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Abstract
We study the propagation of non-diffracting images in kagome photonic lattices. In a
weak-coupling regime (discrete approach), the linear spectrum is composed by only three
bands, including a completely degenerated and flat one. The states forming this special band
are well localized in space and constitute building blocks for this lattice. By linearly
combining these non-diffractive fundamental modes, different shapes can be composed and,
therefore, a given image will propagate without distortion. As an example, we compare the
linear propagation of a particular image for kagome and rectangular lattices. At the end, we
test our concept by performing numerical simulations in a continuous kagome potential.

Keywords: waveguide arrays, diffraction-free propagation, image transmission, flat band
systems
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(Some figures may appear in colour only in the online journal)

1. Introduction

The propagation of diffraction-free beams has been an
important subject of research in physics. A solution for
this problem was suggested in 1987 [1] by using the
concept of Bessel beams. These solutions are formed by
coherently combining several plane waves possessing the
same longitudinal propagation constants. On the other hand,
photonic lattices have emerged as key setups to study
fundamental aspects of linear and nonlinear wave dynamics of
periodic and aperiodic systems. Nowadays, diverse topologies
and geometries are fabricated or induced by very controlled
and accessible techniques [2, 3]. Diffraction-free image
transmission is an important area of research where the
fundamental properties of waveguide arrays can be used
for concrete applications. The connection between image
transmission and waveguide arrays was explored in [4] by
studying the propagation of extended non-diffracting beams in
a two-dimensional (2D) square photonic lattice. For example,
in [5] the authors proposed, theoretically and experimentally,
waveguide arrays with a segmentation in the propagation
coordinate allowing robust image reconstruction. Diffraction-
free transmission of complex light patterns has been
proposed, and experimentally observed, by implementing a

modulation of the refractive index along the waveguides
in laser-written [6] as well as photo-induced [7] photonic
lattices. Reference [8] explores the propagation of complex
stable solitons in 2D lattices, as nonlinear transmission of
images of arbitrary shape. Very recently, image transmission
has been studied by using the properties of disordered
one-dimensional lattices applying the concept of self-imaging
by segmentation [9]. In addition, high-fidelity quantum
transport has been observed in photonic lattices [10], by
designing a very specific coupling dependence.

Kagome lattices (see figure 1) have been historically stud-
ied as a model for geometrically frustrated magnetism [11]
and for presenting flat bands [12]. These lattices have been
implemented only very recently in different contexts of
physics like electronics [13], ultracold atoms [14] and/or
plasmonic [15]. In the context of photonic lattices, a
refraction index pattern with a kagome geometry was already
implemented in optically induced lattices [16], and could be
implemented as well in femtosecond laser-writing waveguide
arrays [17].

Flat band systems possess at least one band that is
completely flat or thin compared to the next energy gap.
Light propagating in such a system will experience zero
or very low diffraction, as a consequence of an abrupt
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Figure 1. A kagome photonic lattice composed by a set of ordered
optical waveguides. Nearest-neighbor interactions are represented
by lines connecting waveguides.

reduction of the dispersion coefficient. The idea of having a
flat region in the linear spectrum, to cancel the diffraction of
beams and/or images, was numerically suggested in [18, 19],
and experimentally observed in [20], for specially designed
photonic crystals. More recently, a non-diffractive regime was
suggested for photonic crystals presenting a modulation in
the propagation direction [21], including the observation of
two-dimensional image transmission.

In this paper, we propose a novel scheme for transmitting
non-diffracting images by using the particular properties of
a kagome photonic lattice. The band structure of this lattice
includes a flat band with zero diffraction. The localized modes
belonging to this band can be linearly combined to form
different images and a perfect transmission of any constructed
pattern is observed for arbitrary long propagation distances.
We compare our findings with typical rectangular lattices to
emphasize the particular properties of kagome systems. At
the end, we corroborate our results with continuous numerical
simulations considering a kagome optical potential.

