
Living entities are embedded in and constituted by, networks
at any level of organization, from cells to ecosystems (e.g.
Ulanowicz, 1986; Pahl-Wostl, 1995; Strogatz, 2001; Barabási
and Oltvai, 2004). The structure and dynamics of these
networks emerge as a result of the processes whereby energy,
materials and information are acquired, stored, distributed and
transformed. Biological networks typically consist of a large
number of non-identical elements whose interaction are
usually localized, although their effects are not and whose
emergence, maintenance and dynamics represent a challenge
to understanding let alone prediction (e.g. Weng et al., 1999;
Levin, 1998, 1999, 2002). Biological networks represent the
most complex physical system in the universe and yet, as most
complex systems they can be described by simple relationships
(West, 1999; Brown et al., 2000). These relationships are of
the form

Y = βxα , (1)

where Y is some response or dependent variable, x represents
an independent or explanatory variable, β is a normalization
constant and α is the scaling exponent. Depending on the value
of the exponent these relationships are called allometric (α≠1)
or isometric (α=1). The functional form of the relationship in

Equation 1 is also called a power-law relationship, where some
quantity can be expressed as some power of another. Power-
laws are ubiquitous in physical and social systems where they
most commonly arise as probability or frequency distributions,
of the form f(x)=βxα, different from the usual exponential or
Gaussian distributions. For example power-law distributions
describe phenomena such as the frequency of earthquakes
of different magnitudes (the Gutenberg-Richter law), the
distribution of income among individuals (Pareto’s law) and
the rank-frequency distribution of words in natural languages
and city sizes (Zipf’s law). Power-laws are well-known to
biologists in the form of bivariate relationships of power-law
type, called scaling relationships (e.g. Peters, 1983; Niklas,
1994; Wiesenfeld, 2001; Brown and West, 2000; Brown et al.,
2002; Chave and Levin, 2003) by which molecular,
physiological, ecological and life history attributes relate to
some attribute of organisms raised to a power as in Equation
1. Although the history of the term scaling in biology probably
has deep roots in time, its use has been associated with
relationship where the independent variable is the size of an
organism (Calder, 1983, 1984; Peters, 1983; Schmidt-Nielsen,
1984). For the sake of consistency we will retain the use of
scaling as related to relationships involving body size and will

Scaling relationships (where body size features as the
independent variable) and power-law distributions are
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acquisition and transformation and power-laws related to
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individual level attributes can help to explain and predict
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ecosystems (i.e. the biomass spectra) in the context of
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such as the ‘energetic equivalence rule’ and the ‘linear
biomass hypothesis’. We also discuss some power-law
distributions emerging in the analysis of numbers and
fluctuations in ecological attributes as they point to
regularities that are yet to be integrated with traditional
scaling relationships and which we foresee as an exciting
area of future research.
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differentiate them from power-law distributions as defined
above.

This special issue is devoted to explore the consequences of
organismal size as affecting biological processes. Most of the
papers in this special issue have addressed scaling relationships
where the response variable is an individual level attribute,
such as metabolic rate, life span and running speed, and where
the independent variable is body size. However, as pointed out
above, scaling relationships are common at higher levels of
organizations as well, such as at the level of populations,
communities and ecosystems, and they are usually an
allometric function of body size (Peters, 1983; Calder, 1984;
Schmidt-Nielsen, 1984; Bonner, 1988; Brown, 1995). This fact
underscores the importance of body size at all levels of
organization, and opens the way for synthesis and integration
across levels. In fact, it has been a pressing challenge for
ecologists and evolutionary biologists to develop a conceptual
and quantitative framework bringing together disciplines
traditionally viewed as distinct, such as physiology, ecology,
biogeography and macroevolution (e.g. Brown and Maurer,
1987, 1989; Ricklefs, 1987; Brown, 1995, 1999; Marquet and
Taper, 1998) and much of this quest for a synthetic framework
has been based on empirical statistical patterns relating body
size with physiological, ecological and evolutionary traits (e.g.
Lawton, 1990; Blackburn et al., 1993a; Brown et al., 1993;
Brown, 1995). In what follows we review some of this
relationships as they emerge at the population, community and
ecosystem levels, and emphasize their connections as well as
future developments.

Our main focus in this review paper will be scaling
relationships were body size features as the independent
variable, however we will restrict ourselves to scaling
relationships related to energy acquisition and transformation
primarily at the level of populations. Our aim will be to show
how individual level attributes can help to explain and predict
patterns at the level of populations, communities and
ecosystems. In addition, we will also discuss power-law
distributions emerging in the analysis of numbers and
fluctuations in ecological attributes as they point to regularities
that are yet to be integrated with traditional scaling
relationships, and that we foresee as an exciting area of future
research. However, before delving into the main theme of our
paper we will make a brief detour to introduce some general
concepts associated with scaling and power-law relationships
that will be used throughout the paper.

Why bother with scaling and power-law relationships?
There are two notions or characteristics associated with

power-law relationships that stand out because of their
theoretical and empirical importance. (1) Power-laws, as well
as scaling relationships as used here, are scale-invariant (e.g.
Sornette, 2000; Stanley et al., 2000; Gisiger, 2001), that is,
they display invariance under scale change. This can be seen
if we consider a scale transformation in x such that x → λx
then f(x)=βxα → βλα xα=λα f(x), thus a change in the scale of

the independent variable preserves the functional form of the
original relationship. Scale invariance describes phenomena
that are not associated with a particular or characteristic scale
and are also known as scale-free or true on all scales, that is
they posses the same statistical properties at any scale. In
practical terms, this means that the same principles or
processes are at work no matter what the scale of analysis
(Milne, 1998). This property makes scaling and power-law
relationships very well suited for the study of ecological
systems, which show variability at different temporal, spatial
and organizational scales such that there is no single ‘correct
scale’ for their analysis (Levin, 1992). (2) The notion of
universality. This concept was introduced into physics in
association with critical phenomena (e.g. Biney et al., 1992)
to describe the state and dynamics of systems as they approach
a phase transition (such as water turning into ice or the onset
of magnetization when temperature is changed or the
transition between dynamical regimes through bifucartions in
deterministic dynamical systems). Near phase transitions,
systems are said to become critical and relevant quantities to
describe their state (e.g. magnitude of fluctuations, correlation
length) behave as power-law relationships with critical
exponents (e.g. Maris and Kadanoff, 1978; Solé et al., 1996;
Milne, 1998; Stanley et al., 2000; Gisiger, 2001).
Interestingly, it has been shown that systems that are
completely different away from a critical point, show similar
critical exponents near a phase transition (e.g. Biney et al.,
1992). These non-arbitrary exponents are said to be universal
and define disjoint classes (universality classes) into which
different physical systems can be classified. A system can
arrive to a critical state through changes in a variable external
to it (e.g. temperature), but also as a result of its own internal
dynamics, in which case we speak of self-organized criticality
a concept introduced by Bak et al. (1987, 1988). During the
past decade or so, several empirical and theoretical
investigations have suggested that biological systems in
general, and ecological systems in particular, seem to operate
near a critical state, which results in the ubiquity of power-
law behavior in several descriptors of their dynamics (e.g.
Miramontes 1995; Bak, 1996; Keitt and Marquet, 1996;
Rhodes et al., 1997; Ferrier and Cazelles, 1999; Solé et al.,
1999, 2002; Gisiger, 2001; Roy et al., 2003; Pascual and
Guichard, 2005) and might even belong to the same
universality class as other complex systems such as economic
systems (Stanley et al., 2000). Thus the analysis of power-law
and scaling relationships can help us to identify general
principles that apply across a wide range of scales and levels
of organizations, revealing the existence of universal
principles within the seemingly idiosyncratic nature of
ecological systems. However, it should be borne in mind that
power-laws might emerge as a consequence of several
processes not necessarily related to critical points and phase
transitions (Brock, 1999; Sornette, 2000; Mitzenmacher,
2001; Allen et al., 2001) such that the claim that ecological
systems are maintained near a critical state is still an open
question.
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Scaling in ecology
Life on earth has diversified in form and function to occupy

virtually all kinds of environments forming spatially and
temporally diffuse associations of organisms, or ecological
systems, wherein energy acquisition, allocation and
transformation is carried out through complex webs of
interacting species. To understand the structure and dynamics
of these complex ecological systems, two major approaches
have predominated among ecologists. On the one hand,
experimental microscopic approaches have emphasized the
highly variable and idiosyncratic nature of communities with
regard to the relative importance of specific biotic interactions
(e.g. competition, predation, mutualism) and their effect on
local coexisting populations (Diamond and Case, 1986; May,
1986; Lawton, 1999). Two representative quotations from
major figures in the field of ecology can help as to clarify this
point further. May (1986, p. 1116) in his MacArthur Award
address wrote: ‘Ecology is a science of contingent
generalizations, where future trends depend (much more than
in the physical sciences) on past history and on the
environmental and biological setting.’ A view that is also
sponsored by Diamond and Case (1986) in an edited volume
that is appreciated as representing the last synthesis in
community ecology, in their own words (Diamond and Case,
1986; p.x): ‘The answers to general ecological questions are
rarely universal laws, like those of physics. Instead, the
answers are conditional statements such as: for a community
of species with properties A1 and A2 in habitat B and latitude
C, limiting factors X2 and X5 are likely to predominate.’

