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Abstract

In this work, results of Chilean wine classification by means of feature extraction and Bayesian and neural network classification

are presented. The classification is made based on the information contained in phenolic compound chromatograms obtained from

an HPLC-DAD. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère samples from dif-

ferent years, valleys and vineyards of Chile. Different feature extraction techniques including the discrete Fourier transform, the

Wavelet transform, the class profiles and the Fisher transformation are analyzed together with several classification methods such

as quadratic discriminant analysis, linear discriminant analysis, K-nearest neighbors and probabilistic neural networks. In order to

compare the results, cross validation and re-sampling techniques were used.

Keywords: Wine classification; Pattern recognition; Statistical classification; Bayesian classification; Wavelet transform; Fisher transform; Proba-

bilistic neural networks; K-nearest neighbors
1. Introduction

During the last years, the Chilean wine industry has
experienced a sustained growth, becoming one of the

most important industries in the Chilean economy,

reaching exportations of US$ 570 millions on 2000,

US$ 590 on 2001 and US$ 610 on 2002. This growth

is due to the incorporation of technology in this industry

to compete in the international market.

In this work, we present the results of Chilean red

wine classification, considering the varieties Cabernet
Sauvignon, Merlot and Carménère from different val-

leys, years and vineyards. The classification is based

on the information contained in phenolic compound

chromatograms obtained from an HPLC-DAD.
* Corresponding author. Tel.: +56 2 678 4213; fax: +56 2 672 0162.

E-mail address: mduartem@cec.uchile.cl (M.A. Duarte-Mermoud).
In most of previous wine classification papers the

concentration of specific compounds are the main vari-

ables on which the classification is based. Typically this
concentrations are obtained from liquid and gas chro-

matography or other techniques, and correspond to

characteristics such as major acids (Cabezudo, Herraiz,

& De Gorostiza, 1983; Etievant, Schlich, Cantagrel, Ber-

trand, & Bouvier, 1989), anthocyanins (Aires de Sousa,

1996; Berente, Garcı́a, Reichenbacher, & Danzer, 2000),

free amino acids (Vasconcelos & Chaves das Neves,

1989), biogenics amines (Csomos, Heberger, & Simon-
Sarkadi, 2002), isotropic ratios (Kosir, Kocjancic,

Ogrinc, & Kidric, 2001), aromas (Weber et al., 1999;

Garcı́a, Reichenbacher, & Danzer, 1998), phenolic com-

position (Garcı́a-Parrilla, González, Heredia, & Tronc-

oso, 1997), color (Almela, Javaloy, Fernández-Lopez,

& López-Roca, 1996; Ortiz-Fernández, Herrero-Gutiér-

rez, Sánchez-Pastor, Sarabia, & Iñiguez-Crespo, 1995)

etc. Classification has then been done using directly
the information provided by the sensors using a wide
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Fig. 1. Typical Chilean Merlot red wine phenolic normalized
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variety of methods ranging from statistical (Csomos

et al., 2002; Kallithraka et al., 2001; Kaufmann, 1997;

Tzouros & Arvanitoyannis, 2001) to artificial neural net-

works and genetic algorithms (Aires de Sousa, 1996;

Almela et al., 1996; Beltrán et al., 2005; Ortiz-Fernández

et al., 1995; Sun, Danzer, & Thiel, 1997).
In a chromatogram the compound concentration de-

pends on the area under the peak that appears at the

time when the column liberates it, known as retention

time. This time depends mainly on factors like the tem-

perature gradient applied to the sample, column aging

and compound type. The commonly used methodology

in order to identify specific compounds is to establish

experimental conditions and then associate a specific
compound to a retention time using standard chromato-

graphic patterns. This approach, besides of requiring a

previous identification of the analyzed compounds,

needs to identify which of them are the most important

for a specific wine characterization, which is an open

problem.

In this work, a different approach is presented, which

does not requires previous compound identification, be-
cause the classification is made using the whole informa-

tion contained in the chromatogram signal, instead of

only the areas of some interesting peaks. The difficulty

of this approach is that commonly, the chromatographic

information is characterized for having a huge data vol-

ume, making a direct approach with classification tech-

niques, like Discriminant Analysis or Neural Networks

classifiers, almost impossible, because of the denomi-
nated course of dimensionality (Fukunaga & Hayes,

1989).

