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Abstract
A Lagrangian formalism is used to study the motion of a spinning massive
particle in Friedmann–Robertson–Walker and Gödel spacetimes, as well as
in a general Schwarzschild-like spacetime and in static spherically symmetric
conformally flat spacetimes. Exact solutions for the motion of the particle
and general exact expressions for the momenta and velocities are displayed
for different cases. In particular, the solution for the motion in spherically
symmetric metrics is presented in the equatorial plane. The exact solutions are
found using constants of motion of the particle, namely its mass, its spin, its
angular momentum, and a fourth constant, which is its energy when the metric
is time-independent, and a different constant otherwise. These constants are
associated to Killing vectors. In the case of the motion on the Friedmann–
Robertson–Walker metric, a new constant of motion is found. This is the fourth
constant which generalizes previously known results obtained for spinless
particles. In the case of general Schwarzschild-like spacetimes, our results
allow for the exploration of the case of the Reissner–Nordstrom–(Anti)de Sitter
metric. Finally, for the case of the conformally flat spacetimes, the solution is
explicitly evaluated for different metric tensors associated to a universe filled
with static perfect fluids and electromagnetic radiation. For some combination
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of the values of the constants of motion the particle trajectories may exhibit
spacelike velocity vectors in portions of the trajectories.

Keywords: exact solution, conformally flat spacetimes, spinning massive
particle, cosmological spacetimes
PACS numbers: 04.20.Cv, 04.20.Jb, 04.40.Nr, 04.90.+e

1. Introduction

Relativistic spinless test particles follow geodesics according to the equivalence principle. On
the other hand, it is known that spinning massive test particles (tops) follow non geodesic
paths when moving on gravitational fields [1–5]. The pioneering works of Mathisson [4] and
Papapetrou [5] showed that the equations of motion for tops are non geodesic, deriving them
as limiting cases of rotating fluids moving in gravitational fields. On the contrary, massless
spinning particles (such as photons) do follow null geodesics as showed by Mashhoon [6]
who used the Mathisson–Papapetrou formalism for his derivation. Thus, one can argue that
the equivalence principle (interpreted as stating that test particles in a gravitational field follow
geodesics) is valid only for spinless point test particles. Extended particles are, in general,
subject to tidal forces and follow, therefore, non geodesic paths.

The rigorous derivation for the non geodesic equations of motion obeyed by tops moving
on a gravitational background can be obtained using a Lagrangian formalism. The first
derivation was obtained by Hojman [1, 2] (using a flat spacetime formalism developed by
Hanson and Regge [7]). In this Lagrangian formulation, the velocity uμ and the canonical
momentum Pμ vectors are, in general, not parallel. For the motion of tops in the electromagnetic
and/or gravitational fields, the square of the mass m2(≡ PμPμ > 0) is conserved implying that
the momentum vector remains timelike along the motion. However, the velocity vector may
become spacelike [1, 7–9]. It is worth mentioning that the spin (the other Casimir function
of the Poincaré group) J2(≡ (1/2)SμνSμν ) is also conserved for a top moving on any curved
background. A proper treatment of the lack of parallelism between velocity and momentum
is best achieved with a Lagrangian formulation of the motion of tops, because otherwise
the canonical momentum cannot be appropriately defined. Besides, while the Mathisson–
Papapetrou formulation gives rise to third-order equations of motion, the Lagrangian approach
gives rise to second-order ones [1, 10]. It is important to stress that the treatment presented
here is a pole–dipole model of a particle.

Recently, the interest for the motion of tops in curved spacetimes has staged a comeback
[11–17]. In particular, in a previous work, the motion of a top on a Schwarzschild background
was studied in detail [14]. It was found that the equations of motion can be solved exactly,
and that the spin of the particle modifies the motion significantly as compared to the spinless
particle geodesic motion. Furthermore, this formalism has been used to show that photons
must be massless [15].

In the same spirit, here we exhibit exact solutions for the equations describing the motion of
a top in cosmological spacetimes, as well as in general static spherically symmetric spacetimes.
The cosmological models studied are the Friedmann–Robertson–Walker (FRW) and the Gödel
spacetimes. The motion of a massive spinning particle is exactly solved for motion in the
equatorial plane on the FRW metric. It is important to stress that, in this case, we find a new
conserved quantity which cannot be expressed in terms of the Killing vectors of the metric.
This constant is a generalization of a well-known constant for spinless particles. For Gödel
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spacetimes we solve completely the motion of the spinning particle in the plane z = 0. On
the other hand, we study a general Schwarzschild-like spacetime, showing that it is possible
to find exact solutions of the motion generalizing the results of [14]. This is shown for the
concrete case of the Reissner–Nordstrom–(Anti)de Sitter metric. Finally, a static spherically
symmetric conformally flat spacetime is studied. To show the dependence of the exact solution
for the orbits of the top on the conformal factor of the metric, we explore the conformally flat
spacetime of a universe composed by radiation and a static perfect fluid with a cosmological
equation of state. We exhibit the exact solution for the cases of a universe filled with uniform
electromagnetic radiation only, a matter-dominated universe, a radiation-dominated universe,
and a universe filled with dark energy.

In general, the motion of the top in every metric is described in terms of the constants
of motion of the particle: its mass, its spin, its angular momentum, and its energy. The latter
are constructed from the symmetries (Killing vectors) of the metric tensor. Also, for all the
models, general exact expressions for the momenta and velocities are shown.

In addition to the general exact solutions for the motion of the spinning massive particle, an
interesting consequence of the top’s spin is highlighted. We show that, in these metrics, massive
tops described by this theory may reach spacelike velocities in portion of the trajectories. This
can be achieved if their constants of motion satisfy certain relations. This kind of behavior is
extensive to almost all the metric studied in this work, and it seems to be a robust effect of the
motion of a spinning massive particle. Similar results were obtained for a trajectory of a top on
a Schwarzschild spacetime [14]. This remarkable outcome is, nevertheless, not uncommon.
Theoretical results involving superluminal propagation of massive spinning particles and fields
in interaction with electromagnetic or gravitational fields have been previously reported in the
literature by Velo and Zwanziger [8], Hanson and Regge [7], Hojman [1] and Hojman and
Regge [9]. On the other hand, although some experiments have reported hints of superluminal
group velocity in optical fibers [18], there is no solid experimental evidence of superluminal
neutrino propagation [19–21]6.

The paper is organized as follows: in section 2 we introduce the Lagrangian theory for
the motion of the top. In section 3, we exhibit the exact solution to the equations of motion
for the FRW metric. In section 4 we show the exact result for the top’s motion in a Gödel
spacetime. Later we study the Schwarzschild-like metric in section 5, in conjunction with the
Reissner–Nordstrom–(Anti)de Sitter metric. In section 6, we study the motion of a top in a
spherical symmetric conformally flat spacetime with the cases of a universe filled with a static
perfect fluid and radiation. Finally, in section 7, conclusions are presented.