On the other hand, macroscopic non-experimental
approaches have emphasized the existence of statistical
patterns in the structure of communities that seemingly reflect
the operation of general principles or natural laws and emerge
as scaling relationships with similar or related exponents (West
et al., 1997). These regularities underlie two recent research
programs in ecology, the first is macroecology (Brown and
Maurer, 1989; Brown, 1995; Gaston and Blackburn, 2000;
Marquet, 2002a; Storch and Gaston, 2004) and the second is
the ‘metabolic theory of ecology’ (Brown et al., 2004). The
change in the conceptualization of ecological systems entailed
by this latter approach, as opposed to the idiosyncratic view
expressed by Diamond and Case (1986) and May (1986), is
apparent in the following excerpt (Brown et al., 2003; p. 411):
‘...Our own recent research is based on the premise that the
general statistical patterns of macroecology… are emergent
phenomena of complex ecological systems that do indeed
reflect the operation of universal law-like mechanisms.’

Much of the connections between individual, population,
community and ecosystem level scaling relationships has been
exceptionally synthesized in Brown et al. (2004) in the context
of the metabolic theory of ecology, which attempts to explain
material and energetic fluxes, in ecological systems, from first
principles of thermodynamics, chemical reaction kinetics and
fractal-like biological structures and which is expressed in a
‘master equation’ relating metabolism to body size and

temperature (Gillooly et al., 2001; Brown et al., 2004). In the
following we will revisit some of the relationships that are at
the core of Brown et al. (2004), but with an emphasis in the
connections between individual and population level scaling
relationships and predominantly on the scaling of population
number and fluctuations, to show how these can help us to
explain and predict relationships emerging at other levels of
organization and at different scales in time and space.

Individual and population level scaling
The most basic property of a population is the number of

individuals it contains. Furthermore, since both the turnover as
well as the maintenance of each individual requires resources
available in the environment, everything else being equal, the
maximum number of individuals that a species can achieve in
a given area (or maximum density N) will be proportional to
the ratio between rate of resource supply per unit area of the
environment (R) and the average per individual rate of resource
use (B). This can be written as:

N � R/B . (2)

Since environmental resources are used by individuals to
sustain their metabolism (or the complex set of chemical
reactions that allow the organisms to sustain its living) the rate
of resources used by an individual can be assimilated to its
metabolic rate, which is well known to scale with body size
(M) as:

B = C0Mb , (3)

where the scaling exponent b has been shown to be 3/4 both
on empirical and theoretical grounds (West et al., 1997, 1999;
Savage et al., 2004a) although the issue is still contentious
(Dodds et al., 2001). Assuming b=3/4 leads to:

N = C1 M–3/4 , (4)

where C1 contains both the effects of variability in resource
supply rates as well as other sources of variability (C0)
affecting body size and density (i.e. C1=C0/R). Compilation
studies based on the analysis of published data for closely
related species worldwide (e.g. Damuth, 1981, 1987, 1991)
typically report that the slope of the relationship between
density and body mass approximate –3/4. Although this
relationship seems to be stronger in mammals than in other
taxa, such as birds (Bini et al., 2001; Dobson et al., 2003), and
might be affected by the scale of analysis, level of data
aggregation, type of environment, latitude, taxa, trophic
position, census area and method of statistical analysis (see
reviews in Cotgrave, 1993; Cyr, 2000; Gaston and Blackburn,
2000; Silva et al., 2001), recent analysis of this relationship
underscores the empirical generality of the –3/4 scaling
exponent as well as its strong theoretical support (Li, 2002;
Belgrano et al., 2002, Brown et al., 2004). Furthermore, as
shown by Marquet et al. (1990), this relationship holds in local
communities when a wide spectrum of taxonomic groups are
included (see also Cyr et al., 1997; Schmid et al., 2000; Cohen



et al., 2003; Mulder et al., 2005; but see Dugan et al., 1995;
Navarrete and Menge, 1997), although the exponent is closer
to –1 (which is expected when analyzing species in more than
one trophic level, see discussion below) and is maintained in
the face of perturbations affecting changes in the abundance
and identity of species (Fig.·1, see also de Boer and Prins,
2002; Cohen et al., 2003). The existence of temporal
invariance in this relationship further testifies to its importance
in understanding ecological dynamics (Marquet, 2000).

Although most studies do not usually try to disentangle the
effect of both R and C0 (but see discussion below), Equation 4
is widely accepted as an accurate description of the relationship
between maximum density and body size, although most of the
time it is not explicitly realized that energetic limitation
through average per individual rate of resource use (B) should
be stronger in the boundary of maximum density at carrying
capacity (i.e. it is a boundary condition) and when resource
supply is constant and bounded within similar levels among
species (Enquist et al., 1998; Brown et al., 2004; Savage et al.,
2004b). As discussed below, when this is not the case
deviations are expected. A case in point is the scaling of
secondary consumers. Since energy available to secondary
consumers (i.e. those feeding on other animals) is less than that
available to primary consumers (Lindeman, 1942), it is
expected that they will reach lower densities than similar sized
herbivores (Marquet, 2002b; Ernest et al., 2003; Brown et al.,
2004) as was first described by Mohr (1940). However, what
has puzzled ecologists for a long time is that its allometric

exponent is considerably smaller (i.e. steeper slopes in the
range –1.0 to –0.8, see Fig.·2) than –3/4. Explanations for this
discrepancy have been elusive and usually based on presumed
systematic (allometric) variation in prey biomass and
productivity with predator body mass (Peters and Raelson,
1984). However, Carbone and Gittleman (2002) solved this
problem by showing that the relationship between population
density and size in mammalian carnivores is constrained by
metabolic rate and also by variability in their resource base
(prey species) such that the –3/4 power law only emerges if
the local productivity of prey species, experienced by a
carnivore population, is taken into account. Thus, the answer
to the anomalous scaling of mammalian secondary consumers
is found in local resource availability.

The fact that resources (R) are distributed in space allow us
to calculate how much space or area would an individual
require or its home range (H). This can be calculated as the
inverse of Equation 2, assuming that individuals use just the
sufficient area to sustain their energy demands (B) (McNab,
1963) and that resources are homogeneously distributed in
space. Furthermore, if we assume that Equations 3 and 4 hold
then it is expected that 

H = N–1 � B/R � M3/4 . (5)

However, there are two important considerations to make
regarding this relationship: (1) empirical analysis of home
range scaling in mammals shows that the exponent is larger
than 3/4 and (2) it is non-monotonic, showing a change in slope
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presence (outside) or absence (inside) of human exploitation is associated with strong changes in community composition and dominance as
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at a threshold body size MT (around 100·g in mammals)
(Marquet and Taper, 1998; Kelt and Van Vuren, 1999, 2001).
The first anomaly was recently explained by Jetz et al. (2004)
by noticing that the realized home range of an individual might
be smaller than that assumed by Equation 5 due to intraspecific
overlap in space use as a consequence of intrusions from
foraging conspecific neighbors, which would reduce the supply
of resources and hence the area exclusively used by an
individual (but see Haskell et al., 2002). With regard to the
non-monotonicity issue, it has been hypothesized that it reflects
energetic constraints upon small-sized organisms that lead to
trophic specialization on energetically rich but widely
dispersed resources (Brown and Maurer, 1987; Brown et al.,
1993; Marquet and Taper, 1998; Kelt and Van Vuren, 1999)
and this could also explain the observed departures from
Equation 4 for small species (see Silva and Downing, 1995;
Marquet et al., 1995; Siemann et al., 1996; Armbruster et al.,
2002; McClain, 2004). Available estimates for the scaling
exponent of H below MT range between –1.81 to –2.4 (Marquet
and Taper, 1998; Kelt and van Vuren, 2001). These
considerations imply that for mammals:

