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A kinetic description of Alfvén-cyclotron magnetic fluctuations for anisotropic electron-proton
quasistable plasmas is studied. An analytical treatment, based on the fluctuation-dissipation theorem,
consistently shows that spontaneous fluctuations in plasmas with stable distributions significantly
contribute to the observed magnetic fluctuations in the solar wind, as seen, for example, in [S. D. Bale
et al., Phys. Rev. Lett. 103, 211101 (2009)], even far below from the instability thresholds. Furthermore,
these results, which do not require any adjustable parameters or wave excitations, are consistent with the
results provided by hybrid simulations. It is expected that this analysis contributes to our understanding of
the nature of magnetic fluctuations in the solar wind.
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Magnetic field fluctuations associated with collisionless
dissipation is a fundamental topic in space and astrophysi-
cal plasmas. In these environments, the time scale for
energy exchange due to Coulomb collisions τc can often
be much larger than the characteristic time scales of
wave-particle interactions and plasma microinstabilities.
Consequently, in such cases, collisions are not frequent
enough to keep particle distributions near a Maxwellian. In
particular, in the solar wind, where the tenuous plasma is
mostly not at local thermodynamic equilibrium (LTE),
in situ measurements of the proton velocity distribution
functions (VDF) show that deviations from LTE can be
represented by bi-Maxwellian VDFs with different temper-
atures T∥ and T⊥ relative to the mean magnetic field B0 [1].
Indeed, in the past few years, there has been quite a lot of
interest about the statistics of solar wind as a function of
the plasma beta β∥ ¼ 8πnkBT∥=B2

0 and the anisotropy
T⊥=T∥, and, in particular, about the magnetic fluctuations
as shown for example in Ref. [2]. Here, n is the proton
density.
In this Letter, we present an analytic kinetic description of

Alfvén-cyclotron fluctuations in an anisotropic, but quasi-
stable, electron-proton plasma close and below the linear
instability thresholds. Using the fluctuation-dissipation
theorem [3–6], we show that spontaneously generated
magnetic field fluctuations follow the same (β∥, T⊥=T∥)
pattern as those observed in the solar wind as presented
in Fig. 1(b) of Ref. [2], thus representing the final state of
the collisionless relaxation of proton anisotropy. As far as
we know, this is the first theoretical model that addresses
the problem of fluctuations as a function of thermal
anisotropy with respect to a background magnetic field

in quasiequilibrium plasmas, thus providing an analytic
account for such observations.
Although several previous works show that the proton

VDFs can sometimes be more complicated than bi-
Maxwellians, for example, displaying a clear core and
beam [7], in what follows we will assume a bi-Maxwellian
VDF since the measurements we analyze below are
organized in terms of these two parameters, namely T∥
and T⊥. The theory of thermally induced fluctuations for
more complicated VDFs will be considered elsewhere.
To characterize the plasma, we note that Coulomb

scattering and pressure-anisotropy instabilities are well-
known kinetic mechanisms for shaping particle distribu-
tions towards more isotropic states (T⊥ ≈ T∥). However,
whenever the ratio of τc to the expansion time of the solar
wind τe is smaller than one, collisional relaxation becomes
ineffective in establishing LTE [8]. Indeed, the relative
importance of Coulomb collisions in isotropization of
protons has been estimated in detail using a large data
set of independent observations from theWind spacecraft at
1 AU [2]. Classifying the data according to the collisional
age parameter τ ¼ τe=τc [9,10], it has been shown in
Refs. [2,11] that old parcels of solar wind plasma
(τ ≫ 1) contain isotropic and Maxwellian proton VDFs.
In contrast, young parcels exhibit anisotropic VDFs, such
that T⊥=T∥ ≠ 1, confirming that anisotropic plasmas are
relatively collisionless.
It is known from linear Vlasov theory that the anisotropic

proton VDFs in the low-collisional plasma parcels can
become unstable to microinstabilities and drive electro-
magnetic fluctuations. In turn, the resulting growing waves
scatter particles and the plasma would then be constrained
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close to marginal states [12,13]. The anisotropy-driven
kinetic instabilities, which are probably most important for
regulating the proton VDFs, are the Alfvén cyclotron and
oblique mirror instabilities when anisotropy T⊥=T∥ > 1,
and the parallel and oblique firehose instabilities when
T⊥=T∥ < 1. Measurements, both in the solar wind and
laboratory, show that the predicted thresholds from linear
theory and computer simulations represent observable
bounds on VDFs anisotropies [14]. The corresponding
instabilities are characterized by the proton temperature
anisotropy T⊥=T∥ and the proton parallel plasma β∥. In the
(β∥, T⊥=T∥) plane, it appears that for β∥ ≥ 1, the exper-
imental data are bounded by the oblique mirror and firehose
instabilities, and that the observed range of T⊥=T∥ values
narrows for increasing values of β∥ [2,7,14–16].
Although linear theory can describe the empirical