Nevertheless using signal analysis tools and feature

extraction techniques before the classification task, it is

possible to reduce the dimension of the data and to ob-

tain wine classification rates of about 95%.
chromatogram.

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2. Typical Chilean Cabernet Sauvignon red wine phenolic

normalized chromatogram.
2. Description of the experimental data

In this study 172 Chilean red wine liquid chro-

matograms were analyzed. Chromatograms were ob-

tained from confident samples of 80 Cabernet

Sauvignon, 35 Merlot and 57 Carménère wines, culti-

vated in Maipo, Rapel, Curicó, Maule and Itata valleys

in the central zone of Chile, between the years 2000 and
2001.

The information contained in the chromatograms,

corresponds to phenolic compounds of small molecular

weight obtained through a high performance liquid

chromatogram (HPLC) attached with an aligned photo-

diode detector (DAD) (Peña-Neira, Hernández, Garcı́a-

Vallejo, Estrella, & Suarez, 2000). The equipment used

in this study is a liquid chromatograph Merk-Hitachi
model L-4200 UV–Vis Detector with internal pump,

and a thermostat column holder. The column used is a
Novapack C18, of 300 mm length and 3.9 mm of inter-

nal diameter. To separate different phenolic compounds

the following solutions were used as solvents:

(A) 98% H2O, 2% acetic acid,

(B) 78% H2O, 20% acetonitrile 2% acetic acid.

The gradient used in this tests was, 0–55 min, 100% A

at 1 ml/min; 55–57 min, 20% A and 80% B at 1 ml/min;

57–90 min, 10% A and 90% B at 1.2 ml/min.

Each digitalized chromatogram has a length of 6751

points and some peaks can be identified as an specific

phenolic compound. These compounds have been

widely studied and identified by chemical investigators
and agronomic researchers (Alamo, 2002; Muñoz,

2002; Peña-Neira et al., 2000). Figs. 1–3 show typical

profiles of the Chilean Merlot, Cabernet Sauvignon

and Carménère red wines obtained from an HPLC-

DAD suitably normalized.
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Fig. 3. Typical Chilean Carménère red wine phenolic normalized

chromatogram.
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In order to use efficiently the information of the chro-

matograms, and to reduce the data dimension, signal

analysis techniques were first applied. Using the Shan-

non sampling theorem (Middleton & Goodwin, 1990)

it can be found that the Nyquist frequency of the data

is 0.1227 Hz, or equivalently a critical sample period

of 4 s can be used without loosing information con-

tained in the data. Resampling the data with this sample
time allows a reduction of the length of the original

chromatograms (6751 points) into one fifth of its origi-

nal length (1350 points), maintaining the entire original

information. Even though this reduction is significant,

the dimension is still too high for using multivariate

statistical techniques directly.

Another important issue is that chromatograms of

the same variety present different amplitudes because
different volumes of wine were used in the preparation

of the samples for HPLC injection. To overcome this

difficulty, a normalization procedure of the chromato-

gram amplitudes into [0,1] was used. For this purpose

the following transformation was used

~y ¼ y � ymin

ymax � ymin

where y represents the original signal amplitude, ymin the

minimum amplitude of the original signal, ymax the

maximum amplitude of the original signal and ~y corre-

sponds to the mapped signal into the interval [0,1].
Fig. 4. Block diagram of th
Finally, it is important to point out that the first

5 min of each chromatogram (375 points) were disre-

garded, since it contain information concerning the

effluents used to perform the HPLC and they are not

compounds present in the wine.
3. Methodology

In this work several statistical classifiers and one

probabilistic neural network (PNN) classifier were ana-

lyzed and compared. Even thought these classifiers are

not the state of the art in pattern recognition, were used

in this study because of their simplicity and robustness.
Two approaches for the recognition system design

were explored:

(1) Parametric approach: in this case a specific func-

tional form of the probability density is assumed

(typically Multivariate Normal), but with un-

known mean and covariance matrix. The classifiers

studied here are the linear discriminant analysis
(LDA) (Fukunaga, 1990; Webb, 2002) and qua-

dratic discriminant analysis (QDA) (Fukunaga,

1990; Ripley, 1995; Webb, 2002).

(2) Non-parametric approach: No specific assump-

tions on the form of the probability density func-

tions are made in this case. The classifiers used in

this work are the PNN (Ripley, 1995; Specht,

1990) and the well-known and popular K-nearest
neighbors (KNN) rule (Ripley, 1995; Webb, 2002).