H � M1.0 for M>MT (6)

H � M–(1.81–2.4) for M<MT . (7)

On extreme body sizes, extinction and minimum viable
populations

Marquet and Taper (1998) first realized that Equations 6 and
7 allow us to predict the maximum and minimum body size

able to persist in a landmass of a given area. Their argument
starts by estimating the minimum area of a landmass required
for persistence (Am) as:

Am � Nm�H , (8)

where Nm is the minimum number of individuals required to
avoid extinction in the absence of immigration (see also
McNab, 1994). Thus if Nm is equal to 500 (individuals) and H
is equal to 0.1 (km2 per individual), then the minimum area
required for the persistence of this species (Am) would be
50·km2. Substituting Equations 6 and 7 into Equation 8 we
arrive at:

Am � Nm�M1.0 for M>MT (9)

Am � Nm�M–(1.81–2.4) for M<MT . (10)

Equations 9 and 10 set the boundary for persistence and apply
to the largest and smallest species able to persist in a given
landmass in the face of extinction. Although the scaling of Nm

is not known it can be estimated by estimating the exponents
associated with Am vs M. Marquet and Taper (1998) tested for
these relationships using data on mammals found in land
bridge islands, mountaintops and continents, whose actual
species compositions are mainly the result of a selective
extinction process associated with relaxation phenomena (e.g.
Diamond, 1984a,b).

As seen in Fig.·3A, as the size of the largest mammal species
within an insular fauna increases so does the landmass area
required for persistence. Furthermore, as the size of the
smallest species decreases the area of the landmass where it is
found also increases. These patterns were found to be highly
significant within archipelagoes, across continental landmasses
and when all cases are analyzed jointly in one general
regression. A similar pattern has been reported for snakes by
Boback and Guyer (2003, see Fig.·3B). Since the estimated
exponents for mammals reported by Marquet and Taper (1998)
did not differ from the expected ones it is possible to conclude
that

Nm � M0 (11)

or, in other words, the minimum number of individuals
required to avoid stochastic extinction is invariant i.e.
independent of body size.

A similar analysis carried out by Burness et al. (2001) using
mammals, birds and reptile species found in oceanic islands
and continents during the last 65,000·years, confirmed our
predictions for the maximum size of species and show that part
of the variability in these scaling relationships can be explained
by diet and thermoregulatory physiology. Furthermore, the
patterns shown in Fig.·3, suggest the existence of an
evolutionary advantage for medium sized species linked to
reduced extinction probability, and is consistent with
macroevolutionary and microevolutionary changes in
mammalian body size (see Brown et al., 1993; Alroy, 1998;
Schmidt and Jensen, 2003), although the mechanistic basis of
these changes are not yet fully comprehended.
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Fig.·2. Population density scaling for primary (open symbols) and
secondary (filled symbol) consumer species of mammals. The slope
of the relationships is –0.73 (not different from –3/4) for primary
consumers and –0.99 (not different from –1) for secondary consumers
(data from Damuth, 1993). Density (individuals km–2); Mb (kg).



If Equation 11 is correct, the further away a species is from
Nm the better its chances to persist. In macroevolutionary time
scales, this implies that small-sized species will tend to survive
longer and likely accumulate by resisting extinction, thus
implying that the number of species should decrease with body
size. If this is correct in a given area, such as the South
American continent, the number of species (S) of a given size
(M) should be characterized by a power-law with a scaling
exponent close to the one characterizing density (N) and body
size i.e.:

S(M) � M–3/4 . (12)

A preliminary test of this idea is presented in Fig.·4 where
we plot the size frequency distribution of the number of species

of mammals in South America (Marquet and Cofre, 1999)
using exponentially increasing size classes. As predicted the
exponent is not different from the expected –3/4 (P.A.M. and
S.A., unpublished).

To derive the patterns in extreme body size, minimum
population size and size frequency distributions just discussed,
we assumed that habitat and food resources are either
homogeneously distributed in space or clumped for species
below a threshold size, but did not specify any particular spatial
pattern. While this could be a reasonable assumption at large
spatial scales, at finer scales (i.e. at the level of landscapes),
the spatial distribution of resources (which is usually fractal
and can be described by a power-law) can affect the
distribution, abundance and interaction of species (e.g. Milne
et al., 1992) and affect community patterns (Ritchie and Olff,
1999; Schmid, 2000).

Ecological invariants
As noted by West (1999), one of the most intriguing

consequences of biological scaling laws is the emergence of
invariant quantities. These are seen, for example, in association
with longevity (Peters, 1983; Calder, 1984; Schmidt-Nielsen,
1984). Because lifespan increases like M1/4, it follows that most
rates (such as heart-rate and specific metabolic rate), which
decrease as M–1/4, give rise to relationships that are size
invariant (i.e. they scale as M0) at the scale of a lifetime. So,
for example, the number of heartbeats in a lifetime is the same
for all mammals and so is the total energy needed to support a
given mass of an organism during its lifetime. And they are
also common in life history theory (Charnov, 1993) but
associated with the timing of life history events. However, at
present it is not known if these fundamental symmetries in
living entities are just a by-product of fundamental scaling laws
or have a deeper ecological and evolutionary meaning. Several
invariant relationships associated with the density scaling
relationship shown in Equation 4 have been postulated for

P. A. Marquet and others

10

8

6

4

2

0

–2

7

6

5

4

3

2

1

0

–1

–2
0.5 1 1.5 2

log body size
2.5 3 3.5

–1 0 1

lo
g 

la
nd

m
as

s 
ar

ea

2 3 4 5 6 7

A

B

Fig.·3. Relationship landmass area and maximum (filled symbol) and
minimum (open symbol) body sizes of mammalian (A, after Marquet
and Taper 1998; land mass area, km2; body size, g) and snake (B, data
from Boback and Guyer 2003; land mass area, km2; body size, cm)
species inhabiting them.

–4

–3

–2

–1

0

1 2 3 4 5 6 7
log body size class

lo
g 

fr
eq

ue
nc

y

Fig.·4. Power-law relationship relating number of species and body
size in South American mammals.



Scaling and power-laws in ecology

ecological systems. These are seen in: (1) the total energy used
by a population or population energy use scaling; (2) the
distribution of biomass in ecosystems; and (3) the minimum
size of populations. Since we have already elaborated on (3),
in this section we will devote our attention to (1) and (2).

The first invariant relationship has been dubbed the
‘energetic equivalence rule’ (Nee et al., 1991). Its derivation
follows. Because metabolic rate (B) scales with body mass
raised to the 3/4 power, the existence of the same scaling
exponent for N has been taken as evidence that the abundance
of species is limited by energetic requirements (Damuth, 1981,
1991). Similarly, the total energy used by a species’ population
per unit area (EU) can be assessed by multiplying the average
energy used by an individual times the density of individuals.
Thus, by multiplying Equations 3 and 4 one gets:

EU = B�N � M3/4�M–3/4�M0 (13)

such that the energy used by different species should be
roughly equal and independent of body mass. This pattern was
first pointed out by Damuth (1981), although not exempt from
criticism (e.g. Marquet et al., 1995; Taper and Marquet, 1996)
as it depends on the exact value of the scaling exponents
associated with B and N and has yet to be mechanistically
understood (Damuth, 1998, but see Charnov et al., 2001)
especially for mobile organisms that utilize a broad spectrum
of resources and inhabit different ecosystems around the world
(Marquet et al., 1995; Brown et al., 2004). For tree-dominated
communities, this relationship has been shown to hold at local,
regional and worldwide scales (Enquist and Niklas, 2001; see
also Enquist et al., 1998 for plant species in general, see Fig.·5)
and have been hypothesized to emerge from the allometric
rules that influence the behavior of individual plant species
(Niklas and Enquist, 2001) competing for space and limiting
resources. Similarly it has been recently documented in local
parasite communities of fishes (George-Nascimento et al.,
2004).