2. Lagrangian theory for tops in gravitational fields

The theory of a spinning massive particle in a curved spacetime was developed in [1, 2] and
reviewed in [14]. In this section, we present a brief summary of the motion of a top on a
gravitational field. For a detailed description, we refer the reader to the previously mentioned
articles.

Let us denote the position of the relativistic (spherical) top by a four vector xμ, while its
orientation is defined by an orthonormal tetrad e(α)

μ. A gravitational field is described as usual
in terms of the metric field gμν [1, 2]. The tetrad vectors satisfy gμν e(α)

μ e(β)
ν ≡ η(αβ), with

η(αβ) ≡ diag (+1,−1,−1,−1) = η(αβ), and have, therefore, six independent components.
The velocity vector uμ is defined in terms of an arbitrary parameter λ by

6 Results on superluminal neutrinos are reported in The Net Advance of Physics MIT webpage
http://web.mit.edu/redingtn/www/netadv.
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uμ ≡ dxμ

dλ
. (1)

The antisymmetric angular velocity tensor σμν is

σμν ≡ η(αβ)e(α)
μ De(β)

Dλ

ν

= −σ νμ, (2)

where the covariant derivative De(β)
ν/Dλ is defined in terms of the Christoffel symbols �ν

ρτ ,
as usual, by

De(β)
ν

Dλ
≡ de(β)

ν

dλ
+ �ν

ρτ e(β)
ρuτ . (3)

The general covariance is achieved unambiguously at the level of the Lagrangian
formulation [1] due to the fact that only first derivatives of the dynamical variables are
used in its construction. If no Lagrangian theory for a system of special relativistic equations
of motion is known, the introduction of gravitational interactions cannot be unambiguously
implemented.

A possible Lagrangian L = L(a1, a2, a3, a4) is constructed as an arbitrary function of
four invariants a1 ≡ uμuμ, a2 ≡ σμνσμν = −tr(σ 2), a3 ≡ uασ αβσβγ uγ and a4 ≡ det(σ ),

L(a1, a2, a3, a4) = (a1)
1/2L(a2/a1, a3/(a1)

2, a4/(a1)
2), (4)

such that the action S = ∫
L dλ, be λ-reparametrization invariant (the speed of light c is set

equal to 1). L is an arbitrary function of three variables. Note that, unlike the spinless case, it is
not necessary that a1 be positive to have a real Lagrangian (see [14] for an extended discussion
about this issue).

The conjugated momentum vector Pμ and antisymmetric spin tensor Sμν are defined by

Pμ ≡ ∂L

∂uμ
, Sμν ≡ ∂L

∂σμν
= −Sνμ. (5)

As usual, the equations of motion are obtained by considering the variation of the
action S with respect to (ten) independent variations δxμ and (the covariant generalization
of) δθμν ≡ η(αβ)e(α)

μδe(β)
ν = −δθνμ. The final equations of motion turn out to be non

geodesic [1, 2]

DPμ

Dλ
= −1

2
Rμ

ναβuνSαβ, (6)

and
DSμν

Dλ
= Sμλσλ

ν − σμλSλ
ν = Pμuν − uμPν . (7)

These results hold for arbitrary L. The dynamical variables Pμ and Sμν are interpreted as
the ten generators of the Poincaré group.

In order to restrict the spin tensor to generate rotations only, the Tulczyjew constraint [22]
is considered [1, 7]

SμνPν = 0. (8)

However, we would like to stress that, for a suitably chosen L, this constraint is a consequence
of the theory, i.e., the Tulczyjew constraint is derived from this Lagrangian formalism (for
details, see [14]). This is one of the strengths of this Lagrangian theory.

It can also be proved [14] that both the top mass m and its spin J are conserved quantities

m2 ≡ PμPμ, (9)

J2 ≡ 1
2 SμνSμν. (10)
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Finally, a conserved quantity Cξ given by

Cξ ≡ Pμξμ − 1
2 Sμνξμ;ν, (11)

can be associated to any Killing vector ξμ of the metric

ξμ;ν + ξν;μ = 0. (12)

As the general theory is established, we proceed now in the following sections to find the
exact solutions for the motion of a top in cosmological spacetimes using the FRW and the
Gödel metrics. We also study the motion in general static spherically symmetric spacetimes
with Schwarzschild-like and conformally flat metrics.

3. Exact solution for cosmological Friedmann–Robertson–Walker spacetimes

Let us consider as a first case the FRW metric, which is given by the following line element in
spherical coordinates

ds2 = gμν dxμ dxν = c2 dt2 − a(t)2g(r) dr2 − a(t)2r2(dθ2 + sin2 θ dφ2), (13)

where r is the radial distance, θ and φ are the polar and azimuthal angles respectively, and
g(r) = 1/(1−kr2). Here a(t) ≡ a is the time-dependent scale factor of the universe, whereas k
assumes three possible values k = −1, 0, 1, denoting a universe with negative spatial curvature,
spatially flat or with positive spatial curvature respectively. From now on, we explicitly display
the speed of light c in our calculations.

Before solving the equations of motion for the top, it is useful to exhibit the three Killing
vectors of the FRW metric explicitly

ξ 0
μ = (0, 0, 0,−a2r2 sin2 θ ),

ξ 1
μ = (0, 0, a2r2 sin φ, a2r2 sin θ cos θ cos φ),

ξ 2
μ = (0, 0,−a2r2 cos φ, a2r2 sin θ cos θ sin φ). (14)

Using these Killing vectors, we can solve the equations of motion (6) and (7) in general.
In what follows, we study the motion in the equatorial plane θ = π/2, which is defined to
be orthogonal to the conserved angular momentum vector. This choice simplifies the analysis
because, in this case, Srθ = Stθ = Sφθ = 0, and also θ̇ = 0 = Pθ = Ṗθ . Thus, the top remains
in the plane orthogonal to the total angular momentum if it was initially there.

We will make use of constants of motion to find the top’s trajectory in a FRW spacetime.
The mass m2 and spin J2 are always conserved in any spacetime metric. The formalism
provides three constants of motion, which can be found using the three (angular momentum)
Killing vectors. Two of the three components of the angular momentum vector have been used
to define the equatorial plane. The third component j is the angular momentum component
perpendicular to the equatorial plane. The problem can be completely solved if we find a fourth
constant of motion. In this case, the energy of the top motion is not conserved because the
metric is time-dependent. Therefore, to find the last constant we have to integrate the equations
of motion.