Though data volume was reduced using Shannon the-

orem, the dimension of the data is still high. With this in

mind, a feature extraction stage was used before the

classification stage. In Fig. 4 is presented a block dia-

gram, illustrating the data processing and classification

stages, used in the classification system. Computational
implementation of the classification system was made in

MATLAB 6.1, using the version 0.3 of the ‘‘Discrimi-

nant Analysis Toolbox’’ (Kiefte, 1999) and the Math-

works Wavelet, Neural Network Toolbox and Signal

Processing Toolboxes.

In what follows, we will briefly describe the feature

extraction and classifiers used in this work.
e classification system.
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3.1. Feature extraction algorithms used in the study

The main objective in the design of a pattern recogni-

tion system is to achieve the best classification rate of

new patterns with respect to patterns used to train the

system. This quality is known as generalization. In para-
metric methods one of the key factors in achieving a

good generalization is to maintain the classifier com-

plexity as low as possible, which means to reduce the

number of classifier parameters. For example, weights

between two layers in a neural network, or the matrix

size in a linear classifier. This is achieved by maintaining

a low data dimension, because these parameters directly

depend on this factor. The same problem appears at the
non-parametric approach, where in order to achieve a

good generalization, is necessary that the number of

training patterns, N, be greater than the dimension of

the classification space, d. The problems associated with

the relation of N and d are known as the course of

dimensionality (Fukunaga & Hayes, 1989). One way

to overcome this difficulties is to keep the ratio d/N as

low as possible.
The different techniques used in this study for dimen-

sion reduction are presented in the next paragraphs.
3.1.1. Fourier transform (Middleton & Goodwin, 1990)

The Fourier Transform is a mathematic tool that

allows the representation of a time function f(t) in the

frequency domain as a function F(x). In this domain

the explicit harmonic content of a signal and its distribu-
tion in terms of the frequency x is revealed. If the tem-

poral variable t is continuous (belong to the real

numbers) then the Fourier transform is continuous

(CFT) but if t belongs to a discrete set of values (typi-

cally natural union zero) we talk about discrete Fourier

transform (DFT), and its definition is given by

F ðkÞ ¼
XN�1

n¼0

f ðnT Þe�
j2pnk
N

f ðnT Þ ¼ 1

N

XN�1

k¼0

F ðkÞe
j2pnk
N

In the communication area (signal transmission), the

propriety of data compression of the DFT is well known

because it allows representing a time signal into a re-
duced number of data points, the coefficients f(nt) of

the Fourier series. This propriety is to be exploited in

this study by representing the whole chromatogram by

the correspondent coefficients of its Fourier transform.
3.1.2. Wavelet transform (Theodoridis & Koutroumbas,

1999)

A time function f(t)2L2 (square integral) can be ex-
pressed in term of some basis functions wj,k(t) and

/k(t) by means of the following decomposition.
f ðtÞ ¼
X1
k¼�1

ck/kðtÞ þ
X1
j¼0

X1
k¼�1

dj;kwj;kðtÞ; j; k 2 Z

where {wj,k(t)} and {/k(t)} are orthonormal set of basis

functions of L2 which satisfy some proprieties and are

denominated wavelet functions. The coefficients ck and

dj,k corresponds to the discrete wavelet transform

coefficients of the function f(t) known as approximation

and decomposition coefficients respectively, defined as

follow:

dj;k ¼< f ðtÞ;wj;kðtÞ >¼
Z 1

�1
f �ðtÞwj;kðtÞdt

ck ¼< f ðtÞ;/kðtÞ >¼
Z 1

�1
f �ðtÞ/kðtÞdt

The more commonly used basis are the so called Haar

wavelets whose definition are given by

wj;kðtÞ ¼ 2j=2wð2jt � kÞ with j; k 2 Z

/kðtÞ ¼ /ðt � kÞ
where wj,k(t), denominated as mother wavelet, and /k(t)

the scale function, are defined as

wðtÞ ¼ /ð2tÞ � /ð2t � 1Þ

/ðtÞ ¼
1 if 0 6 t 6 1

0 other

�

The sub index j is denominated decomposition level

and the sub index k is known as the shifting time. In this

study we employ the Haar wavelet keeping fixed the j

index and considering as features the scale coefficients

of the wavelet transform.
3.1.3. Class profiles

We also include in this study as feature extraction

method, the distance and correlation coefficient of a test

pattern to a typical class profile xi defined as representa-

tive of the class Wi. The class profiles xi were generated

by minimizing the following cost function

min Jðx1; . . . ;xcÞ

¼
XC
k¼1

k
X
i2Ck

kX i � xkk � ð1� kÞ
" X

i62Ck

kX i � xkk
#

with 0 < k 6 1

where C is the number of classes (C = 3). The main idea

behind this cost function is to find the vectors (class pro-

file) which are closest to all the data points of its own
class which at the same time are far apart form the data

points of the other classes. The definition of the residu-

als and correlation coefficients for a pattern X are pre-

sented in the Table 1.