bounds for proton anisotropies, a significant number of
data points are localized far below from the unstable
boundaries. Such sites in the (β∥, T⊥=T∥) plane correspond
to relative stable VDFs so that according to the linear
theory, no wave activity from instabilities should be
expected. However, power of magnetic fluctuations with
small amplitude is perfectly detectable from samples of
solar wind plasmas [2], raising, thus, the question of how
these fluctuating fields originate. In principle, according to
linear theory, these fluctuations should damp exponentially
and, therefore, they should not be detectable. But linear
theory fails to describe the proper competition between a
nonlinear transfer and dissipation which may preserve these
fluctuations. An alternative approach is to consider the
linear stability as an initial value problem, in which
transient growth of small initial perturbations can scatter
particles, reaching at the end a state with finite fluctuations
far from the linear instability thresholds [17].
Spontaneous fluctuations are a fundamental and ubiqui-

tous feature of many-body systems, and of particular
importance to many laboratory and space plasmas (e.g.,
Refs. [18,19]). The connection of stable VDFs and sponta-
neous emission of Alfvén-cyclotron fluctuations was
already suggested in Refs. [20,21]. However, a quantitative
description of the relation between the magnetic fluctuation
intensity and the corresponding parameters in the
(β∥, T⊥=T∥) plane has so far not been available. A variant
considers an ensemble of initially unstable states in novel
quasilinear simulations with local B field intensity varia-
tions [22]. They found that distribution of the saturated
states qualitatively reproduces the anisotropy-beta relation-
ship. A similar result can be recovered if an imposed level
of magnetic field fluctuations is used in Vlasov simulations
[23]. Although complementary to the present Letter, these
findings cannot explain the inherent thermal fluctuations,
since a large wave amplitude must be excited first.
Hence, we now construct an analytic description of the

thermally induced fluctuations. We assume transverse
electromagnetic fluctuations propagating along the average

magnetic field B0 in a homogeneous plasma of bi-
Maxwellian protons and cold electrons. Then, the trans-
verse part of the Fourier-transformed Maxwell equations
reduces to

Λð0Þ
� E� ¼ 4π

iω
J�; ð1Þ

where E� ¼ Ex � iEy and J� are the transverse electric
field and total transverse current; Λð0Þ

� ¼ 1 − c2k2∥=ω
2; and

ω and k∥ are the usual wave frequency and wave number,
respectively.
Following Sinteko’s approach [5], we assume that J� is

proportional to E� þ ~e�, where ~e� can be understood as a
microscopic or secondary electric field. We then obtain

E� ¼
�
Λð0Þ
�

Λ�
− 1

�
~e�; ð2Þ

where Λ� is given in Ref. [24] as

Λ� ¼ 1 −
c2k2∥
ω2

þ ω2
p

ω2

�
Aþ ðξþ Aξ�ÞZðξ�Þ �

ω

Ω

�
: ð3Þ

Here, ω2
p ¼ 4πe2n=m is the square of the proton plasma

frequency, Ω ¼ eB0=mc is the proton cyclotron frequency,
m is the proton mass, ξ ¼ ω=k∥u∥, ξ� ¼ ðω� ΩÞ=k∥u∥,
u2∥ ¼ 2kBT∥=m is the square of the parallel thermal speed,
and A ¼ T⊥=T∥ − 1 is a measurement of the proton
thermal anisotropy. ZðξÞ is the standard plasma dispersion
function [25]. Λ� ¼ 0 represents the dispersion relation for
transverse waves. Following the indications of Ref. [26]
p. 254, the average of E� over the phase space of the
system near our quasiequilibrium, with different temper-
atures T⊥ and T∥, can be written in terms of the correlation
function as

