section 3.4 depends on searches for
acute triangles in current triangulations. Depending on data struc-
tures, the searches can be very efficient. Choosing the first available
versus the worst shaped acute triangle does make a difference. The
latter only needs to update an ordered current list of worst acute
triangles and calculate a “worst” criterion for each new acute
triangle produced when inserting a new mesh into the current
mesh. However, the worst triangle approach tends to generate
noticeably inferior meshes. The first available strategy tends to
spread the insertions of new nodes from places where better
triangles already exist. We chose the first available triangle option.

Meshes with higher G-values produce less dense meshes with
steeper gradations. Meshes with lower G-values become increas-
ingly uniform. Meshes with fixed midpoints produce predomi-
nantly uniform interior meshes. To obtain comparable numbers of

Fig. 4. Meshes of a standard automotive part generated by (a) linear selective refinement and (b) nonlinear selective refinement using G¼ 1=16 and adaptive midpoints have
1056 and 447 internal nodes.
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elements using fixed and adaptive midpoints, meshes using fixed
midpoints require lower G-values.

The spacing at a node (different from its spacing value)
measures the minimum length of all edges connected to the node.
Since the minimum spacing, the shortest edge in a mesh, can differ
substantially from the maximum spacing, the largest spacing in a
mesh, define the global spacing factor as the maximum spacing
divided by the minimum spacing. Large global spacing factors
imply steeper gradations from high densities to low densities of
elements. For a mesh with a uniform distribution of boundary
nodes a global spacing factor up to 10 typically indicates that the
mesh should have a good gradation of elements. Global spacing
factors less than 5 indicate smaller variations in mesh density and
more uniformly shaped elements. The global spacing factor can be
used to choose appropriate G-values in Eq. (3.7) by iterating G
until achieving a predetermined global spacing factor.

The boundary spacing factor limits the calculation of the global
spacing factor to boundary nodes. For meshes with boundary
spacing factors larger than 5, global spacing factor larger than 10
can also indicate well graded meshes. When a global spacing
factor becomes very large, dividing the maximum spacing by the
largest boundary spacing yields a quotient comparable to global
spacing factors for meshes generated from uniform boundary
spacings. Call this quotient the adjusted global spacing factor.
Adjusted global spacing factors less than 10 tend to indicate good
mesh gradations.

In Section 3.3 splitting edges of a triangle either in two equal
lengths or adaptively as defined in Eq. (3.6) provide distinct fixed
and adaptive types of nonlinear Delaunay refinements. These
splittings led to investigating four versions of nonlinear Delaunay
refinements, a stationary and an iterative method each with fixed
midpoints or adaptive breakpoints. In each version investigations
included appraising good G-values for dm in Eq. (3.7) and for the
control points in Eqs. (3.9) and (3.10). We recommend an iterative
method, adaptive breakpoints, G-values between 1/8 and 1/32 in
Eq. (3.7), and control points w1 ¼ 15=16 and w2 ¼ 1=16.

4.2. Examples and comparisons

In the automotive industry parts often change daily due to new
designs and engineering analyses. Since a part change frequently
engenders further analyses and changes to interdependent parts and
since vehicles have thousands of parts, any speedup through fewer
elements and graded meshes mirroring adaptivity in each of the
myriad analyses accumulates to significant cost savings. Initial meshes
with good quality boundary elements and fewer interior elements are
advantageous in this endeavor. The first two examples compare
nonlinear Delaunay grading with the linear selective refinement
algorithm [12] used for initial meshes of automotive parts.

Fig. 4 presents two initial meshes of a typical flat thick
automotive metal part. The mesh on the left created with linear
selective refinement has 1056 internal nodes. The mesh on the
right created with nonlinear Delaunay using a G-value of 1/16 has
447 internal nodes for a nodal reduction of 57.67%. In the left mesh
the elements have an average NSR-value of 0.95 and the lowest
NSR-value of an element equals 0.59. By comparison the average
NSR-value in the right mesh equals 0.94 and the lowest NSR-value
of an element equals 0.62.

Analyses of sheet metal forming in the automotive industry
provided the motivation for linear selective refinement, see [12,
Figs. 8–11] which departs from the linearity of the basic algorithm
presented in Section 2 to produce quadratic variation in mesh
density in limited situations. Other authors use changes in local
metrics to produce nonlinear local variation in mesh density, see
Borouchaki et al. [18] for example. The algorithm in Section 3 for
generating nonlinear graded meshes provides a simpler alternative

for complex geometries. The following example examines a stamped
sheet metal template used for testing bending radii, meshes and
FEM software. In this example inner boundaries determining the
location of bends demonstrate the easy control of local mesh
densities. Compute the spacings for internal boundary nodes as
ordinary boundary nodes, that is, use the minimum distance to their
neighbors in the boundary triangulation to compute their spacing
values.