The residuals and the correlation coefficients were

calculated in the Fourier, Wavelet and time domains.



Table 1

Class profile residuals and correlation coefficients

Residuals Correlation coefficients

e1 = kx1 � Xk2 q1 ¼
EðXx1Þ

VarðX ÞVarðx1Þ

e2 = kx2 � Xk2 q2 ¼ EðXx2Þ
VarðX ÞVarðx2Þ

e3 = kx3 � Xk2 q3 ¼
EðXx3Þ

VarðX ÞVarðx3Þ

N.H. Beltrán et al.
The free parameter k was chosen using a cross-valida-

tion round with a reduced number of training examples

and fixed in this study at the value k = 0.75.
3.1.4. Fisher transform (Fukunaga, 1990)

The objective of the linear discriminant analysis

(LDA) is to perform dimensionality reduction while pre-

serving as much as possible of the class discriminatory
information. The dimension reduction is based on find-

ing a linear transform Z = MX such that the means of

the projected variables are mapped as far apart as pos-

sible while keeping as low as possible the dispersion of

the points of the class around each class mean. Fuku-

naga (1990) and Fukunaga and Hayes (1989) proposed

the following criteria to obtain the parameters M for

the multi-class problem.

maxMJðMÞ ¼ Tr MSWMTÞ�1ðMSBMT
� �n o

with

SW ¼
XC
k¼1

Sk

Sk ¼
X
n2Ck

ðXn � l̂kÞðXn � l̂kÞ
T

SB ¼
XC
k¼1

Nkðlk � lÞðlk � lÞT

where lk is the mean of the class k, l the mean of the

entire population, Sk the intra-class scatter matrix, SB

the inter-class scatter matrix, SW the population scatter

matrix, Nk the number of training patterns of the class

Wk and C is the number of classes.

The solution of this problem is given by the C � 1

eigenvectors of the matrix S�1
W SB associated to the non

zero eigenvalues.
3.2. Classifiers considered in this study

In what follows, a brief description of the classifica-

tion algorithms used in the study is provided. For fur-

ther information the reader can refer to the cited

bibliography.
3.2.1. Quadratic discriminant analysis (QDA)

(Fukunaga, 1990)

Among the rules used to assign objects to one of sev-

eral classes, the Bayes minimum error rule (Fukunaga,

1990) is theoretically optimal, in the sense that a test pat-

tern X, is classified into the class with the maximum a
posteriori probability (MAP), or in other words, with

the minimum probability of misclassification. Applying

the Bayes Theorem, this rule can be expressed as:

Assign the object X to the class Wk if

pðX jW kÞP ðW kÞ > pðX jW jÞP ðW jÞ for all j 6¼ k ð1Þ

Here p(XjWk) are the class probability densities, and

P(Wk) is the a priori probability of the class Wk.

The densities p(XjWk) are usually unknown and have
to be estimated from training samples. Quadratic dis-

criminant analysis assumes that the distribution of the

data is multivariate normal. Substituting the expression

of the multivariate normal distribution and taking the

logarithm in both sizes in (1) leads to the following

classification index ck(X) (discriminant function qua-

dratic in X)

ckðX Þ ¼ ðX � lkÞ
T
X�1

k

ðX � lkÞ þ ln
X
k

�����
�����

 !