E� − E�
� ¼ −

1

kBT⊥
½hJþE�

�i~eþ þ hJ−E�
�i~e−�: ð4Þ

Combining Eqs. (1), (2), and (4), and using the Maxwell-
Faraday equation jB�j ¼ ðck∥=ωÞjE�j, then the classical
(dimensionless) spectral distribution of transverse magnetic
field fluctuations can be expressed as

nΩ
B2
0

hjB�j2i ¼ −β∥
T⊥
T∥

c2k2∥Ω
ω3

Im

�
1

Λ�

�
: ð5Þ

The longitudinal magnetic fluctuations are identically
zero for parallel propagation. Notice that for thermally
isotropic systems T⊥=T∥ ¼ 1, Eq. (5) reduces to those
considered in Refs. [5,21,27].
Equation (5) can be evaluated for frequencies and wave

numbers where Λ� ≠ 0 and applies as long as wave
instabilities are not present. In Fig. 1(a), we plot Eq. (5)
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in logarithmic color scale for β∥ ¼ 0.6 and T⊥=T∥ ¼ 1.4.
We also show the dispersion relation Λ− ¼ 0 for the same
parameters, from which a weak ion-cyclotron instability
develops with a maximum growth rate Imðω=ΩÞ≃
2 × 10−5. Besides the normal modes crossing at
Reðω=ΩÞ ¼ 0, Eq. (3) also allows for an infinite number
of heavily damped waves under and above the proton
cyclotron frequency, denominated as higher-order modes
(HOM) [28]. The four least damped HOM are also plotted
in Fig. 1(a), whose damping is proportional to k∥ and to
their slopes. The fluctuation level decreases 100 times
between two consecutive HOM, and they concentrate near
the normal modes of the system. It is interesting to note,
although not plotted here, that the trianglelike zone defined
by the HOM—and, thus, the magnetic fluctuations struc-
ture—is broadened (narrowed) for higher (lower) values of
β∥, whereas the real part of the normal modes does not
change qualitatively, a result that agrees with both proton
[21] and electron scales [27] for isotropic plasmas.
In Fig. 1(b), we show the anisotropic case T⊥=T∥ ¼ 0.1

for the same β∥ ¼ 0.6, where a weak firehose instability
develops, with a maximum growth rate Imðω=ΩÞ≃
2.6 × 10−5. Qualitatively, the HOM and fluctuations main-
tain their structure for fixed β∥ and different values of
T⊥=T∥, but the magnetic fluctuations concentrate mostly

along the unstable mode. Although instabilities are present
in both Figs. 1(a) and 1(b), their growth time scale is still
small compared to one proton gyroperiod.
Due to the thermal motion of the particles, thermally

induced electromagnetic fluctuations can occupy a relevant
part of the Fourier spectrum even in absence of free energy
for plasma instabilities, as can be seen in Fig. 2(a), where
we plot the transverse magnetic spectrum, produced in a
hybrid simulation for β∥ ¼ 0.6 and T⊥=T∥ ¼ 1.4. The
hybrid code [21,29] treats ions as fully kinetic particles
and the electrons as a massless charge neutralizing fluid,
representing a collisionless, homogeneous, and magnetized
plasma. A 1D simulation box with 2048 grid cells is used
with 1000 particles per cell, a system length of 502.6vA=Ω,
where vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4πnm

p
is the Alfvén speed, and a time

step of ΩΔt ¼ 0.02. The boundary conditions are periodic
for both particles and fields, and protons are loaded as a
bi-Maxwellian distribution at Ωt ¼ 0. In Fig. 2(a), we can
clearly see the normal circularly polarized modes in the
simulation. A relevant level of thermally induced fluctua-
tions appears for a wide range of frequencies and wave
numbers, and in fact, contains a large fraction of the
electromagnetic energy. The magnetic fluctuations are
enhanced near the Alfvén-cyclotron mode, which quickly
lose importance relative to the fluctuations for large values
of k∥. From linear theory, we expect a high damping on the
Alfvén-cyclotron mode for these values of k∥, reason why
the fluctuations show a greater activity than that of the
Alfvén-cyclotron mode. A similar result can be seen in
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FIG. 1 (color online). Magnetic field fluctuations
nΩhjB−j2i=B2

0, normalized to its maximum value, in color
logarithmic scale, calculated from Eq. (5) for vA=c ¼ 10−4,
β∥ ¼ 0.6, and (a) T⊥=T∥ ¼ 1.4, and (b) T⊥=T∥ ¼ 0.1. The over
plotted curves are normal modes crossing at Reðω=ΩÞ ¼ 0
(Alfvén-cyclotron and fast modes, solid curves) and four of
the least damped HOM crossing at Reðω=ΩÞ ¼ 1 (dashed
curves), as calculated from Λ− ¼ 0 in Eq. (3).
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FIG. 2 (color online). Power spectrum (normalized to its
maximum value) in logarithmic color scale of the transverse
magnetic field fluctuations from a 1.5D hybrid simulation for the
same parameters as Fig. 1.
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Fig. 2(b) for β∥ ¼ 0.6 and T⊥=T∥ ¼ 0.1, in agreement with
the theoretical results presented in Fig. 1.
We now show analytically that these transverse magnetic

fluctuations can be a relevant contribution to the mea-
sured fluctuations in the solar wind, by defining the total
fluctuating magnetic energy density as