As the mesh in Fig. 5(a) shows, the linear selective refinement
in [12] produces a very dense interior mesh that does not
distinguish where bending occurs. In addition to the 239 inner
and outer boundary nodes, this mesh contains 2460 internal
nodes. The complexity of bending in this normative template
overwhelmed the limited application of quadratic variation in [12].

Fig. 5(b) displays the result of a nonlinear graded mesh
generated using G¼ 1=16. The mesh not only identifies the
delineation of severe bending radii at internal boundaries but it
also delivers a substantial similarity to an adaptively refined mesh.
Whereas a comparable proprietary adaptive mesh produced by

Fig. 5. Mesh (a), generated by linear selective refinement, and mesh (b), generated
by nonlinear selective refinement, illustrate initial meshes for analyzing stamping
sheet metal blanks.
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FEM software contained many noncompatible elements, Fig. 5
(b) contains only Delaunay triangles. 723 internal nodes have been
inserted in this nonlinear graded mesh for a 70.6% reduction in the
number of internal nodes. The elements have an average NSR-
value of 0.93 with one outlier element having the lowest NSR-
value of 0.39, see [28, Fig. 2a] to visually track along a level curve
all triangles having this acceptable NSR-value. This mesh has a
global spacing factor of 16.65 and an adjusted global spacing factor
of 2.46. Although the graded meshes in previous figures were
generated with G¼ 1=16, generating meshes with G¼ 1=8 had
desirable quality as well.

A particularly troublesome ad hoc task for engineers occurs
when analyses suggest the addition of spot welding to enhance
bonding of sheet metal with adhesives. Engineers routinely
increase mesh densities manually at locations of the spot welds
and occasionally return to the original mesh to move the locations
of the spot welds. Since the use of Delaunay meshes has become
commonplace, nonlinear Delaunay grading easily resolves this
tedious and very time consuming chore.

The meshes displayed in Fig. 6 show three phases in this
resolution. Fig. 6(a) shows a Laplace Delaunay smoothed mesh
into which a welding spot will be introduced. The light gray area in
Fig. 6(b) denotes the polygon surrounding the welding spot; the
dark triangle could be replaced by a different Delaunay triangu-
lated shape. If a node in the original triangulation lies too close to
the weld, a distance less than the diameter of the weld, then it
should be removed. Its removal poses no difficulty because a
Delaunay retriangulation of its insertion polygon, the vertices
connected to the node, preserves the Delaunay triangulation. Such
a node must be removed before inserting the vertices denoting the
spot weld.

Fig. 6(c) displays the results of the third phase. In this phase
since the mesh in Fig. 6(a) has been Laplace Delaunay smoothed,
recalculate the spacing values at each vertex in Fig. 6(b). Next,
replace the spacing values at the vertices of the polygon surround-
ing the spot weld to the maximum spacing value at the vertices
defining the spot weld. Last, continue creating a nonlinear Delau-
nay graded mesh.

5. Conclusions

An algorithm has produced nonlinear graded Delaunay meshes
using a novel combination of a nonlinear triangular interpolant and
Bezier curves. Meshes with steep gradients in nodal density have
been automatically created with one parameter controlling nonlinear
distributions of densities from locations where geometry and physics
demand fine densities to areas needing fewer nodes.

A nonlinear interpolant controls the gradation of triangles
through Bezier edge functions dependent on edge lengths, spacing
values at the endpoints and a fixed G-parameter. Breakpoints at
the center of edges give relatively uniform interior meshes versus
adaptive breakpoints which yield greater global mesh gradations.
Adaptive breakpoints and G-values between 1/8 and 1/32 have
been recommended for well graded meshes. Initializing a mesh
with artificial interior boundaries and singleton vertices with
preassigned spacing values establishes local mesh densities. The
method and framework of the algorithm accommodates different
nonlinear triangular interpolants and nonlinear edge functions.

New nodes cannot be inserted inside any circular disc defined
by a radius equal to the spacing value of its nodal center. The
minimum number of discs whose radii equal the least spacing
value of a boundary node that can cover the meshing domain
provides a upper bound on the number of nodes that nonlinear
selective refinement can insert. Therefore the algorithm must
terminate.
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