� 2 lnðP ðW kÞÞ ð2Þ

where
P

k is the population covariance matrix of the

classWk and lk is the respective class mean. QDA assign

a test object X to the class that minimizes ck. The popu-
lation parameters,

P
k and lk are also unknown and are

replaced by their sample estimates l̂k and
P̂

k

l̂k ¼
1

nk

X
j2Ck

X j ð3Þ

R̂k ¼
1

nk � 1

Xnk

j2Ck
ðX j � l̂kÞ

2 ð4Þ
3.2.2. Linear discriminant analysis (LDA) (Fukunaga,

1990; Webb, 2002)

As in QDA, LDA also assumes that the class popula-
tions follow a multivariate normal distribution. How-

ever LDA makes the extra assumption in the sense

that the classes have identical covariance matrices:X
1
¼
X
2

¼ . . .
X
C

¼
X

Under this assumption the quadratic term in the

classification index (2) is the same for all classes, and

therefore can be omitted. The classification index (dis-
criminant function) can be now rewritten as

ckðX Þ ¼ �2X T
X�1

lk þ lk

X�1

lk � 2 logðP ðW kÞÞ ð5Þ
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Because the classification index is linear with respect

to X the decision boundaries generated by LDA are

linear and that is way Linear Discriminant Analysis is

used.

As in QDA the population parameters are estimated

from training data using equations (3), (4). Since fewer
parameters need to be estimated (only one covariance

matrix instead of C) LDA has been widely used in high

dimensional pattern classification problems with good

results.

3.2.3. K-nearest neighbors method (KNN) (Jain, Duin, &

Mao, 2000; Webb, 2002)

One of the most popular non-parametric methods is
the KNN classifier. The KNN method classifies a test

objet into the class that results in the largest number

of neighbors among the k nearest neighbors of the test

pattern. The simplicity and the fact that KNN does

not make any assumptions about the class distributions

are the main strong advantages of this method. How-

ever, as all non-parametric methods, it requires a large
Table 2

Results of the classification schemes

Extraction

method

Number of

features

Classifier

LDA QDA

Average

correct

classification

rate (%)

Variance

(%)

Average

correct

classification

rate (%)

TFi 2 83.72 2.69 82.56

RT 3 62.21 0.26 64.53

CT 3 81.40 0.41 83.14

TFo 480 81.98 2.23 84.30

RF 3 64.53 1.85 65.70

CF 3 66.28 1.17 68.60

TW 43 90.12 0.89 87.21

RW 3 77.91 0.77 88.95

CW 3 79.07 1.25 78.49

TW + RW 46 80.23 0.74 78.49

TW + CW 46 89.53 0.98 90.70

TW + RW + CW 49 88.95 1.12 90.12

TW + RT 43 87.79 0.53 91.86

TW + CT 43 91.86 0.84 93.02

TW + RT + CT 49 88.95 0.71 88.37

TFo + RF 483 83.14 1.58 82.56

TFo + CF 483 85.47 1.27 84.88

TFo + RF + CF 486 87.79 1.43 87.21

TFo + RT 483 80.23 1.64 79.65

TFo + CT 483 79.65 1.36 80.81

TFo + RT + CT 486 89.53 1.95 90.70

TW + RF 46 91.86 0.78 91.28

TW + CF 46 91.28 0.51 90.70

TW + RF + CF 49 91.28 0.99 90.70

TFo + RW 483 87.79 1.67 90.12

TFo + CW 483 88.37 1.92 86.63

TFo + RW + CW 486 86.63 1.75 84.88

TFi: Fisher transform, RT: Residuals in time domain, CT: Correlation coeffs

domain, CF: Correlation coeffs. in frequency domain, TW: Wavelet transfo

frequency domain.
number of training data in order to perform well in high

dimensional spaces.

3.2.4. Probabilistic neural networks (PNN) (Ripley,

1995; Specht, 1990)

Probabilistic neural networks (PNN) are a class of
neural networks, which combine some of the best

attributes of statistical pattern recognition and feed-

forward neural networks. PNNs are the Neural Net-

work implementation of kernel discriminant analysis

and were introduced into the neural network literature

in the late 1980�s (Specht, 1990). PNNs have very

fast training times and produce outputs with Bayes a

posteriori probabilities. These useful features are
obtained at the expense of larger memory requirements

and slower execution speed for prediction of unknown

patterns if compared with conventional neural net-

works.