From the constants of motion (9) and (10) we find

m2c2 = c2(Pt )2 − a2[g(Pr)2 + r2(Pφ )2], (15)

J2 = a2g(a2r2(Srφ )2 − c2(Str)2) − a2c2r2(Stφ )2, (16)

where we can identify J with the top’s spin. Making use of the Killing vectors, we find another
constant which corresponds to the conserved angular momentum component orthogonal to
the orbital plane
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j = −ar[rȧStφ + a(rPφ + Srφ )], (17)

where ȧ ≡ da/dt.
To find the fourth constant, we first display the Tulczyjew contraints (8)

a2r2PφStφ + a2gPrStr = 0, (18)

c2PtStr + a2r2PφSrφ = 0, (19)

a2gPrSrφ − c2PtStφ = 0. (20)

The explicit form of the equations of motion can be obtained form (6) and (7). The
equations of motion for the momentum (6) are

agṙäStr

c2
+ ar2φ̇äStφ

c2
+ agṙȧPr

c2
+ ar2φ̇ȧPφ

c2
+ Ṗt = 0, (21)

äStr

a
+ r2φ̇ȧ2Srφ

c2
+ ȧPr

a
+ ṙȧPt

a
+ ṙg′Pr

2g
+ rφ̇g′Srφ

2g2
− rφ̇Pφ

g
+ Ṗr = 0, (22)

äStφ

a
− gṙȧ2Srφ

c2
+ φ̇ȧPt

a
+ ȧPφ

a
− ṙg′Srφ

2gr
+ φ̇Pr

r
+ ṙPφ

r
+ Ṗφ = 0, (23)

where the symbol ′ denotes derivatives with respect to r. On the other hand, the equations of
motion for the spin (7) are

− ar2φ̇ȧSrφ

c2
+ ȧStr

a
+ ṙg′Str

2g
− rφ̇Stφ

g
+ Pr − ṙPt + Ṡtr = 0, (24)

agṙȧSrφ

c2
+ ȧStφ

a
− φ̇Pt + Pφ + φ̇Str

r
+ ṙStφ

r
+ ˙Stφ = 0, (25)

ṙȧStφ

a
+ 2ȧSrφ

a
− φ̇ȧStr

a
+ ṙg′Srφ

2g
− φ̇Pr + ṙPφ + ṙSrφ

r
+ ˙Srφ = 0. (26)

Following with our analysis we have to use the constraints (18) and (19), as well as the
equations for the constants of motion (15) and (16), to get the relation

Str = κPφ, (27)

with the function κ defined as

κ ≡ ± Jr

c2√gm
.

Thus, solving for the spin components in terms of the momentum components, and using both
constraints as well as equation (27), we get

Stφ = −gκPr

r2
, (28)

Srφ = −c2κPt

a2r2
, (29)

which their time derivatives are readily calculated as

Ṡtr = κ

(
(2 − g)ṙPφ

r
+ Ṗφ

)
, (30)

˙Stφ = −gκ((g − 2)ṙPr + rṖr)

r3
, (31)

˙Srφ = c2κ(Pt (2rȧ + agṙ) − arṖt )

a3r3
, (32)
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where we have used the relation g′ = 2(g − 1)g/r. Replacing the spin components and their
derivatives in the previous set (21)–(26) we can find a set of equations for the momentum
components

κ

(
φ̇ȧPt

a
+ ȧPφ

a
+ φ̇Pr

r
+ ṙPφ

r
+ Ṗφ

)
+ Pr − ṙPt = 0, (33)

κ

(
−gȧPr

ar2
− gṙȧPt

ar2
− g2ṙPr

r3
+ gṙPr

r3
− gṖr

r2
+ φ̇Pφ

r

)
− φ̇Pt + Pφ = 0, (34)

κ

(
−c2Ṗt

a2r2
− gṙȧPr

ar2
− φ̇ȧPφ

a

)
− φ̇Pr + ṙPφ = 0, (35)

κ

(
agṙäPφ

c2
− agφ̇äPr

c2

)
+ agṙȧPr

c2
+ ar2φ̇ȧPφ

c2
+ Ṗt = 0, (36)

ȧPr

a
+ ṙȧPt

a
+ κ

(
c2φ̇Pt

a2gr2
− c2φ̇Pt

a2r2
+ äPφ

a
− φ̇ȧ2Pt

a2

)
+ gṙPr

r
− rφ̇Pφ

g
− ṙPr

r
+ Ṗr = 0,

(37)

φ̇ȧPt

a
+ ȧPφ

a
+ κ

(
c2gṙPt

a2r4
− c2ṙPt

a2r4
− gäPr

ar2
+ gṙȧ2Pt

a2r2

)
+ φ̇Pr

r
+ ṙPφ

r
+ Ṗφ = 0. (38)

The process of finding the new constant of motion consists first on substracting equation
(38) multiplied by κ from equation (33) to obtain

Pr

(
gκ2ä

ar2
+ 1

)
+ ṙPt

(
−c2gκ2

a2r4
+ c2κ2

a2r4
− gκ2ȧ2

a2r2
− 1

)
= 0. (39)

In the same fashion we can add equation (34) to equation (37) multiplied by κg/r2 to get

Pφ

(
gκ2ä

ar2
+ 1

)
+ φ̇Pt

(
−c2gκ2

a2r4
+ c2κ2

a2r4
− gκ2ȧ2

a2r2
− 1

)
= 0. (40)

These two above equation can be solved for Pr and Pφ in terms of Pt as

Pr = αṙPt, Pφ = αφ̇Pt, (41)

where the function α depends on time only

α ≡ a2c4m2 + J2ȧ2 + c2J2k

a2c4m2 + aJ2ä
.

Note that α = 1 if J = 0. Now, to get Pt use equations (41) in (35) to find

aαc2ṖtPt

ȧ
= (Pt )2(−a2α2gṙ2 − a2α2r2φ̇2). (42)

At the same time, using (41) in the constant of motion (9) we get

c2m2 = (Pt )2(−a2α2gṙ2 − a2α2r2φ̇2 + c2). (43)

Subtracting (43) from (42) we finally find

ȧ((Pt )2 − m2)

aα
+ ṖtPt = 0, (44)

which has the solution

Pt =
√

2σ

a2c4m2 + J2ȧ2 + c2J2k
+ m2, (45)

7
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where σ is a new (integration) constant of motion. This constant is one of the important results
of this work and deserves more attention. The new constant can be written in terms of Pt as

σ = m2c4

2

[
a2

(
1 + J2H2

m2c4

)
+ J2k

m2c2

]
[(Pt )2 − m2] = β

2
[(Pt )2 − m2], (46)

where H ≡ ȧ/a is the Hubble parameter and

β ≡ a2m2c4 + J2ȧ2 + c2J2k.