2. Discrete model and linear spectrum

In the coupled-mode approximation (discrete approach),
the evolution of the field amplitude along a normalized

propagation direction z, in a defined lattice, is described by
a discrete Schrödinger equation [2, 3]:

− i
∂uEn
∂z
=

∑
Em

VEn, Emu Em, (1)

where uEn represents the field amplitude at site En of a 2D
kagome lattice. The coupling function

∑
EmVEn, Emu Em defines the

lattice structure by describing the linear interactions between
uEn and its nearest neighbors (represented by lines in figure 1).
The optical power, defined as P ≡

∑
En|uEn|

2, is a conserved
quantity of model (1). We use the participation ratio

R ≡ P2
/∑
En

|uEn|
4, (2)

to characterize the effective size of the wavepacket. R is an
indicator of how many lattice sites are effectively excited in a
particular array. For an excitation having M equal amplitudes
and a zero background (surrounding sites), R = M.

Linear solutions are obtained by solving model (1) with
a stationary ansatz of the form uEn(z) = uEn exp(iλz). The
parameter λ defines the longitudinal propagation constant
or spatial frequency. We obtain the linear spectrum by
considering the unit cell of the lattice, corresponding to
any triangle of three sites in figure 1. We construct the
corresponding 2D Ek vectors by considering a lattice constant
equal to 1 between nearest-neighbor sites, obtaining the
following dispersion relation [12]:

λ(kx, ky) = −2, 1±
√

1+ 8f (kx, ky), (3)

where f (kx, ky) ≡ 1 + cos2(kx/2)[2cos2(kx/2) − 3]
+ cos2(

√
3ky/2)[2cos2(kx/2) − 1]. Figure 2(a) shows a 3D

plot of the band structure in the first Brillouin zone. The
upper and lower bands are connected at λ = 1 by six Dirac
points located at the vertices of the Brillouin zone. The third
band corresponds to a completely degenerated and flat band,
located exactly at λ = −2 (this band coincides with the region
defined as the first Brillouin zone in figure 2(a) corresponding
to a hexagon with vertices defined as f (kx, ky) = −1/8).

(b)

(a)

Figure 2. (a) Band structure of a kagome lattice in the first Brillouin zone. (b) Example of a ring mode of amplitude A belonging to the flat
band λ = −2.
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Figure 3. (a) Input |uEn(0)|2 and (b) output |uEn(zmax)|
2 power profiles for a kagome lattice. (c) Input and (d) output power profiles for a

square lattice. (e) and (f) R versus z for a kagome and a square lattice, respectively.

This flat band is formed with as many states as the number
of closed six-site rings in the lattice. These states are called
‘ring’ modes [22] and possess six peaks with equal amplitude
but alternating phase (sign), with a strictly zero background
(see figure 2(b)). These linear modes are independent of the
system size, being very well localized in the lattice (R = 6).
In general, all linear modes of any homogeneous periodic
lattice are completely extended [2, 3]. However, a particular
feature of a flat band system is the possibility to construct
very localized eigenmodes as a destructive linear combination
of extended linear wavefunctions [12]. In the kagome case,
the flat band possesses extended staggered loop states. Ring
modes are formed by linearly combining these loop states,
preserving their frequency and generating a very localized
profile.

3. Image transmission

These modes constitute ‘building blocks’ in our image
propagation scheme and we will write them as Kc

En, where
c defines the center position of the ring mode. Any linear
combination of them will form an exact linear stationary
solution of the system that will propagate without diffraction
for any given distance:

uEn(0) =
∑

c
Kc
En → |uEn(z)|

2

=

∣∣∣∣∣∑c
Kc
En exp(−2iz)

∣∣∣∣∣
2

= |uEn(0)|
2,

i.e., a constant pattern (image). All the ring modes belonging
to this special flat band possess a zero group velocity and zero
diffraction coefficient. This guarantees that the images will
propagate along the propagation direction without destroying
and will be completely immobile across the lattice.

We take advantage of this property and focus on the
propagation of an image formed as a combination of several
ring modes. Any wished symbol or image will propagate
stably along the propagation coordinate because they generate
a perfectly coherent linear combination. For example, we
construct the word ‘GONL’ as an initial condition (see
figure 3(a)) by linearly combining 35 ring modes. The
profile has 144 amplitudes of alternating signs, with zero
amplitude sites in the superposition region. We propagate
this image along the lattice up to, in this example, zmax =