The probabilistic neural network is a three-layer,

feed-forward neural network with one pass training

algorithm, used for classification and mapping tasks.
KNN PNN

Variance

(%)

Average

correct

classification

rate (%)

Variance

(%)

Average

correct

classification

rate (%)

Variance

(%)

2.82 80.23 2.81 84.30 2.21

0.75 61.63 0.54 65.12 0.16

0.94 82.56 0.62 86.05 0.25

2.83 79.07 2.45 82.56 2.25

1.45 64.53 1.65 68.02 1.44

1.97 69.77 1.24 73.26 1.52

1.05 88.37 0.91 91.86 0.62

0.92 79.07 0.87 82.56 0.55

1.44 77.33 1.32 80.81 0.91

0.88 82.56 0.95 86.05 0.58

1.18 84.88 1.15 88.37 0.68

1.25 86.05 1.22 89.53 1.05

0.68 88.37 0.74 91.86 0.47

0.96 91.28 0.88 94.77 0.72

0.88 88.37 0.95 91.86 0.71

1.72 80.23 1.26 83.72 1.48

1.44 81.98 1.32 85.47 1.15

1.85 83.14 1.51 86.63 1.25

1.42 77.33 1.78 80.81 1.24

1.51 75.00 1.65 78.49 1.45

2.45 82.56 1.84 86.05 1.63

1.06 91.28 0.65 93.02 0.70

0.84 88.37 0.95 91.86 0.59

1.64 89.53 1.12 91.28 0.92

2.31 88.95 1.62 92.44 1.54

2.44 85.47 1.98 88.95 1.84

2.15 84.88 1.95 88.37 1.90

. in time domain, TFo: Fourier transform, RF: Residuals in frequency

rm, RW: Residuals in frequency domain, CW: Correlation coeffs. in



Table 3

Results of the hypothesis test of McNemar (PNN)

T TFi RT CT TFo RF CF TW RW CW TW +

RW

TW +

CW

TW +

RW +

CW

TW +

RT

TW +

CT

TW +

RT +

CT

TFo +

RF

TFo +

CF

TFo +

RF +

CF

TFo +

RT

TFo +

CT

TFo +

RT +

CT

TW +

RF

TW +

CF

TW +

RF + CF

TFo +

RW

TFo +

CW

TFo +

RW +

CW

TFi 5.10 4.95 3.48 4.99 4.77 4.25 4.6 4.12 3.97 4.56 4.66 5.22 6.48 4.62 2.21 3.92 4.15 3.97 4.05 5.42 5.36 5.21 5.22 4.87 4.25 4.22

RT 4.51 4.42 3.93 3.91 4.84 5.46 4.26 3.92 5.68 4.07 5.24 5.42 5.49 4.65 4.86 4.24 4.48 4.36 4.98 5.43 6.15 5.27 5.22 4.83 4.48

CT 4.05 4.21 4.32 5.22 4.05 4.56 0.52 4.21 5.22 5.62 6.21 5.42 4.22 3.52 2.21 4.22 5.21 1.05 5.42 5.22 5.32 5.42 4.23 4.12

TFo 5.21 4.84 5.58 0.05 2.54 4.58 4.22 4.22 5.42 6.55 5.42 3.42 3.98 4.83 4.36 5.15 5.22 4.07 5.42 5.22 4.86 4.84 4.77