The second ecological invariant is that related to biomass
distribution in ecosystems. Unlike previous invariants, this one
is associated with work conducted mostly in aquatic
ecosystems. In brief, this invariant was proposed by Sheldon
et al. (1972) who, by doing what they called a size spectra (see
below), concluded that there is a ‘tendency for roughly similar
amounts of particulate materials to occur in logarithmically

equal size ranges…’ (Sheldon et al., 1972: p. 336). This
relationship can be expressed as a power-law of the form:

Z(s) � s0 , (14)

where Z(s) stands for the number or biomass of particles of
size or volume (s). It is usual practice to work with the
normalized biomass spectra (see below), thus after normalizing
we arrive at:

Z(s) � s–1 . (15)

Because the equal biomass invariant, when normalized,
implies a linear proportional decrease in biomass across size
classes it has been dubbed ‘the linear biomass hypothesis’
(Sheldon et al., 1986). This relationship has been shown to be
a well-known pattern in pelagic ecosystems (Sheldon et al.,
1972, 1977; Rodriguez, 1994; Rinaldo et al., 2002; Quiñones
et al., 2003). It should be noted that although this relationship
is different from the one depicted in Equation 4, for this does
not rely on distinguishing species (i.e. it is ataxonomic), they
are related (Rinaldo et al., 2002). As shown by these authors,
the linear biomass hypothesis implies that the scaling exponent
of the relationship between number of individuals and average
size should be –1 instead of the observed –3/4. Brown and
Gillooly (2003) hypothesized that an exponent of –1 is
expected when analyzing species in more than one trophic
level, as is the case in marine ecosystems and in size-structured
food webs in general. The –3/4 exponent and, hence, the
energetic equivalence rule, is expected in situations where all
species use the same source of energy (i.e. within trophic
levels). However, the same relationships for size-structured
food webs need to account for energy transfer efficiency as
well as body mass differences between trophic levels. In this
case the prediction is an exponent of –1. A formal test of this
hypothesis using a marine food web has shown that it
accurately predicts observed patterns (Jennings and
Mackinson, 2003) thus narrowing the gap between two
research traditions (marine vs terrestrial), both of which have
appreciated the value of scaling approaches (e.g. Platt, 1985;
Cyr and Pace, 1993; Brown et al., 2004). Notice that this result
implies that both invariant relationships are not independent,
such that the existence of invariance in energy use within
trophic levels entails the existence of biomass invariance
across them. To our knowledge the only terrestrial biomass

spectra so far reported is that carried out
by Enquist and Niklas (2001) for tree-
dominated communities using a
worldwide data set of 227 plots of 0.1·ha
assembled by the late Alwyn Gentry.
These authors show, as expected, that the
number of individuals in logarithmic size
classes decreases as M–3/4 implying that
population energy use is invariant.

In a later analysis of the same data set
Enquist et al. (2002) introduces a related
invariant by showing that total biomass
[i.e. total standing above ground dry
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biomass (Mtot) per 0.1·ha plot] is invariant with respect to
number of species (S) (i.e. Mtot�S0) implying that an increase
in species richness within communities results in a finer
division of biomass instead of an increase in total biomass.
Notice that this invariant, as well as the ‘energetic equivalence
rule’, entail the existence of an ecological zero-sum dynamic
(Van Valen, 1980) consistent with recent symmetric models of
community assembly (Hubbell, 2001). However, it remains to
be seen if the biomass invariant described by Enquist et al.
(2002) applies to taxa other than trees and how it changes when
more than one trophic level is analyzed.

Ecological scaling and biomass size spectra
The study of the distribution of biomass by size in the

pelagic systems has been a significant step in the search for
generalizations in aquatic ecology. Regularities in the size
structure of pelagic communities have been observed in
offshore systems (e.g. Sheldon et al., 1972; Beers et al., 1982;
Platt et al., 1984; Rodriguez and Mullin, 1986a,b; Witek and
Krajewska-Soltys, 1989; Quiñones et al., 2003) and lakes (e.g.
Sprules et al., 1983, 1991; Sprules and Knoechel, 1984;
Sprules and Munawar, 1986; Echevarría et al., 1990; Ahrens
and Peters, 1991; Gaedke, 1993). In coastal pelagic ecosystems
the biomass size distribution does not present patterns as
regular as those observed in oligotrophic systems but biomass
is not randomly distributed across body size (e.g. Jimenez et
al., 1987, 1989; Rodriguez et al., 1987). A regular pattern in
the biomass size distribution has also been found in salt
marshes (Quintana et al., 2002) and benthic communities (e.g.
Schwinghamer, 1981; Warwick 1984; Schwinghamer, 1985;
Saiz-Salinas and Ramos, 1999; Quiroga et al., 2005).

On the other hand, aquatic food webs are strongly size-
structured with larger predators eating smaller prey (Sheldon
et al., 1972; Dickie et al., 1987). Many species grow in mass
by five orders of magnitude; cannibalism, cross-predation and
transient predator–prey relationships are common (Cushing,
1975; Kerr and Dickie, 2001). However, mean body mass of
species is only weakly correlated with body mass in the whole
food web (Fry and Quiñones, 1994; France et al., 1998;
Jennings et al., 2001, 2002). These observations provide
compelling reasons to adopt size-based rather than species-
based analyses of food web structure in pelagic ecosystems
(Jennings and Mackinson, 2003).

In the study of biomass size distribution of pelagic
communities, the most common representation used has been
the construction of biomass size spectra. In this formulation
every individual in the system is assigned to one of a series of
size classes represented on a logarithmic scale conforming to
an un-normalized spectrum (Fig.·6). The high degree of
aggregation of such an ataxonomic approach reduces the
complexity of the system to a manageable level. Platt and
Denman (1977, 1978) indicated that a normalization procedure
was required to represent and cross-compare biomass size
distributions adequately, because the width of the size classes
varies significantly through the size spectra. In brief, the

normalization procedure consists of taking the variable of
interest Z(s) (i.e. usually biomass or numerical abundance) in
the size class characterized by the weight or volume (s) and
dividing it by the width of the size class, ∆s. Thus the
normalized version of the variable z (i.e. Z(s); see Fig.·7) is
equal to:

Z(s) = z(s)/∆s . (16)

A detailed analysis about constructing normalized (NBS) and
un-normalized size spectra can be found in Blanco et al. (1994;
1998).

On the other hand, Vidondo et al. (1997) have argued in
favor of using the Pareto type II distribution, which is widely
used in many disciplines to describe size distributions, for
representing and modeling size spectra. To apply such an
approach adequately, each particle should contribute one point
to the Pareto plot and, therefore, all the information contained
in the observations is used. The Pareto approximation is ideal
for automatic sizing instruments, such as flow cytometers and
electronic or laser particle counters. Although in theory it is
possible to estimate the parameters of the underlying Pareto
distribution from the NBS-spectra, this procedure is not
recommended from a statistical standpoint (Vidondo et al.,
1997). It is important to note that, in systems that are far from
equilibrium, there may be size distributions that cannot be
appropriately described by the Pareto nor the normalized
biomass-size-spectrum model, such as multimodal
distributions (Gasol et al., 1991; Havlicek and Carpenter,
2001).

The size-spectrum approach is rooted in the well-accepted
concepts of the pyramids of biomass and numbers (Cousins,
1980, 1985; Platt, 1985) and research in this field can be traced
back to the first half of the century (e.g. Elton, 1927; Ghilarov,
1944). However, it is the work of Sheldon et al. (1972, 1973)
that provided new impetus to the field by publishing a set of
particle-size spectra from oceanic areas (for a historical
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perspective see Platt, 1985). Sheldon et al. (1972), based on
his field observations, proposed the ‘linear biomass
hypothesis’, which states that in the pelagic system there is
roughly the same biomass at all size classes. The regularities
in pelagic size structure observed by Sheldon et al. (1972,
1973) and the fact that most aspects of energy and material
flow of an organism are size dependent (Peters, 1983; Calder,
1984; Schmidt-Nielsen, 1984) led to the development of
theoretical models to explain and quantify the regularities (e.g.
Kerr, 1974; Sheldon et al., 1977; Platt and Denman, 1977,
1978; Silvert and Platt, 1978, 1980; Borgmann, 1982, 1983,
1987; Dickie et al., 1987; Boudreau and Dickie, 1989;
Boudreau et al., 1991). The first theoretical models about the
size structure of the pelagic ecosystem were proposed by Kerr
(1974), Sheldon et al. (1977) and Platt and Denman (1977,
1978). Whereas the two first models were based on the trophic-
level concept, the last stands on the consideration of a
continuous flow of energy from small to large organisms. Kerr
and Sheldon’s models propose that biomass is constant when
organisms are organized in logarithmic size classes. On the
other side, Platt and Denman’s model predicts a slight decrease
of biomass with organism size with a slope of –0.22 and
proposes an allometric structure for the pelagic ecosystem
(Platt and Denman, 1977, 1978). Until now the most
comprehensive biomass size spectra constructed in close to
steady state systems (i.e. North pacific Central Gyre,
Rodriguez and Mullin, 1986b; oligotrophic areas of the

Northwest Atlantic, Quiñones et al., 2003)
support the Platt and Denman’s model. It is
important to note that in Platt and Denman’s
model the exponent (–0.22) represents a
balance between catabolism and anabolism
and, consequently, from a scaling standpoint
it is coherent with the recently proposed
‘metabolic theory of ecology’ (Brown et al.,
2004).