1000. In figure 3(b) the output profile shows, as predicted, a
diffraction-free image transmission without any distortion. By
inspecting the evolution of the participation ratio (figure 3(e)),
we observe that there is no single change in the profile,
with a constant value of R = 144 along z. In principle,
the propagation of any shape is possible, but considering
the special topology of the lattice and the possible ways to
combine building blocks. As soon as our lattice possesses
one closed ring, a ring mode will be a stationary solution
of the system with λ = −2. Therefore, the possibilities of
transmitting composed images will depend on the number of
closed rings present in the lattice with no size effects affecting
our scheme.
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For comparison purposes, we propagate the same word
(but different structure) in a homogeneous rectangular lattice
(see figure 3(c)), which is a common framework in different
contexts of physics [2, 3]. This type of lattice has no
degenerated band and no localized building block mode. All
the linear modes belong to a unique band and are completely
extended (∼sin kxn · sin kym). The only possible pattern to be
observed during propagation, independent of the word and its
structure, corresponds to a combination of discrete diffraction
patterns [23], as shown in figure 3(d). If we take a look
at the evolution of R in figure 3(f), we observe a complete
destruction of the initial image. Different spatial frequencies
are excited in the dynamics (non-coherent profile), resulting
in a strong diffraction and distortion for square lattices.
Therefore, no well defined (localized) diffraction-free images
can be propagated in this type of lattice.

3.1. Image transmission: continuous approach

Our previous results, based on the discrete model (1),
assumed an array of weakly interacting waveguides. From an
experimental point of view, that approach matches perfectly
to the experiments developed in fabricated lattices [17],
where the effective coupling between waveguides is weak
and second-order interactions are negligible. However, when
thinking on induced lattices [16], presenting a continuous
periodic potential, this approach is not valid anymore.
Therefore, in order to study how robust our results on image
transmission are, we study the propagation of ring modes
and images by using a continuous approach. We consider
a Schrödinger-type paraxial wave equation, including a
transversal periodic modulation of the normalized refractive
index, given by [4]

i
∂ψ

∂z
+

1
2
∇

2
⊥
ψ + V(x, y)ψ = 0, (4)

where ψ(x, y, z) corresponds to the slowly varying amplitude
of the optical field and ∇2

⊥
≡ ∂2

x + ∂2
y is the transversal

Laplacian operator. V(x, y) ≡ V0f (x, y) defines the optical
potential, V0 being the lattice depth (proportional to the
refractive index contrast) and

f (x, y) =
[
cos(y)− cos

(√
3x/2

)
cos(y/2)

]2

+ 3sin2
(√

3x/2
)

sin2(y/2),

a kagome lattice structure [16]. The discrete approximation
(1) is recovered for deep potential wells (large V0), where
the tunneling between lattice sites is weaker and only
nearest-neighbor interactions are relevant. The periodic
potential V(x, y) implies a complete band structure and
not only three bands as in the discrete approximation (1).
Therefore, it becomes important to study how robust the ring
modes and their combinations are, and the persistence of
the flat band phenomenology. To characterize solutions, we
compute R by replacing sums by integrals in expression (2) as
a measure of the size of a particular profile. To facilitate our
analysis, we normalize this value to the value of a Gaussian
excitation in a single potential well (Rg), defining R̄≡ R/Rg as
an indicator of how many lattice ‘sites’ are effectively excited.

Figure 4. (a) R̄ versus z for a ‘ring’ input condition (horizontal
black line indicates R̄(0)). Insets (a1)–(a3) show output power
spatial profiles for the parameters indicated in (a). (b) Normalized
frequency spectrum. V0 is indicated in the figures.

We solve model (4) by using a beam propagation
method (BPM) based on the fast-Fourier transform split-step
numerical algorithm. The second-order derivative terms in x
and y are solved analytically in Fourier space. Consequently,
we apply periodic boundary conditions in x and y. The linear
term in the equation was solved, in real space, by using
a fourth-order Runge–Kutta method. In order to study the
possibility to propagate ring mode profiles in a continuous
context, we defined a normalized propagation distance zmax,
which depends on the lattice depth. For a given value of
V0, zmax is defined as the longitudinal distance for which
a single Gaussian excitation (R̄ = 1), initially centered in a
potential well, diffracts across the whole system (R̄ ∼ 70).
To mimic a discrete ring mode, such as the one shown in
figure 2(b), we construct an initial profile by superposing six
Gaussian beams (R̄ = 6), with alternating phases, distributed
at the first potential wells around the center of the lattice (see
figure 4(a1)). Thus, the initial condition is written as