RF 5.52 6.25 5.42 5.25 5.05 5.25 5.42 6.05 6.95 5.05 4.22 4.83 4.84 4.42 4.05 4.42 5.88 5.62 5.44 5.95 4.46 4.37

CF 6.48 4.62 4.55 5.25 5.72 6.02 4.92 6.22 5.22 4.25 4.22 4.32 4.26 4.05 4.38 5.22 4.05 4.62 5.02 5.44 5.82

TW 4.65 4.36 4.86 4.22 4.05 0.1 4.05 0.05 4.22 4.65 4.87 3.89 5.24 4.42 3.72 0.05 1.27 3.22 4.28 5.05

RW 4.05 4.22 5.05 4.65 4.75 6.22 5.22 4.25 4.22 4.32 4.26 4.05 4.38 5.22 4.05 4.62 5.02 5.44 5.82

CW 4.58 4.22 4.22 5.42 6.55 5.42 4.25 4.42 4.83 0.05 5.15 5.22 4.07 5.42 5.22 4.86 4.84 4.77

TW + RW 4.35 5.54 5.26 6.22 5.27 4.22 3.22 1.88 4.52 5.21 2.44 5.52 5.44 5.37 5.48 4.63 4.57

TW + CW 1.22 4.25 5.25 4.22 4.26 4.65 4.27 4.22 5.24 4.42 4.72 0.05 4.27 5.22 1.05 3.24

TW + RW

+ CW

4.92 6.22 5.22 4.25 4.22 4.32 4.26 4.05 4.38 5.22 4.05 4.62 4.82 2.52 2.27

TW + RT 4.05 1.05 0.22 4.22 4.83 4.36 5.15 5.22 4.07 5.62 5.44 3.77 5.05 4.28

TW + CT 5.02 5.22 5.65 4.87 5.89 6.24 4.42 4.88 5.35 4.46 3.92 5.37 5.84

TW + RT

+ CT

5.22 4.67 4.83 4.36 5.15 5.22 4.07 5.62 5.44 3.77 5.05 4.28

TFo + RF 4.02 5.05 4.29 5.22 5.19 4.35 5.32 5.62 4.72 4.84 4.17

TFo + CF 1.28 4.37 5.47 3.28 4.49 5.17 5.28 5.56 4.33 4.29

TFo + RF

+ CF

4.22 5.21 1.05 5.42 5.22 5.32 5.42 4.23 4.12

TFo + RT 5.35 4.22 4.82 4.37 5.82 5.27 5.36 5.22

TFo + CT 5.22 4.47 5.28 5.22 4.56 4.24 4.37

TFo + RT

+ CT

5.42 5.17 5.28 5.42 4.23 4.29

TW + RF 4.01 3.94 3.47 4.88 5.40

TW + CF 0.87 0.98 5.28 5.37

TW + RF

+ CF

0.78 4.89 5.28

TFo + RW 5.44 5.36

TFo + CW 0.25

TFo + RW

+ CW

N
.H

.
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Unlike other ANNs, like the multilayer perceptron

neural network, it is based on well-established statistical

principles derived from Bayes decision theory and non-

parametric kernel based estimators of probability den-

sity functions.

The PNN uses Parzen (or Parzen-like) probability
distribution function estimators that approach the true

underlying parent density (Theodoridis & Koutroum-

bas, 1999). An advantage of the PNN is that it is guar-

anteed to approach the Bayes optimal decision surface

provided that the class probability density functions

are smooth and continuous. The PNN operates by using

spherical Gaussian radial basis functions centered at

each training vector. The PNN probability density func-
tion estimate of an unknown vector belonging to a given

class can be expressed as

p̂iðX Þ ¼ 1

ð2pÞd=2rdN i

XNi

j¼1

e
�ðX�X ijÞTðX�X ijÞ

2r2

where i is the class number, j is the pattern number, Xij is

the jth training vector from class i, X is a test vector, Ni

is the number of training vectors in class i, d is the
dimension of vector X, r is the smoothing factor (the

standard deviation), and p̂iðX Þ is the ith class probability

density function estimate.

Classification decisions are consequently made in

accordance with the Bayes decision rule, assigning the

pattern X to the class Wk if

p̂kðX Þ > p̂iðX Þ for all i 6¼ k ð6Þ
4. Classification results

In this section, we present the classification results

obtained using the five feature extraction methods de-

scribed in Section 3.1 together with the four classifiers
presented in Section 3.2. The classification results are

summarized in Table 2 for the 27 cases studied.

For each case the leave-one-out (LOO) validation

procedure was used (Theodoridis & Koutroumbas,

1999). In this sense one sample was left out and the clas-

sification system was trained using the 171 remaining

samples. Then the sample left out was presented to the

classifier to determine to which class belongs. This clas-
sification procedure is the best method to be used in

cases where the amount of information is low, as in

our case. For each combination of feature extraction

and classifier 172 tests were performed, computing the

average correct classification rate and standard devia-

tion resulting the values shown in Table 2.

Analyzing the results given in Table 2, the best results

are obtained when using as feature extraction method
the combination of Wavelet Transform of the resampled

chromatogram together with the computation of the
correlation coefficients in the time domain and the

PNN classifier, reaching correct classification rates of

94.77% on average. This can be explained in part be-

cause of compression propriety of the Wavelet Trans-

form that allows representing a chromatogram of 1351

points with a reduced profile of 43 points.
Beside, the information given by the Wavelet Trans-

form result orthogonal with that contained in the corre-

lation coefficient between the patterns and the typical

profile of each class, providing additional information

for classification purposes.

The PNN classifier uses the potential of a neural net-

work to expand the capacity of the parametric statistical

classifiers (LDA and QDA) providing slightly higher
classification results.

To compare the error rate of the different feature

extraction schemes studied in this work, the Hypothesis

Test of McNemar (Fleiss, 1981) developed using as clas-

sifier the PNN. The results are shown in Table 3, from it

can be observed that the method of using wavelet trans-

form together with correlation coefficients and PNN

gives statistical significant difference with respect to all
other method tested.