Linearity, smoothness and continuity in
biomass size spectra

Evidence to date shows that oligotrophic
ecosystems close to a steady state present
more or less linear normalized biomass size
spectra (log–log scale). The slope of the NBS-
spectrum of oceanic pelagic systems seems to
be close to –1 or –1.2 depending on whether
biomass is expressed as volume or carbon,
respectively (Rodriguez and Mullin, 1986b;
Quiñones et al., 2003). By contrast,

ecosystems far from the steady state may present non-linear
normalized biomass spectra and under extreme conditions the
biomass-size spectra can present discontinuities (Quiñones,
1994). Havlicek and Carpenter (2001) show that size
distributions in lake communities have multiple lump and gap
regions within each functional group of phytoplankton,
zooplankton and fish. Simulations showed the gaps could not
be explained by incomplete censuses of species or by
systematic underestimation of intraspecific size variation.
Nevertheless lakes that differed widely in nutrient status,
trophic structure, species diversity and area had similar size
distributions. A detailed analysis of the discontinuities in the
marine biomass spectra of close to steady state systems has not
been conducted to date.

Dickie et al. (1987) analyzed the distribution of specific
production by size in ecosystems. They identified two kinds of
slopes in the relationship between log-specific production and
log body size (Fig.·8). First, a unique primary slope reflecting
the size dependence of metabolism. This primary slope is
uniform, low and negative (approximately –0.18). Second, a
collection of secondary slopes, which represent an ecological
scaling of production related to rapid changes of log annual-
specific-production with log body size within groups of
organisms with similar production efficiencies. These secondary
slopes are steeper than the primary slope. Boudreau et al. (1991)
have pointed out that such ecological scaling would produce
dome-like patterns in the biomass size spectra. In fact, dome-
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like patterns have been observed in several ecosystems (e.g.
Sprules and Munawar, 1986; Sprules et al., 1988; Rodriguez et
al., 1990; Sprules et al., 1991). However, oligotrophic oceanic
systems present NBS-spectra that can be properly described by
a straight line (e.g. Rodriguez and Mullin, 1986a; Witek and
Krajewska-Soltys, 1989; Quiñones et al., 2003). In fact, in
addition to linearity, perhaps the second most-characteristic
feature of the size structure of plankton in the oligotrophic ocean
seems to be the similarity between primary and secondary scales.
The linearity of the NBS-spectra in oligotrophic oceanic waters
suggests the dominance of the metabolic scaling over the
ecological scaling in these areas. It is interesting to note that the
primary slope of the normalized biomass spectra seems to be
strongly related to the slope of the normalized metabolic spectra
as shown empirically by Quiñones (1992) and Quiñones et al.
(1994) in planktonic communities from the North Atlantic and
Mediterranean Sea, respectively.

The complete absence or scarcity of conspicuous dome-like
patterns in the biomass size distribution in some pelagic
ecosystems can also be explained in trophodynamic terms by
several hypotheses that are not mutually exclusive. First, if the
food web in a particular system is unstructured (sensu Isaacs,
1972, 1973) the domes, if any, will tend to be minor. Second,
the dome-like patterns will also be less conspicuous in systems
with a more-structured food web but where there is a large
range of prey/predator body-size ratios (Thiebaux and Dickie,
1993). Indeed, the assumption of a constant prey/predator ratio
for the pelagic ecosystem is erroneous as shown by Longhurst
(1989, 1991). Third, if the trophic positions (i.e. groups of
organisms having a common production efficiency, Boudreau
and Dickie, 1992) are not sufficiently characterized by
different size ranges, the domes will not be conspicuous in the
biomass size spectra. Evidently, not all observed dome-like
patterns are produced by the secondary scaling described by
Dickie et al. (1987). In fact, dome-like patterns may result from
mere methodological artifacts (García et al., 1994). In addition,
some observed dome-like patterns in pelagic systems could be
the by-product of the propagation of a peak of biomass or
energy (Silvert and Platt, 1978, 1980; Han and Straskraba,
2001) through the size spectrum. Waves of energy changing
the shape of the biomass spectrum have been observed both in
coastal (Rodríguez et al., 1987; Jiménez et al., 1989) and
oceanic waters (Rodríguez and Mullin, 1986a).

Environmental variables determining and/or affecting
biomass size spectra

Sprules and Munawar (1986) proposed a relationship
between the numerical value of the slope of the NBS-spectra
and the trophic state of a pelagic ecosystem. Eutrophic
ecosystems would present more positive slopes than
oligotrophic ecosystems. However, due to both methodological
difficulties and to the lack of sufficient data this hypothesis is
still far from being validated.

It is known that several size-dependent processes can alter
community size structure. Size-selective predation can be a
primary organizing force in some communities (Brooks and
Dodson, 1965; Hall et al., 1976; Vanni, 1986) and the size
structure of the grazers can influence the size structure of the
phytoplankton community (Carpenter and Kitchell, 1984;
Bergquist et al., 1985). In fact, Rassouldagan and Sheldon
(1986) and Sheldon et al. (1986) have experimentally shown
that predation can play a major role in structuring size spectra.

Abiotic forcing has also the potential to modify biomass size
distribution. For instance, Havens (1992) demonstrated that
acidification could change the parameters of freshwater
plankton size spectra and Samuelsson et al. (2002) show that
nutrient enrichment in mesocosms resulted in higher biomass
and changed plankton size structure.

In relation to benthic size spectra, the physical
characteristics of the sediment (Schwinghamer, 1981; Drgas et
al., 1998; Duplisea, 2000), the gradient of organic matter
(Schwinghamer, 1985), the life-history strategies of dominant
taxa (Warwick, 1984) and oxygen levels (Quiroga et al., 2005)
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are thought to constrain the size spectrum of faunal species.
However, the spectra seem to be quite conservative. For
instance, Rafaelli et al. (2000) imposed size-specific
perturbations (enrichment and predation) on marine sediment
assemblages. Perturbations significantly affected the densities
and relative abundance of the main invertebrate taxa and these
effects were consistent with the known effects of enrichment
and predation. However, there was little evidence of significant
treatment effects on the overall benthic biomass or abundance
size spectrum, supporting the contention that the spectrum
is conservative and is probably constrained by habitat
architecture.

The applications of biomass size spectra

Since the late 1970s, the NBS approach has found
application in several fields, such as fisheries research and
pollution studies. In fisheries, the NBS approach has been
applied to predict fish production from phytoplankton standing
stock (Moloney and Field, 1985) and from primary and
zooplankton production (Sheldon et al., 1977; Borgmann,
1982, 1983; Borgmann et al., 1984). The NBS approach has
formed the basis of models to estimate fish mortality rates
(Peterson and Wrobleski, 1984) and to analyze multispecies
fisheries (e.g. Pope et al., 1988; Murawski and Idoine, 1989;
Duplisea and Kerr, 1995, 2000). Also, models to estimate
production of multispecific fisheries based on size structure and
the allometric relation of the production to biomass ratio have
been developed (Dickie et al., 1987; Boudreau and Dickie,
1989, 1992). Recently, there is a growing interest in generating
sound ecological indicators to support an ecosystem approach
to fisheries as stated in the International Symposium on
Quantitative Ecosystem Indicators for Fisheries Management
(March–April 2004, UNESCO, France). Thus, size-based
indicators have become one of the main avenues of research
(e.g. Bianchi et al., 2000; Rice, 2000; Zwanenburg, 2000). In
pollution studies, the NBS approach has been used to model
the flow of contaminants up the food web (Thomann, 1979,
1981; Griesbach et al., 1982; Borgmann and Whittle, 1983;
Vezina, 1986).