The constant (46) can be written as σ = KμνPμPν , associated to the tensor

Kμν = β

2

(
UμUν − 1

c2
gμν

)
, (47)

where Uμ = (1, 0, 0, 0). The constant σ has a well-known analogue when J = 0 for spinless
particles [23]. It is important to emphasize that Kμν/m2 is a Killing tensor for J = 0 only.
When J �= 0 we have not been able to write the new constant of motion in terms of a Killing
tensor. Therefore, we have found a generalization for that constant in the case of a massive
spinning particle J �= 0 in FRW spacetimes. As far as we know, this is the first time that the
constant (46) has been found for the motion of massive spinning particles on a FRW metric.
The new extra terms (proportional to J2) are interesting. Note how the first of these two terms
combines to introduce a correction of the spin that takes in account the expansion of the
universe through the Hubble parameter. Similarly, the second term of these two terms tell us
how the curvature of the space affects the value of this constant. As we can see, this constant
is richer in information than the spinless case counterpart.

Finally, making use of (46) to complete determine Pt , we can obtain the other momenta
(41). Also, we can calculate the line element (13) as

ds2

c2 dt2
= 1 − 1

α2
− m2

α2(Pt )2
= 1 − a2σ β̇2

2β2ȧ2(2σ + βm2)
, (48)

which can be written in terms of the constants of motion

ds2

c2 dt2
= 1 − 2σ (J2Ḣ + J2H2 + c4m2)2

(J2H2 + c4m2)2(a2m2(J2H2 + c4m2) + 2σ )
. (49)

The line element (49) for a top in FRW metric is no longer positive definite. It can
either vanish or be negative depending on the values of the different constants involved in its
expression. Therefore, the top may follow lightlike or spacelike trajectories when ds2 = 0 or
ds2 < 0, for appropriate values of the constants. This results are possible only if Ḣ �= 0.

This feature of the line element on portion of the trajectories is a characteristic of
dynamics of massive spinning particles. It has been previously reported for the top’s motion
in Schwarzschild spacetimes [14].

As a final exercise for the FRW metric, we can calculate ṙ and φ̇ using the equations (17),
(28), (29) and (43), to obtain

ṙ = β̇(
√

gκ ȧ( jr − c2κPt ) ± arϒ)

2β
√

grȧPt (a2r2 + gκ2ȧ2)
, φ̇ = (αgκrṙaȧ + c2κ)Pt − jr

a2αr3Pt
, (50)

where

ϒ =
√

−r2(a2c2m2r2 + c2gκ2m2ȧ2 + j2) + c2(Pt )2(a2r4 + gκ2r2ȧ2 − c2κ2) + 2c2 jκrPt .
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4. Exact solution for cosmological Gödel spacetimes

Consider a universe described by the Gödel metric which is given by [24]

gμν =

⎛
⎜⎜⎝

c2 0 c exw0 0
0 −1 0 0

c exw0 0 1
2 e2xw0 0

0 0 0 −1

⎞
⎟⎟⎠ , (51)

in rectangular coordinates, where w0 is a constant related to the angular velocity of the rotating
universe. This metric has five Killing vectors

ξ 0
μ = (c2, 0, c ew0x, 0),

ξ 1
μ = (0, 0, 0,−1),

ξ 2
μ =

(
c ew0x, 0,

1

2
e2w0x, 0

)
,

ξ 3
μ =

(
−cw0y ew0x,−1,−1

2
w0y e2w0x, 0

)
,

ξ 4
μ =

(
−1

2
cw0y2 ew0x − c e−w0x

w0
,−y,−1

4
w0y2 e2w0x − 3

2w0
, 0

)
. (52)

It becomes apparent that there are solutions describing trajectories in the plane z = 0.
Therefore, we work in this plane with Pz = 0 and Ṗz = 0 (this also implies that every
z-component of the spin as well as their time derivatives vanish).

We follow the same procedure than in the previous section. First we find the constants of
motion (9) and (10) as

m2c2 = c2(Pt )2 + 2c ew0xPtPy + 1
2 e2w0x(Py)2 − (Px)2, (53)

J2 = −c2(Stx)2 − 1
2 c2 e2w0x(Sty)2 + 2c ew0xStxSxy − 1

2 e2w0x(Sxy)2, (54)

while using the Killing vectors we can calculate the following non-vanishing constants of
motion

E = 1

2
c(2cPt + ew0x(2Py + w0Sxy)), (55)

C2 = 1

2
ew0x(2cPt + w0(e

w0xSxy − cStx) + ew0xPy), (56)

C3 = 1

2
(−w0 ew0x(2cyPt − cSty + y ew0xPy) + w2

0y(−ew0x)(ew0xSxy − cStx) − 2Px), (57)

C4 = −1

2
cw0y2 ew0xPt − c e−w0xPt

w0
+ 1

4
cw2

0y2 ew0xStx − 1

2
c e−w0xStx + 1

2
cw0y ew0xSty

−1

4
w0y2 e2w0x + Py − 3Py

2w0
− yPx − 1

4
w2

0y2 e2w0xSxy + Sxy

2
. (58)

On the other hand, the two independent Tulczyjew constraint equations (8) read

PxStx = c ew0xPtSty + 1
2 e2w0xPySty, (59)

PxSxy = c2PtSty + c ew0xPySty. (60)

9
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The above constants of motion must be used along with the equations of motion for the
top in the Gödel spacetimes. The (non identically vanishing) momentum equations of motion
(6) are

w0(2ẋ(2cPt − cw0Stx + ew0xPy + 2w0 ew0xSxy) + (2c + ẏ ew0x)(cw0 ew0xSty + 2Px))

+ 4cṖt = 0, (61)

w0(ẏ ew0x(2cPt + w0(3 ew0xSxy − 2cStx) + 2 ew0xPy) + 2c(w0(e
w0xSxy − cStx) + ew0xPy))

+ 4Ṗx = 0, (62)

2 ew0xṖy − w0(ẋ(2cPt + w0 ew0xSxy) + c(w0 ew0xSty(c + ẏ ew0x) + 2Px)) = 0, (63)

whereas the equations for the spin (7) become
1

2
cw0 ew0xSty − w0ẋ ew0xSxy

2c
− ẋPt + Px + w0ẋStx + Ṡtx + 1

2
w0ẏ e2w0xSty = 0, (64)

− cw0 e−w0xStx + w0ẏ ew0xSxy

2c
− ẏPt + Py + w0ẋSty + Ṡty + w0Sxy = 0, (65)

cw0ẋ e−w0xStx + 1
2 cw0ẏ ew0xSty − ẏPx + ẋPy + Ṡxy = 0. (66)

Now, using equations (53), (54), (59), and (60), we can find the first solution for the spin
component

Sty = e−w0x�Px, (67)

where we define

� ≡
√

2 J

c2m
. (68)