W� ¼ 1

8π

Z
∞

−∞

Z
∞

−∞
dk∥dωhjB�j2i: ð6Þ

In Fig. 3(a), we plot the dimensionless quantity
nvAW−=ðΩB2

0Þ as a function of β∥ and T⊥=T∥ in loga-
rithmic color scale. We have restricted the calculation to
regions far from the Alfvén cyclotron or firehose insta-
bilities (which are calculated numerically through the
dispersion relation by setting Imðωmax=ΩÞ ¼ 10−4 as the
threshold value for instability). The magnetic energy is
clearly enhanced near the instability thresholds, and its
features are similar to solar wind observations near 1 AU, as
reported in Fig. 1(b) of Ref. [2]. Figure 3(a) shows that the
proton VDF can produce considerable amounts of ther-
mally induced fluctuations, even in quasiequilibrium states.

We have also conducted a systematic study of hybrid
simulations in the (β∥, T⊥=T∥) plane in order to compare
the production of thermal fluctuations with our analytic
treatment. Figure 3(b) shows the final value of the space-
averaged magnetic field intensity ðδB⊥=B0Þ2, as function of
the initial value of β∥ and final value of T⊥=T∥, obtained
from a simulation ensemble of initial states in the (β∥,
T⊥=T∥) plane. In order to isolate the spontaneous fluctua-
tions from collective instabilities, the initial points were
chosen below and at the instability threshold borders. As a
consequence, most of the final points are not significantly
displaced from the initial ones as noted in Refs. [12,13],
except for a few cases close to the ion-cyclotron instability
threshold at T⊥=T∥ > 1 and β∥ < 10−1, whose initial state
we represent as open circles in the figure. In that region,
these points move downwards below the instability thresh-
old, suggesting that a slight isotropization process occurs.
Since the thermal fluctuation level Eq. (5) essentially

scales with β∥ and T⊥=T∥, we expect an absence of thermal
noise for low β∥, and the anisotropy relaxation process can
take place without the effects of thermal scattering. The free
energy available for isotropization is nevertheless very low
and thus scarce energy exchange between perpendicular
and parallel directions can occur. This fact can explain why
the experimental solar wind data cannot be fitted with one
threshold curve only [20]. It is interesting to note that these
results are consistent with those of Ref. [12], in which a
sufficiently large initial proton temperature anisotropy can
reduce the proton anisotropy to values slightly below the
instability threshold through scattering by the enhanced
fluctuations. However, it is difficult to use this mechanism
to explain the magnetic fluctuations far below from the
instability threshold, unless we consider other processes
such as streaming for small plasma beta [30,31]. On the
other side, for β∥ > 0.1 the noncoherent scattering pro-
duced by the spontaneous fluctuations is not negligible and
competes with the scattering from normal modes, making
the relaxation of the thermal anisotropy a much slower
process, contrary to the fast relaxation predicted by quasi-
linear theory. Furthermore, even though any unstable mode
can be observable only if it exceeds the spontaneous
fluctuation level, a finite normal mode wave activity is
maintained until the end of the simulations, and as a result
both the Alfvén-cyclotron and the right-handed or fast
modes survive linear damping (see Figs. 1 and 2).
In conclusion, we point out that spontaneous magnetic

fluctuations resulting from stable VDFs can significantly
contribute to observations in the solar wind. These fluc-
tuations can also play an important role in the isotropization
processes in a magnetized ion plasma, thus providing a
possible explanation to the limited anisotropies of solar
wind data, complementing studies on marginal instabilities
[14,31], and quasilinear [22], and Vlasov simulations [23].
We also mention on the high correlation between the

magnetic fluctuations structure and the highly damped
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FIG. 3 (color online). (a) Fluctuating magnetic energy
nvAW−=ðΩB2

0Þ, given by Eq. (6) and normalized to its maximum
value, that can be related with the measured statistics of δB=B
given in Fig. 1(b) of Ref. [2]. (b) Final state distribution from
hybrid simulations as a function of the initial β∥ and final T⊥=T∥.
Included are also contours of the maximum growth rate
Imðω=ΩÞ ¼ 10−4 (solid curves), 10−3 (dashed curves), and
10−2 (dotted curves) for parallel propagation. The set of initial
states that change significantly from the final states are shown as
open circles. Color logarithmic scales are used in both figures.
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solutions of the dispersion relation (HOM), even for
anisotropic T⊥=T∥ ≠ 1 systems, a result which generalizes
those suggested in Refs. [21,27].
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