The metabolic spectra
It has become evident that to understand the dynamic of the

pelagic ecosystem it is necessary to allocate more efforts in the
empirical study of community processes, such as respiration
and production, from an allometric point of view (Quiñones,
1994). The distribution of biomass by size, despite its linkage
to the energetics of the system, is essentially a measure of
ecosystem structure. The simultaneous study of size structure
and processes, such as respiration, should permit a better
understanding of the relationship between structure and
function in the ecosystem. The only metabolic spectra to date
are those described for the Northwest Atlantic (Quiñones et al.,
1991; Quiñones, 1992) and for the Alboran Sea (Quiñones et
al., 1994). These spectra covering from bacteria to zooplankton
show that respiration in the pelagic system diminishes as a

power function of body size at the community level of
organization, with a slope close to –1.2 (normalized metabolic
spectra). Further research in this field is crucial to connect the
metabolic theory of ecology (Brown et al., 2004) adequately
with size-spectrum theory in the pelagic ecosystem.

Some ecological power-laws related to population
abundance and fluctuation

As with scaling relationships associated with body size,
power-laws are ubiquitous in ecological systems, for example
in the size and duration of epidemic events (Rhodes and
Anderson, 1996; Rhodes et al., 1997), in patterns of
abundance, distribution and richness (e.g. Frontier, 1985;
Banavar et al., 1999; Harte et al., 1999, 2001) and in food web
attributes (e.g. Brose et al., 2004; Garlaschelli et al., 2003). In
the following paragraphs we will present some power-laws
associated with population dynamics, which highlight
phenomena also seen in the context of scaling relationships
(such as zero-sum dynamics) and relationships that can be
categorized in terms of body size.

Power-laws in population growth rates

Standard ecological wisdom asserts that population size is
expected to follow a lognormal distribution, given that it is the
product of a multiplicative renewal process (e.g. Lawton, 1989;
Blackburn et al., 1993b; Halley and Inchausti, 2002).
Furthermore, several single species population models give
rise to normal or lognormal population abundance distributions
(e.g. Keeling, 2000). If population abundance follows a
lognormal distribution, it is expected that the ratio of
successive abundances N(t+1)/N(t) also has a lognormal
distribution and, hence, the logarithm of such a ratio
r=ln[N(t+1)/N(t)], should show a normal or Gaussian
distribution. In other words, under an expectation of lognormal
population abundances, population growth rates should exhibit
a Gaussian probability distribution. Interestingly, as shown by
Keitt and Stanley (1998), the growth rates in an avian ensemble
over a large geographical scale in North America are not
distributed following a Gaussian distribution, but rather follow
a power-law with a characteristic tent shape (Fig.·9A), which
is well described by an exponential or log-Laplace distribution
(Keitt and Stanley, 1998; Keitt et al., 2002). Furthermore, the
same tent-shaped power-law form is also observed when
examining the conditional probability density distributions of
growth rates rs given an initial abundance class p(rs|N), defined
by grouping observations into bins or categories of initial total
abundance (Fig.·9B). The width of the distribution, as
measured by the standard deviation of the growth rates, widens
as the initial population abundance decreases (Fig.·9B). It is
remarkable that when the scaled growth rate rscal=[rs–<rs>]/σ
and the scaled probability density pscal=σp(rs|N) are calculated
for these conditional probability distributions (Fig.·9C), all the
data from the different bins collapse onto the same universal
power-law curve pscal�e(–|r scal|). This non-trivial rescaling
suggests that in spite of differences in body size, life history



and ecology, all the species under study fall along a single
power-law relationship, which suggests that they share a
common universal probability density distribution of growth
rates. This powerful statement is further strengthened by the
fact that this universal distribution is a power-law.

The presence of scaling and universality in population
growth rates has strong implications for understanding
population dynamics in general. In physical systems, scaling
is often found in the presence of ‘cooperative’ behavior. In
inanimate systems, such as ferromagnets near a critical
temperature point, scaling relationships arise because each
particle interacts directly with a few neighboring particles and,
as these neighboring particles interact with their neighbors,
interactions can ‘propagate’ long distances, thus resulting in

power-law distributions (Stanley et al., 2000). Similar results
have been observed for the probability distributions of growth
rates of companies, universities and countries’ gross national
product, all of which have been observed to rescale to the
same exponential probability density function f(x)=e(–|x|)

(Stanley et al., 1996; Canning et al., 1998; Plerou et al., 1999).
In physics, such universal and scaling behavior is interpreted
as evidence that the physical dimensions of the phenomenon
predominate in setting the observed dynamical patterns. This
strongly suggests that there may indeed exist universal
principles that underlie the growth dynamics of complex
adaptive systems that are involved in the acquisition,
transformation and storage of information, materials and/or
energy.

In the case of ecological communities, the scaling in
population growth or fluctuation can be brought about either
by the spatial dimension of spatial population structure, or
more importantly, by the physical dimension of energy and
material flows. In the first case, it can be argued that
interactions in ecological systems may propagate through
spatial metapopulational dynamics, with local patches being
saved from extinction by immigration from nearby
populations. Thus, rescue-effects (Brown and Kodric-Brown,
1977) may couple large systems. On the other hand, species
present in an ecosystem interact directly with some (but not
necessarily all) species, which may in turn interact with a
second set of species, so that interactions can ‘propagate’
through time and space from the individual to the population,
community and ecosystems and finally to the biosphere scale.
The fundamental connectivity of the living makes the existence
of power-laws plausible.

The relationship between energy and material flows and the
emergence of observed power-laws in ecological systems can
be further highlighted by an important implication which has
not been emphasized by previous authors. In addition to its
tent-shaped form and the observed rescaling features, the
observed distribution of growth rates is highly symmetrical
about rs=0 in all cases considered. This implies that exactly as
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many species are increasing in abundance as are decreasing
over the 31-year period studied, be it over the whole ensemble,
or when grouping by initial abundance bins. Thus, these
species undergo a zero sum dynamic in population size, with
demographic gains and losses by all the species balancing over
the study period. This is not obvious, nor is it expected from
previous theoretical explanations for the emergence of scaling
laws in physical systems. The idea of zero-sum dynamics in
communities has also been supported by studies of the pattern
of biomass distribution between species of different
communities of extant and fossil plants across different
biogeographic provinces (Asia, Africa, Europe, South and
North America; Enquist et al., 2002). The idea of the existence
of zero-sum dynamics in systems under energy limitation can
be dated back to the ‘red queen hypothesis’, which predicts that
any change in the control of trophic energy by a species is
balanced by a net equal and opposite change in the amount of
trophic energy controlled by all the other species in the
community with which that species interacts (Van Valen, 1976,
1977; Stenseth, 1979). In this formulation, trophic energy,
defined as an individual’s control of a constant amount of the
energy available to a group of related species that compete for
it, is a proxy for fitness. This implies that energy use by the
species in a community is a zero-sum game (Hubbell, 1997,
2001; Bell, 2000), with a balance in the energy gained and lost
by all the interacting species. In this regard, the red queen
hypothesis emphasizes that under a scenario of limiting
resources zero-sum dynamics must necessarily operate, as an
expression of the first law of thermodynamics (Van Valen,
1976, 1977; also see open discussion in Van Valen, 1980).
As we already mentioned, the existence of an ‘energetic
equivalence rule’ within local communities implies that
species follow a zero-sum dynamic in energy use. That zero-
sum dynamics seem to hold for demographic changes, total
biomass and population energy use may seem paradoxical.
Indeed, it is one of the research questions left open by these
various scaling and power-law relationships.

It is important to note that these results have not been exempt
from criticism in the literature, and we close this section by
mentioning and discussing the main points made against the
existence of power-laws in the distribution of population
growth rates. It has been argued that the tent-shaped
distribution of population growth rates may be the end product
of a mixture of lognormal distributions in population size
(Allen et al., 2001). This phenomenological explanation,
however, does not account for the symmetrical nature of the
distribution, nor does it provide a mechanism that accounts for
its form and location. Another possible explanation of these
results is that the distribution of growth rates in the community
arises from a mixture of Gaussian population growth rate
distributions for each of the species with different variances
(Amaral et al., 1998). This would require nevertheless, that all
the distributions of growth rates be centered with mean zero,
so that all species must be regulated around an equilibrium
point and, hence, does not take into account the fact that in the
observed data some species show marked trends in abundance.