The Hypothesis Test also shows that there is no a sta-

tistical significant difference between the correct classifi-

cation rate of LDA and QDA when using the wavelet

transform coefficients and correlation coefficients as in-

puts (Results not shown here for the sake of space).
5. Conclusions

Results obtained in this work are the first in classifi-

cation of Chilean wines using pattern recognition tech-

niques. The best classification scheme combining

Wavelet transform, correlation coefficients and residu-

als, together with PNN, shows an appropriated perfor-

mance, obtaining a 95% of correct classification
between Cabernet Sauvignon, Merlot and Carménère

wines coming from different Chilean valleys and from

different harvesting years.

The methodology proposed in this work allows a

significant reduction in the setup and calibration

procedures times associated to the classification of

HPLC data signals.

The main difficulty of this approach is the high data
dimension of the patterns (6751 points in chromatogram

profiles) which requires the application of feature extrac-

tion and signal analysis techniques in order to reduce the

classifier input space dimension.

From all the feature extraction and signal analysis

methods applied in this study, the Wavelet transform,

resulted the most efficient extraction method, allowing

a 10% classification rate increase over the alternative
of classify directly on the original data space. Moreover,

if this information is combined with class profile infor-
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mation, a 15% improvement can be achieved in the

classification.

Discrete Fourier transform as feature extraction

method, does not improve in a significant way the sys-

tem performance, mainly because even when the input

space dimension of the classifier is reduced almost to a
half, the quotient d/N is still larger than one.

Results obtained with class profiles were not signifi-

cantly better than the others feature extraction methods

presented, but combined with other techniques, specifi-

cally with the Wavelet transform coefficients, can pro-

duce high classification rates.

The results obtained here are promising. As future

work and in order to improve wine classifier perfor-
mance, it is suggested to explore the use of Support

Vector Machines (SVM) as classifier and extraction

methods based on Kernel Fisher and its non linear

variants.
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vinos comerciales Merlot y Sauvignon Blanc de la vendimia 2002,

provenientes de cinco valles de Chile. (In Spanish). Agronomic

Engineering Thesis, Faculty of Agronomical Sciences, University

of Chile.

Almela, L., Javaloy, S., Fernández-Lopez, J. A., & López-Roca, J. M.

(1996). Varietal classification of young red wines in terms of

chemical and colour parameters. Journal of the Science of Food and

Agriculture, 70(2), 173–180.

Beltrán, N. H., Duarte-Mermoud, M. A., Salah, S. A., Bustos, M. A.,

Peña-Neira, A. I., Loyola, E. A., et al. (2005). Feature selection

algorithms using Chilean wine chromatograms as examples.

Journal of Food Engineering, 67(4), 483–490.

Berente, B., Garcı́a, D. D. L., Reichenbacher, M., & Danzer, K.

(2000). Method development for the determination of anthocya-

nins in red wines by high-performance liquid chromatography and

classification of German red wines by means of multivariate

statistical methods. Journal of Chromatography A, 871(1–2),

95–103.

Cabezudo, M. D., Herraiz, M., & De Gorostiza, E. F. (1983). On the

main analytical characteristics for solving enological problems.

Process Biochemistry, 18, 17–23.

Csomos, E., Heberger, K., & Simon-Sarkadi, L. (2002). Principal

component analysis of biogenic amines and polyphenols in

Hungarian wines. Journal of Agricultural and Food Chemistry,

50(13), 3768–3774.

Etievant, P., Schlich, P., Cantagrel, R., Bertrand, A., & Bouvier, J. C.

(1989). Varietal and geographic classification of French red wines
in terms of mayor acids. Journal of the Science of Food and

Agriculture, 46(4), 421–438.

Fleiss, J. L. (1981). Statistical methods for rates and proportions

(Second ed.). NY, USA: John Wiley.

Fukunaga, K. (1990). Introduction to statistical pattern recognition.

NY, USA: Academic Press Inc.

Fukunaga, K., & Hayes, R. R. (1989). Effects of sample size in

classifier design. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 11(8), 873–885.

Garcı́a, D. D., Reichenbacher, M., & Danzer, K. (1998). Classification

of wines by means of multivariate data analysis using the SPME/

CGC-chromatograms of volatile aroma compounds. Vitis, 37(4),

181–188.
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