With these results and definitions, we can replace (67) in (60), and use the constant (55)
to obtain

Sxy = E� e−w0x

2c�w0 + 4
. (69)

Also, combining (59), (60) and (67) we get
2 ew0xSxy − 2cStx

�
= c ew0xPy. (70)

We solve for the last component of the spin using equations (70), (69) and the constants C3

and E

Stx = � e−w0x(E�w0 ew0x − C3(c�w0 + 2))

2
(
c2�2w2

0 − 4
) , (71)

and replacing Stx and Sxy in (70) we find

Py = e−2w0x(cC3(c�w0 + 2) − 2E ew0x)

c
(
c2�2w2

0 − 4
) . (72)

To solve for Pt we use equation (60) along with the previous results to get

Pt = E − 2cC3 e−w0x

2c2(c�w0 − 2)
. (73)

Lastly, for Px we can use (53)

Px = ± e−w0x

2c(λ2 − 4)

[
e2w0x(E2(λ2 − 4λ − 4) − 4c4(λ2 − 4)2m2)

−2c2C2
3 (λ + 2)2 + 8cC3E(λ + 2) ew0x

]1/2
, (74)

where we have defined the dimensionless constant λ ≡ c�w0 = (
√

2Jw0)/(cm). Now, our
objective is to solve for ẏ and ẋ. Let us start by observing that performing a time derivative of
equation (67) yields

10
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Ṡty = � e−w0xṖx − w0ẋSty. (75)

Replacing Ṡty in (65) and combining this result with (62) we get, after some algebra, an
expression for ẏ. In the same way, to get ẋ, we use equation (63) along with the results for the
spin and momentum components. Both results are

ẏ = 2(λ − 2)Ṗx

C3w0
, (76)

ẋ = − 2c2(λ − 2)(λ + 2)2 ew0xPx

2cC3(λ + 2)2 + E((λ − 4)λ − 4) ew0x
. (77)

We now solve for Px. Using (54), (59), (60) and (53) we get

Px = ±
⎛
⎝c

√
2(Stx)2

c2�2
− m2 − (Pt )2

⎞
⎠ . (78)

Differentiate with respect to time and get

Ṗx = c2

Px

(
2ṠtxStx

c2�2
− ṖtPt

)
, (79)

while the time derivatives we need are

Ṡtx = C3λẋ e−w0x

2c(λ − 2)
, Ṗt = C3w0ẋ e−w0x

c(λ − 2)
. (80)

Thus, finally, using (80), (79) and (77) into (76) we can show that

ẏ = −2c(λ + 2) e−w0x(cC3(λ + 2) − 2E ew0x)

2cC3(λ + 2)2 + E(λ2 − 4λ − 4) ew0x
. (81)

In the same spirit than the previous section we can evaluate the line element of the
trajectories of the top in Gödel spacetimes to inquire about the nature of its orbits. With all the
previous results, and using the metric (51), we can find the line element of the spin particle

ds2

c2 dt2
= ẏ2 e2w0x − 2ẋ2 + 4cẏ ew0x

2c2
+ 1 = 4c2 e2w0x(4E2λ2/c2 + c2(λ − 2)2(λ + 2)4m2)

(2cC3(λ + 2)2 + E(λ2 − 4λ − 4) ew0x)2
.

(82)

As it can be readily seen, the line element is always timelike. Thus, massive spinning particles
moving in the plane z = 0 of Gödel spacetimes never follow lightlike or spacelike trajectories.

5. Exact solution for general Schwarzschild-like spacetimes

In the preceding sections we have obtained the exact solutions of the motion of tops in
cosmological scenarios. We showed that it could be possible for the top to follow trajectories
which may be (at least partially) described by lightlike or spacelike line elements. Now we
will study the top’s dynamics in a general spacetime which is the generalization of the results
for the Schwarzschild metric studied in [14].

Consider a general Schwarzschild-like metric in spherical coordinates, given by the line
element

ds2 = gμν dxμ dxν = g(r) dt2 − c2

g(r)
dr2 − r2(dθ2 + sin2 θ dφ2), (83)

where now g(r) ≡ g is a generic function with radial dependence only. Examples of this kind
of metrics includes the Reissner–Nordstrom–(Anti)de Sitter case.

11
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As in previous sections, we start listing the Killing vectors of this metric

ξ 0
μ = (g, 0, 0, 0),

ξ 1
μ = (0, 0, 0,−r2 sin2 θ ),

ξ 2
μ = (0, 0, r2 sin φ, r2 cos θ cos φ sin θ ),

ξ 3
μ = (0, 0,−r2 cos φ, r2 cos θ sin θ sin φ). (84)

We can use these Killing vectors to find the constants of motion. In this case, as the metric
is time-independent, we will be able to find the four constants of motion in a straightforward
manner. To study the top’s trajectories, in a way similar to the one used for the FRW metric,
let us consider its motion in the plane θ = π/2. First, we can find the constants of motion (9)
and (10) as

m2c2 = −c2(Pr)2

g
+ g(Pt )2 − r2(Pφ )2, (85)

J2 = −c2(Str)2 + c2r2

g
(Srφ )2 − gr2(Stφ )2. (86)

And using the Killing vectors, we can find the constants of motion

E = gPt − g′Str

2
, (87)

j = −r(rPφ + Srφ ). (88)

For the case of the general Schwarzschild-like metric, the constant E now corresponds to the
energy of the top, whereas j is the conserved angular momentum orthogonal to the plane of
the motion. On the other hand, the Tulczyjew contraints (8) for this case read

− PrStrc2

g
− r2PφStφ = 0, (89)

r2PφSrφ + gPtStr = 0, (90)

c2PrSrφ

g
− gPtStφ = 0. (91)

The momentum equations (6) for this metric turn out to be

Ṗt + Prg′

2g
+ ṙPtg′

2g
− rφ̇Stφg′

2c2
− ṙStrg′′

2g
= 0, (92)

Ṗr + gPtg′

2c2
− grφ̇Pφ

c2
− rφ̇Srφg′

2c2
− gStrg′′

2c2
− ṙPrg′

2g
= 0, (93)

Ṗφ + φ̇Pr

r
+ ṙPφ

r
+ ṙSrφg′

2gr
− gStφg′

2c2r
= 0, (94)

while the spin equations (7) are

Ṡtr + Pr − ṙPt − grφ̇Stφ

c2
= 0, (95)

˙Stφ − φ̇Pt + Pφ + φ̇Str

r
+ ṙStφ

r
+ Srφg′

2g
+ ṙStφg′

2g
= 0, (96)