Thus, species increases have to be balanced by decreases in
other species.

Scaling of population fluctuations
Power-laws in population fluctuations are well known and

have been the focus of an increasing number of contributions
in recent years, as a consequence of the availability of long
time series in population dynamics, such as the Breeding Bird
Survey (BBS) and the Global Population Dynamics Database
(GPDD). Time series analyses of population fluctuations have
shown that the size of fluctuations (n) decrease, on average, as
the inverse of the frequency (f) with which they occur or as
‘1/f noise’ or ‘pink noise’ (e.g. Halley, 1996; Miramontes and
Rohani, 1998; Inchausti and Halley, 2001; Storch et al., 2002;
see review in Halley and Inchausti, 2004) such that the
distribution of fluctuations sizes is described by a power-law
of the form D(n)∼n–α, with α close to 1, as expected under self-
organized criticality (Bak et al., 1987). In addition to 1/f noise,
one of ecology’s most interesting patterns regarding population
variablity is Taylor’s power-law (Taylor, 1961). It has been
observed that for many species, the variance in population
abundance σ2(N) is related to the mean of population
abundance <N> by a power law with a fractional exponent:
σ2(N)�<N>γ (Taylor, 1961; Taylor and Woiwod, 1980;
Anderson et al., 1982; Hanski and Tiainen, 1989; Boag et al.,
1992; Keitt and Stanley, 1998). For the vast majority of
species, the power-law scaling parameter, γ is found to lie
between one and two, with many species lying close to the
extremes (Anderson et al., 1982). This scaling relationship has
been described for a wide range of taxa, both for spatial and
temporal scaling. The majority of the studies focusing on
population variability have emphasized species differences and
seek to find ways to classify these differences among species,
with due consideration given to the methodological biases and
caveats inherent to such comparisons (e.g. McArdle et al.,
1990). Scaling studies take a different approach. Instead of
focusing on differences among species in a comparative frame,
these studies seek to separate general patterns or ‘laws’ that are
invariant across taxonomic groups from general rules that may
explain deviations from these laws and which may eventually
be linked to the species biology or ecology.

It is interesting to note that, should Taylor’s power-law hold
for temporal variation in abundance and if the temporal mean
abundance follows a negative relationship with body size, the
scale invariance in both power-law relationships makes it
possible to derive the scaling in population variability as a
function of body size and it can be expected that σ2(N)
�(<M>ν)γ�<M>νγ. Thus, as ν is expected to be –3/4 and γ is
usually between 1 and 2, hence population variability should
show a negative scaling relationship with body mass, taking
values between –3/4 and –3/2. Although this relationship has
not been tested explicitly in the literature, the work by Keitt et
al. (2002) provides evidence that such a negative scaling may
hold for North American birds when studied at the population
level. These authors show that the standard deviation σ(rs) of



population growth rates in North American birds is strongly
related to the average total population size. The relationship
follows a power law σ(rs)�<N>β, for over four orders of
magnitude in <N>, the total population abundance averaged
across all 31 years studied. Using major axis regression with
bootstrap precision estimates, Keitt et al. (2002) find
β=0.36±0.02, so that Taylor’s exponent (here replicated across
species) is found to be γ=2(1–β)=1.28±0.04. Again, under the
assumption that there exists a negative relationship between
average abundance in time and body size: <N> �<M>ν, with
ν=–3/4, it can be seen that the temporal variance in population
abundance should scale approximately as M–1.0 (the observed
value is –0.96±0.03). On the other hand, the standard deviation
in population growth rate should scale as σ(rs)�<M>βν, which
predicts then that fluctuations in growth rates should show a
M–1/4 scaling (the observed value is –0.27±0.05), as do other
temporal phenomena in ecology and biology (Calder, 1983;
West et al., 1999). It certainly would be interesting to test
whether these predictions hold to empirical scrutiny for the
species studied by Keitt and collaborators (Keitt and Stanley,
1998; Keitt et al., 2002) as well as for other taxa and at other
spatial scales of study.

Scaling and conservation biology
As mentioned in previous sections, scaling and power-laws

point out to the action of universal or law-like phenomena that
allow the study of ecological systems even in the absence of
detailed knowledge on demography and dynamics. In this
context, the application of scaling relationships to conservation
biology should be widespread provided the pressing need to
slow down the extinction crisis and the lack of detailed
demographic information for the majority of endangered
species (Calder, 2000; but see Simberloff, 2004). However,
despite their generality, the use of scaling relationships in
conservation biology has been scant and most of the attention
has been given to the power-law relating number of species
and area (e.g. Rosenzweig, 1995; Brooks et al., 1997, 1999).
One recent exception is the development of the software
RAMAS Ecorisk (Hajagos and Ferson, 2001) that uses scaling
relationships in combination with traditional population
analysis to assess species extinction risk. In this section, we
review some applications of body size scaling to predict
species’ traits that might be useful in conservation biology. We
provide some examples of allometric scaling relationships
that deal with vulnerability to extinction, minimum viable
population size, minimum area requirements, habitat
fragmentation and invasion success by non-indigenous species.

When it comes to risk of extinction, not all species are equal.
Understanding what factors predispose a species to become
endangered and extinct is one of the major challenges for
conservation biologists. In addition to external factors, such as
habitat loss, over-exploitation, introduced species and chains
of extinction, several intrinsic traits have been implicated
in the extinction process of species (Fisher et al., 2003).
Among them are population density, population variability,

reproductive output, trophic position, geographic range and
dispersal ability (Pimm et al., 1988; Gaston and Blackburn,
1995, 1996; Lawton, 1995; Bennett and Owens, 1997; Cardillo
and Bromham, 2001). However, many of these traits correlate
well with body size. Therefore, body size has been used as a
surrogate for other life history or ecological traits that influence
vulnerability to extinction (e.g. Johst and Brandl, 1997;
McKinney, 1997; Cofré and Marquet, 1999; Dulvy and
Reynolds, 2002).

One of the first modeling approaches to link body size with
population persistence over time in mammals was developed
by Belovsky (1987). Based on a population model by
Goodman (1987), he estimated the population reproductive
growth rate and population maximum size (taken from the
literature) as a function of body mass, and calculated minimum
viable population size and minimum area requirements for
mammals. As a surrogate for variability in population
parameters, he employed environmental variability. Using
datasets of mammals in mountaintops in the Great Basin desert
and the Southern Rocky mountains of North America, he found
a close agreement between the predictions from the model and
the observed persistence time. As expected, smaller species
required higher minimum viable population sizes than larger
species to persist over a certain period of time. However, the
predicted minimum area required to sustain a given maximum
population size varied depending on the species’ feeding
ecology (with larger areas required for carnivores than for
herbivores) and its environment (with larger areas needed for
tropical than for temperate species). The model is somewhat
simple in that it assumes that there is a single isolated
population and that all individuals experience the same
environmental variability. In reality, it is more likely that
species are patchily distributed, perhaps forming a
metapopulation, in which each population experiences
different levels of environmental variability. Despite its
shortcomings, this model represented a first approximation of
the population sizes and habitat area required for sustaining
mammal populations over some period of time and, therefore,
a relatively useful tool for managing endangered species and
the design of wildlife preserves.