ψ(Er, z = 0) = ψ0

6∑
l=1

e−0.5|Er−Erl|
2
eiπ l, (5)
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Figure 5. R̄ versus z for a ‘C’ input condition for V0 indicated in the figure. Insets show power spatial profiles at (a) z = 0 and (b)–(c)
z = 1000.

where ψ0 is the amplitude of each Gaussian beam and
Erl corresponds to a transversal lattice position for which
V(Erl) is a minimum. We explore different V0 values and
study the evolution of the normalized participation ratio as
a measure of the stability and robustness of the propagating
profile. In figure 4(a) we show our results for the initial
configuration shown in figure 4(a1). For shallow lattices, we
observe that the ring profile tends to diffract, increasing its
participation ratio faster (as an example, see figure 4(a2)).
Nevertheless, we observe that the ring profile is strongly
preserved accompanied by the excitation of other linear
modes. However, once the potential is strong enough, the light
is better trapped in each potential well (see figure 4(a3)),
observing an almost perfect propagation of the ring mode.
In general, we observe a stable propagation of ring mode
profiles for all tested V0, but enhanced for deeper lattices.
To complement our analysis, we computed a longitudinal
frequency spectrum by implementing a Fourier transform
along the propagation coordinate [24]. This analysis gives us
the longitudinal excited frequencies as a direct manifestation
of the band structure. In figure 4(b) we show the frequency
spectrum for different V0 values. We identify a well defined
single peak as evidence of the excitation of a flat band. We see
how this peak becomes thinner, and the following right-side
gap wider, for an increasing value of V0, fulfilling the flat band
definition requirements. Therefore, even though the flat band
has a nonzero width in a continuous model, their states have
an almost equal propagation constant and small transversal
velocities (weak dispersion). This is a necessary ingredient
for approaching the diffraction-free image regime predicted
for a discrete model. For all tested values, the flat band was
effectively excited with the initial condition (5), which is
indeed a non-stationary mode of model (4).

Finally, we prove the concept of image transmission
explored in figure 3 by combining several ring modes (5) and
studying their propagation (see figure 5). As an example, we
explore the propagation of a letter ‘C’, formed by linearly
combining 9 ring profiles (see figure 5(a)) for two deep optical
potentials. We observe how the participation ratio initially
decreases due to mode adjustments in each potential well.

Then, R̄ starts to increase due to the excitation of different
linear propagating modes, belonging to different bands of
the system. For V0 = 0.85, the image tends to destabilize
faster, keeping only some features of the initial letter (see
figure 5(b)). By increasing the potential depth to V0 = 1,
we observe a stable propagation of the letter with a very
slow increment of the normalized participation ratio. For
zmax = 1000, we observe that the initial image continues
propagating very stably (see figure 5(c)), with only small
linear waves in the surroundings. In order to propagate a more
complex image/pattern (composed by several ring profiles),
we will require to consider a larger system, to avoid reflection
at borders that could affect the image stability and deeper
potential wells to guarantee a stable propagation.

Finally, when considering nonlinearity, for example a
Kerr-like medium, we observe two very different regimes.
For a focusing nonlinearity, the effective frequency of the
profile shifts from λ = −2 to larger values, therefore crossing
the linear bands and interacting with the modes belonging to
them, which finally produces an increment of the effective
size of the wavepacket [24]. On the other hand, when the
nonlinearity is negative the effective frequency of the profile
decreases and enters into the gap, tending to localize the light
and, therefore, decreasing the effective size of the profile.
However, nonlinear ring modes are stable only for very low
levels of power [22], so therefore a combination of multiple
rings must promote the destruction of the image for larger
powers (increasing nonlinear effect).

4. Conclusions

In conclusion, we have shown that a linear kagome lattice
allows transmission of non-diffracting images. The key
ingredient is the understanding of the localized ring modes
belonging to the flat band (truly flat in a discrete model
and thin in a continuous one) of this lattice. Any linear
combination of these modes will form a given image that
can be transmitted along the waveguide array. Our results
show that our prediction based on a discrete model can
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be extrapolated to deep continuous lattices. Our concept
could have a strong impact in linear transmission schemes,
suggesting the propagation of arbitrary images for very low
levels of power, which is certainly a very important issue
for all-optical applications. It is worth mentioning that these
ideas could also find a direct application in hollow fiber
transmission systems [25]. Finally, similar properties could be
explored in wire metamaterials [26], increasing the diversity
of possible applications.
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