˙Srφ − φ̇Pr + ṙPφ + ṙSrφ

r
+ gStφg′

2c2
− ṙSrφg′

2g
= 0. (97)
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It is important to mention that the constants of motion (87) and (88) can be derived from
the above set of equations. With this full set of equations (85)–(97) we can solve completely
for the motion of the top. Using equations (89) and (90) we get

r4(Pφ )2(Srφ )2

g
− gr4(Pφ )2(Stφ )2

c2
= g(Pt )2(Str)2 − c2(Pr)2(Str)2

g
. (98)

Thereby, using (85) and (86) we can solve for Str finding that

Str = ± Jr

c2m
Pφ. (99)

New relations among the constants of motion can be found using the constants (87), (88)
and equation (90). They produce the relation

EStr − jrPφ = r3(Pφ )2 − 1
2 g′(Str)2, (100)

which can be used to find the solution of Pφ . Using equation (99), after some algebra, we can
find

Pφ = − j ± EJ/(mc2)

η − 1
, (101)

where we introduce the notation

η ≡ J2g′

2c4m2r
,

in a similar fashion to the parameter defined in [14]. Now we are able to solve for Pt . Using
equations (87), (99) and (101), we find that

Pt = E ∓ jJg′/(2mc2r)

1 − η
, (102)

which lead us to easily solve for Pr by using (9)

Pr = ±1

c

√√√√P2
t − g

(
c2m2 + P2

φ

r2

)
. (103)

We would like to solve for ṙ and φ̇. With this purpose in mind, we have to find first the
components of the spin in terms of the momenta. By using constraints (89) and (90) along
with equation (99) we can show that the other components of the spin may be expressed as

Stφ = ∓ JPr

mgr
, Srφ = ∓ JgPt

mc2r
. (104)

To find ṙ, we multiply equation (91) by ±Jr/(c2m) and then we subtract equation (95).
With the help of the spin components (104) we get

g′PrJ2

2m2c4r
− ṙg′PtJ2

2m2c4r
± (rṖφ + ṙPφ )

J

c2m
− Pr + ṙPt − Ṡtr = 0, (105)

which, using (99), allow us to find the solution

ṙ = Pr

Pt
= gPr

Pt
. (106)

To solve for φ̇ we replace ṙ from the previous equation in equation (95), as well as, we have
to use (99) and equation (101) (to find Ṗφ). After some algebra we get

φ̇ = gPφ(g′ − ηrg′′)
(η − 1)r2g′Pt

. (107)
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When the general case is reduced to the Schwarzschild spacetime, where g(r) =
c2(1 − 2r0/r) and r0 is half of the Schwarzschild radius, the dynamics of the top’s motion
described in [14] is recovered.

Now we can seek for the line element (83) for this metric. This is written in the plane
θ = π/2 as

ds2

c2 dt2
= g

c2
− ṙ2

g
− r2φ̇2

c2
= m2(1 − �)

(Pt )2
, (108)

where we have defined the parameter

� ≡ P2
φ

c2m2r2

[
(ηrg′′/g′ − 1)2

(η − 1)2
− 1

]
= (− j ± EJ/(c2m))2

c2(η − 1)2m2r2

[
(ηrg′′/g′ − 1)2

(η − 1)2
− 1

]
. (109)

As in the previous sections, according to the sign of ds2 the solution may describe timelike,
lightlike or spacelike orbits, depending on the value of �. We can see that here, analogously
to the case of the Schwarzschild metric [14], � can take different values depending on the
constants of motion of the top, such as its mass, its energy E, its angular momentum j, and its
spin. If � < 1, the top follows timelike trajectories. Instead if � = 1 or � > 1, the spinning
particle follows lightlike or spacelike trajectories (at least partially).

5.1. Reissner–Nordstrom–(Anti)de Sitter metric

To evaluate the previous calculations in explicitly scenario, let us calculate �, from (109), for
the Reissner–Nordstrom–(Anti)de Sitter. This metric is given by

g(r) = c2

(
1 − 2GM

c2r
+ κGQ2

c4r2
− λr2

3

)
, (110)

where G is the gravitational constant, κ is Coulomb’s constant, Q is the charge of the black
hole, M its mass and λ is the cosmological constant.

For this case, the parameter (109) becomes

� = 27c6GJ2r6(3c2Mr−4κQ2)(c2 jm+EJ)2(6c6m2r4+2c4J2λr4+3c2GJ2Mr−6κGJ2Q2)

(3c6m2r4+c4J2λr4−3c2GJ2Mr+3κGJ2Q2)4 .

(111)

We have found that searching for parameter combinations that produce � � 1 is a very
difficult task when selecting known values for different particles. For example, trying to make
an electron accelerate to the speed of light is practically impossible on an extremely large
range of central object masses (from Earth like to extreme black holes) under even the most
extreme scenarios for values of E and j. Another interesting result is that the cosmological
constant has no effect on the line element when there is no central object present (M = Q = 0).
This can easily be seen from equation (111).

6. Exact solution for static spherically symmetric conformally flat spacetimes

As well as in the other metrics studied in this work, the motion of a top in a conformally
flat spacetime with spherical symmetry may be solved exactly. The conformally spherical line
element is

ds2 = gμν dxμ dxν, gμν = �2ημν, (112)

where � ≡ �(r) is the spherical symmetric conformal factor, and ημν as the flat spacetime
metric written in spherical coordinates, such that ημν dxμ dxν = c2 dt2 − dr2 − r2(dθ2 +
sin2 θ dφ2).
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Because the metric is time-independent, we can find a general expression for the conserved
energy using the general conserved quantity (11). We get the conserved energy E for the motion
of the top

E = Pt − c2��′Str, (113)

associated to the Killing vector ξ 1
μ = (c2�2, 0, 0, 0). Similarly, the three components of the

conserved vectorial angular momentum of the top can be found in a similar fashion. Without
loss of generality, we again restrict ourselves to motion in the equatorial plane θ = π/2, as in
the previous sections. The conserved angular momentum component orthogonal to the orbital
plane is

j = −�(� + r�′)rSφr − Pφ, (114)

which can be checked from (11) using the Killing vector ξ 2
μ = (0, 0, 0,−r2�2).

On the other hand, the mass and spin conservation laws give rise to new relations. From
(9) we find that

r2

c2
P2

t − r2P2
r − P2

φ = r2�2m2c2, (115)

whereas from (10) we have

J2 = �4 (Sφr)2

P2
t

(
r2P2

t − c2P2
φ − c2r2P2

r

)
, (116)

where use has been made of the constraints (8)

Str = −SφrPφ

Pt
, Stφ = SφrPr

Pt
. (117)

We notice that equations (115) and (116) can be used to get the condition

Sφr = ± JPt

mr�3c2
. (118)

This condition allows us to rewrite the conserved energy and angular momentum in terms of
momenta. Using (117) and (118), we can write the energy (113) and the angular momentum
(114) as

E = Pt ± J�′

rm�2
Pφ, (119)

j = ∓J(� + r�′)
�2mc2

Pt − Pφ. (120)

Notice that two solutions for the energy and the angular momentum have emerged now.
Their origin are the two possible solutions for Sφr of the condition (118) related to the fact that
the spin vector may be parallel or antiparallel to the angular momentum vector.