Besides the use of body size to estimate parameters in
population models, as in the example above, scaling of body
size has been directly related to minimal viable population
densities (MVPD) of mammals (Silva and Downing, 1994).
Silva and Downing (1994) compiled data on MVPD for 143
species of mammals and performed correlations against body
size. They found that minimum density of mammal species
decreases as body size increases, supporting the predictions of
empirical models based on average density. Correlations
between body size and MVPD were negative within taxonomic
groups, habitat types and climatic zones. This finding has
implications for estimating minimum habitat area required to
sustain minimum viable population densities of a species of a
given body mass. However, as discussed previously there
empirical evidence related to the scaling of body mass
extremes that support the invariance of MVPD (Marquet and
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Taper, 1998). According to the authors, the mechanism
underlying this pattern is the result of body size related biases
in extinction probabilities, with medium-sized species (of
about 100·g in mammals) being less prone to extinction. This
argument is based on the idea that medium-sized species attain
higher population densities (Marquet et al., 1995; Silva and
Downing, 1995) and have lower population variability (Pimm,
1992) than both smaller and larger species; two factors of
crucial importance in minimizing the risk of extinction of
species. Marquet and Taper (1998) provided empirical
evidence for the validity of this relationship when extended
from the evolutionary scale to the ecological scale (Schmidt
and Jensen, 2003). At the ecological scale, the implication of
this pattern is relevant for dealing with habitat fragmentation
since it is the result of processes related to the way body size
affects the number of individuals that a particular species can
pack in a given area (Marquet and Taper, 1998). Thus, in
fragmented habitats where the distance between patches
prevents migration and rescue-effects (Brown and Kodric-
Brown, 1977), it is expected that medium-sized species would
fare better than both smaller and larger species. In the long run,
species with extreme body sizes may become extinct.
Therefore, one could predict what species are more vulnerable
to extinction after habitat fragmentation occurs.

A long-standing goal for ecologists has been to predict
which species will become invasive when introduced to a new
environment. Several life-history traits have been hypothesized
to be important at different stages of the invasion process
(transport, introduction, establishment and spread; Sakai et al.,
2001). Some of these traits are the ones related to faster
population growth (e.g. fecundity, clutch size, incubation
time). The idea behind this concept is that most introduced
populations start off small and are, therefore, more vulnerable
to extinction. Consequently, species with higher rates of
population growth should have higher probabilities of
surviving and establishing and, thus, escape the risks of
extinction from being a small founding population (Pimm et
al., 1988). However, because population growth is very
difficult to measure, most studies use body size as a surrogate,
since both traits are known to be inversely correlated (Duncan
et al., 2003). If growth rate is indeed important in determining
invasion success, the expectation would then be that smaller
species are more successful at invading new environments than
large species. Hence, body size has been implicated in the
invasion success and subsequent spread of non-indigenous
species (Cassey, 2001).

The findings of empirical studies regarding body size and
invasion success are ambiguous. For introduced birds in
Australia, it was found that large body size is associated with
introduction success, whereas, among the introduced species,
small-bodied species attained larger geographical ranges
(Duncan et al., 2001). A similar pattern was found for
introduced mammals in Australia, with the exception that body
size was not significantly associated with introduction success
(Forsyth et al., 2004). Small species were also found to have
large geographic ranges in introduced birds to New Zealand

(Duncan et al., 1999). Additionally, the relationship between
body size and introduction success seems to vary depending
on the taxonomic rank considered. Cassey (2001) found that
global introduction success of land bird species is negatively
correlated across species, families and higher family nodes.
However, he found that, within taxa, successfully established
species had large body size. An important characteristic of
these studies is that they had information on non-indigenous
species that were both successful and that failed to establish in
the new environment. Other studies that correlated body size
with invasion success of only successfully established species
are those for marine bivalves introduced in the northeast
Pacific coast (Roy et al., 2002) and insects into Britain (Lawton
and Brown, 1986). Roy et al. (2002) found that large-bodied
species of marine bivalves were more likely to be successful
invaders. They argue that this may be due to fundamental
differences in life histories between vertebrates and marine
invertebrates. In contrast to birds and mammals, fecundity and
body size are positively related in marine bivalves. In the other
study, Lawton and Brown (1986) found that the probability of
establishment of different orders of non-indigenous insects
introduced into Britain was negatively correlated with body
size. However, when they included other successfully
introduced groups in the analysis (e.g. mammals, fish,
birds, molluscs), the relationship between probability of
establishment and body size became positive. As mentioned
above, the results are ambiguous and do not generalize across
taxa, or even among different stages of the invasion process
when the same taxon is considered. Hence, the application of
scaling relationships to predict invasion success is not
straightforward.

Concluding remarks
We have attempted to show how body size scaling

relationships and power-laws provide a fresh perspective to
tackle ecological complexity, from individuals to ecosystems.
However, their use can be improved and refined. One of those
refinements has recently been articulated by Brown at al.
(2004) who first provide a quantitative theory (the metabolic
theory of ecology) able to explain and predict scaling
relationships and exponents based on first principles associated
with fundamental processes of energy acquisition and
transformation as affected by size, metabolism and
temperature.

Scaling relationships rest heavily on individual level
phenomena, which by aggregation enable us to predict whole
system patterns, processes and rates (e.g. Enquist et al., 2003).
It is striking how strong the fit between predicted and observed
patterns usually is, considering that most data on individuals
and species populations come from different places around the
world, with different biogeographic histories, disturbance
regimes and productivities. It might seem striking that scaling
relationships, which are usually free of ecological context
(Marquet, 2002b; Marquet et al., 2004) can be so powerful.
However, this is to some extent expected given that they



usually focus on ‘bulk properties’ of ecological systems that
are less affected by local ecological idiosyncrasies. Scaling
relationships are mostly concerned with central tendencies in
ecological phenomena, which predicts how the average
individual, population and ecosystem should behave and be
structured. Although many would say that the interesting
biology is in the scatter and that such a thing as an average
ecological system does not exist, but just different realizations
of them, it is important to recognize that unless we have a
mechanistic theory that provides us with an expected baseline,
we would not be able to identify any deviation worth
explaining in the first place. In this sense, both approaches are
interesting and complementary. And this is probably one of the
most important attributes of the theory outlined by Brown et
al. (2004) for it can provide fruitful insights and testable
predictions to advance our understanding of the structure of
ecological systems at disparate scales in time and space and
organization, dressing with a quantitative theory the discipline
of macroecology, that to a large degree has been mostly an
empirical endeavor focused on the description of patterns and
in the accumulation of alternative hypothesis for them (see
Marquet et al., 2003 for a discussion of distribution of
abundance patterns). However, further development and
testing of this approach will require the collection of more and
better data on the richness, density, biomass and metabolic
activity of species within local ecosystems. We need
standardized data on biodiversity, which will allow for
rigorous tests of the predictions at a local scale. This might be
a daunting task, but to advance in our understanding we need
comprehensive and complete analyses of ecological systems.
However, there are important methodological concerns to be
aware of, which are outlined below.

The problem of aggregation

Recent work on scaling relationships has pointed out to the
effect of data aggregation in the estimation of scaling
relationships in ecology (Torres et al., 2001; Savage, 2004c;
Cohen et al., 2005). This is an important methodological point
that should be borne in mind when working with scaling
relationships in general. Its mathematical base is in what is
known as Jensen’s inequality, which establishes that ‘the
expected value of a function is not (in general) equal to a
function of the expected value’ and is also known as the
‘fallacy of averages’ (Welsh et al., 1988; Medel et al., 1995;
Savage, 2004c) and ‘transmutation’ (O’Neill, 1979; King et
al., 1991) such that it is problematic to construct scaling
relationships based on average quantities, such as body mass
or metabolic rate, for it can lead to bias due to their inherent
nonlinearity. 

The problem of causality

The usual convention in allometric studies has been to use
body size as the independent variable, however there is no way
to prove this causal relationship logically, for body size and
physiological, ecological and evolutionary traits do not evolve
in isolation, but affect each other through complex interactions.

In fact, plant ecologists have traditionally treated the size of
individuals as if they were determined by population density
(i.e. the ‘thinning law’) and the same is observed in the analysis
of size-structured food webs (Cohen et al., 2003; Mulder et al.,
2005). Although this might seem mostly a philosophical
problem it has important implications when working with
scaling relationships, for causality specifies the way error
propagates in deriving scaling relationships from known ones
(Taper and Marquet, 1996).

The ubiquity and simplicity of scaling relationships and
power-laws in ecological systems might be deceptive when
compared with the complexity of the systems that they attempt
to describe. Unless their theoretical foundations and underlying
mechanisms are worked out to a sufficient detail to be able to
predict new and, so far unknown, relationships there is the
danger for this field to become adrift in a sea of empiricism
devoid of theory and with little explanatory power and
generality. Recent theoretical developments, such as the
metabolic theory of ecology (Brown et al., 2004) hold great
hope in this direction, however there is still ample ground for
synthesis and theory refinement. In particular, experimental
approaches with either model organisms or simple ecosystems,
have been little explored in the context of scaling and power-
law relationships and could prove to be particularly fruitful to
gain a deeper understanding of their generating mechanisms
and implications. The way ahead is certainly challenging.
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