The previous relations can be solved for Pt and Pφ . It is again convenient to define the
dimensionless auxiliary function

η ≡ η(r) = �′(� + r�′)J2

r�4m2c2
, (121)

in order to find the top’s momentum from (119) and (120)

Pφ = 1

1 − η

(
− j ∓ EJ(� + r�′)

mc2�2

)
, (122)

Pt = 1

1 − η

(
E ± jJ�′

mr�2

)
. (123)
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Lastly, from the condition (9), we get

Pr = ±
[

P2
t

c2
− P2

φ

r2
− m2c2�2

]1/2

. (124)

Once we find the momenta in terms of the conserved quantities, it is possible to solve the
system for the velocities ṙ and φ̇. With the help of (117), the equations of motion (7) for Str

and Stφ become

Pt ṙ − Pr = SφrPφ

P2
t

DPt

Dλ
− DSφr

Dλ

Pφ

Pt
− Sφr

Pt

DPφ

Dλ
, (125)

Pt φ̇ − Pφ = −SφrPr

P2
t

DPt

Dλ
+ DSφr

Dλ

Pr

Pt
+ Sφr

Pt

DPr

Dλ
, (126)

where this time we have not written explicitly the covariant derivatives. Using (6), these
equations may be solved for ṙ and φ̇ in the equatorial plane to give

φ̇ = ζ γ c2

r2

(
Pφ

Pt

)
, ṙ = ζ c2

(
Pr

Pt

)
,

dφ

dr
= γ

r2

(
Pφ

Pr

)
, (127)

where we have defined

ζ = (η − 1)

[
η + 1 − J2

�3m2c2r
(2�′ + r�′′)

]−1

, (128)

and

γ = (1 − η)−1

[
1 + J2

�4m2c2
((�′)2 − ��′′)

]
. (129)

Thereby, the motion of the spinning massive particle has been solved exactly, remembering
that J may be identified with the top’s spin. It is worth noting that the preceding expressions
coincide with the usual results for geodesic motion when the spin is neglected, J = 0, being
η = 0, Pφ = − j, Pt = E, and P2

r = E2/c2 − j2/r2 − m2c2�2. Thus, the velocities are reduced
to ṙ = −c2Pr/E and φ̇ = c2 j/(r2E ).

Again, another interesting aspect of the motion of the top is the evaluation of its interval
(112). This becomes

ds2

c2 dt2
= �2(1 − ζ 2) + m2c4ζ 2 �4

(Pt )2
(1 − �), (130)

where we have introduced the parameter

� = (Pφ )2(γ 2 − 1)

�2m2r2c2
. (131)

From (130) we realize that, even for massive particles, there could be some initial
conditions such that ds2 � 0, at least in part of the top’s trajectories. The contribution of
� depends on the conformal factor and also depends strongly on the value of the mass, being
important for small mass values. When the spin is neglected, then ds2 = c2 dt2�4(m2c4/E2) >

0, and the top always travels in timelike trajectories.
To show this behavior with explicit conformal metric, we will study different scenarios

where the conformal metric is relevant.
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6.1. Conformally flat spacetime for static perfect fluid and radiation

As an example, we study the motion of a test top in a conformally spherically flat universe
filled with a static perfect fluid and radiation. We will focus our attention in four different cases:
radiation only, matter-dominated, radiation-dominated and inflation-dominated universes.
The universe will be filled with a static fluid, with energy density ε and pressure p, and a
electromagnetic radiation field Fμν which has origin in a electrostatic potential, i.e., its only
non-vanishing component is F0r.

Assuming that the fluid pressure p is proportional to the fluid energy density ε, the Einstein
equations for the conformal metric (112) can be solved exactly. A general conformal factor
can be found [25]

�(r) = Q1(r
−2/(1+3α) − Q2β)(1+3α)/2, (132)

where Q1 and Q2 are constants, α = p/ε is the constant ratio between pressure and the energy
density, and β = (1 + 3α)(3+3α)/(1+3α). Also, the energy density has the form [25]

ε = 3c2βQ2

4πGQ2
1(1 + 3α)

r− 4+6α
1+3α (r−2/(1+3α) − Q2β)−3−3α, (133)

where G is the gravitational constant. Notice that we must require Q2 � 0 in order to have a
positive semidefinite energy density. The radiation field can be found to be

F2 = −c2r
−6−6α
1+3α

GQ2
1(1 + 3α)

(
r

−2
1+3α − Q2β

)−3−3α [
2 + 6α − 4(2 + 3α)βQ2r

2
1+3α

]
, (134)

where F2 ≡ FμνFμν = 2F0rF0r = −2(F0r)
2/(�4c2). Because Q2 � 0, this solution could

have an intrinsic singularity in the metric [25].

6.1.1. Uniform electromagnetic radiation universe. If Q2 = 0, the conformal factor will be
simply

� = Q

r
. (135)

This conformal metric describing this kind of universe is known as the Bertotti–Robinson
solution [26–28]. It is important to notice from (133) that the energy density and the
pressure vanish. Therefore, there is no fluid. On the other hand, from (134), we get that
F2 = −2c2/(GQ2) is constant. Thus, this universe is filled only with a static uniform
electromagnetic radiation field.

The motion of a top in this universe can be studied using the Bertotti–Robinson metric.
From (121) we find that η ≡ 0. This fact simplifies the previous expressions, finding from
(122), (123) and (129), that

Pφ = − j, Pt = E ± jJ

mQr
, γ = 1 − J2

m2c2Q2
, (136)

respectively. Also, from (128) we get ζ = −1. This implies that the nature of the interval ds2

of the top particle (130) is controlled by � only. From (131) we find that

� = j2J2

m6c6Q6
(J2 − 2m2c2Q2). (137)

With these quantities we can evaluate the velocities (127), and thus, the motion of the spinning
particle is completely described.
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Lastly, notice that � can be positive, negative or null depending on the properties of the
top and of the spacetime through Q. This determines the sign of the interval ds2, which it is

ds2 = dt2

r4Pt
2m4Q2

(2m2c2Q2 j2J2 + m6c6Q6 − j2J4), (138)

where Pt is given in (136). If the previous expression for ds2 is positive, the spinning massive
particle follows timelike orbits. Otherwise, the particle can travel in lightlike or spacelike
orbits. Interesting enough is that this condition depends only on the properties of the particle
j, J and m, and not on the top’s path. Thus, depending on the top’s properties, the previous
desciption is for the motion of bradyons, luxons or tachyons [29].

6.1.2. Matter-dominated universe. If we choose α = 0, then we describe a matter-dominated
universe [30]. In this case, the energy density is dominant over the pressure, and the fluid is
composed by non-relativistic matter (cold dust, p = 0). For this case, the conformal factor
will be given by

� = Q1

(
1

r2
− Q2

)1/2

, (139)

making the evaluation of the η function a straightforward calculation

η = J2Q4
1Q2

r4m2c2�6
> 0. (140)

This allows us to write the other auxiliary functions in terms of η. We find that ζ =
(η − 1)/(2η + 1) and γ = [1 + 3η − η/(r2Q2)]/(1 − η). In this case, the momenta (122) and
(123) take the form

Pφ = 1

1 − η

(
− j ± EJQ2

1Q2

mc2�3

)
, Pt = 1

1 − η

(
E ∓ jJQ2

1

mr4�3

)
. (141)

With these values, the evaluation of Pr or of F2 could now be done using (124) and (134).
Along with this results, it is possible to obtain an expression for the interval (130) in this

spacetime. As in the previous case, the spin introduces enough freedom to enrich the behavior
of ds2. It can be shown from (130) that

ds2

c2 dt2
= �2

(η + 1 − 2η2)2Pt
2

[
3η(2 + η)(1 − η)2Pt

2 + m2c4�2(1 − η)4

− (1 − η)2 Pφ
2

(
8η(1 + η)c2

r2
+

(
J2Q4

1

�6c m2r7

)2

− (2 + 6η)J2Q4
1

�6m2r8

)]
, (142)

written in terms of η given in (140) and the momenta (141). If this expression for ds2 is null,
the motion will be lightlike, and it will be spacelike if the right-hand side of (142) is negative.
Otherwise, the trajectory will be timelike. In addition to its dependence on the top’s properties,
the above expression for ds2 also depends on r, implying that the particle can achieve velocities
larger than speed of light in certain regions of its path. A rigorous evaluation of this condition
requires the knowledge of the top’s energy E, mass m and angular momentum j, and the
constants Q1 and Q2 of the metric.

6.1.3. Radiation-dominated universe. The radiation-dominated phase of the universe (very
early universe) can be studied for α = 1/3 [30], implying an equation of state for ultra-
relativistic matter. In this case, the conformal factor (132) becomes

� = Q1

(
1

r
− 4Q2

)
, (143)
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which produces now that

η = 4J2Q2
1Q2

r3m2c2�4
> 0. (144)

Then, the auxiliary functions become ζ = (η − 1)/(η + 1), and γ = [1 + 2η − η/(4rQ2)]/
(1 − η), whereas the momenta are

Pφ = 1

1 − η

(
− j ± 4EJQ1Q2

mc2�2

)
, Pt = 1

1 − η

(
E ∓ jJQ1

mr3�2

)
, (145)

which can be used to find the velocities of the particle.
Again, using the previous solution an explicit expression for the top’s interval could be

found. We again obtain a possibility for a behavior different to a timelike interval. It can be
shown from (130) that

ds2

c2 dt2
= �2

(1 − η2)2Pt
2

[
4η(1 − η)2Pt

2 + m2c4�2(1 − η)4

− (1 − η)2 Pφ
2

(
3η(2 + η)c2

r2
+ J4Q4

1

�8m4c2r10
− (2 + 4η)J2Q2

1

�4m2r6

)]
, (146)

in terms of η defined in (144) and momenta (145). Thus, ds2 could define timelike, lightlike or
spacelike motion for the spinning massive particle, if it is positive, null or negative, respectively.
Anew, the lightlike or the spacelike behavior of the top’s interval will depend on the distance
and on its properties. For some appropriated values of the energy, mass and angular momentum
of the massive particle, the spinning massive particle can be have different behaviors for the
velocities in some part of the trajectory.

6.1.4. Inflation scenario. As a final example, we perform a theoretical exercise studying a
universe filled with dark energy. In this case the universe will be in an inflationary state with a
cosmological constant. A simplest case is to consider a fluid with the equation of state α = −1
[30, 31]. Thus, the conformal factor acquires the form

� = Q1

r − Q2
, (147)

while from (121) we find that η = Q2J2/(Q2
1rm2c2). Remarkably, this metric produces huge

simplifications. It implies that ζ = −1. Also, we obtain that γ = r(J2 − Q2
1m2c2)/(Q2J2 −

rQ2
1m2c2), and the momenta are

Pφ = 1

1 − η

(
− j ± EJQ2

mc2Q1

)
, Pt = 1

1 − η

(
E ∓ jJ

mrQ1

)
. (148)

Finally, we get that the interval (130) of the top particle is controlled only by � (due to
the fact that ζ 2 = 1). For this case, we get

ds2

c2 dt2
= m2c2�4(

Q2
1r m2c2 − Q2J2

)4
Pt

2

[
c2

(
J2Q2 − Q2

1r m2c2
)4

−J2(r − Q2)
3( jQ1mc2 ∓ EJQ2)

2
(
J2(r + Q2) − 2Q2

1rm2c2
)]

. (149)

The interval ds2 could be null or negative, and the motion could be lightlike or spacelike. This
condition also depends on the distance. So, a spinning massive particle moving in a universe
with dark energy could reach velocities larger than speed of light due to its spin.
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7. Conclusions

We have find exact solutions for the motion of a spinning massive particle in different
spacetimes. First, we study two are cosmological models, the Friedmann–Robertson–Walker
and Gödel spacetimes. Later we study a general Schwarzschild-like spacetime and finally the
static spherically symmetric conformally flat spacetime.

The top’s motion in each metric is exhibited in detail. For the case of the FRW spacetime,
we found a new conserved quantity that allow us to solve completely the problem. For the
general Schwarzschild-like spacetime the case of the Reissner–Nordstrom–(Anti)de Sitter
metric is shown, whereas for the conformally flat spacetimes, we show different solutions for
different universes filled with a perfect fluid and/or radiation.

In any case, the solutions are written in terms of the momenta and velocities of the spin
particle. The spin strongly modifies the dynamics of the spinning particle (as compared to
the spinless case), which modifies the momenta, the velocities, and, in particular, the nature
of its line element for the orbital motion. Although most of the solutions produce timelike
trajectories with ds2 > 0, for various cases there are some specific relations between the energy,
the spin and the angular momentum that can give rise to luminal (ds2 = 0) or superluminal
(ds2 < 0) motion for massive particles. These are the cases of the motion for the spin particle
in the FRW, general Schwarzschild-like and static conformally flat spacetimes. These results
generalize those found for spinning massive particles in a Schwarzschild background [14].
The results presented here seem to indicate that the effects due to spin are robust.
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