NEW HETEROCYCLIC SKELETONS DERIVED FROM THE APORPHINE ALKALOID BOLDINE

Eduardo Sobarzo-Sánchez,^{1,*} Carolina Jullian,² Bruce K. Cassels,¹ and Claudio Saitz²

 ¹Instituto Milenio para Estudios Avanzados en Biología Celular y Biotecnología and Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
²Departamento de Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile

ABSTRACT

The abundant aporphine alkaloid (S)-(+)-boldine (1) was selectively nitrosated with sodium nitrite in acetic acid affording 8-nitrosoboldine (2) which was hydrogenated catalytically to give 8-aminoboldine (3). The latter was used as the starting material for annulations with ethyl *ortho*-formate to afford the corresponding oxazole ("boldine-9,8-oxazole", 4), and with methyl benzoylformate giving the phenyl-oxazinone ("boldine-9,8-phenyloxazinone", 5). This later product was treated with KOH/EtOH at room temperature and converted quickly

^{*}Corresponding author. Fax: (56-2) 271-3888; E-mail: esobarzo@ctcinternet.cl

into the ring-contracted phenyloxazole ("boldine-9,8-phenyl-oxazole", **6**) in moderate yield.

Boldine (1), the major alkaloid present in leaves and bark of the Chilean boldo tree (*Peumus boldus* Mol., Monimiaceae), exhibits a variety of pharmacological activities as an antioxidant and as a catecholamine receptor antagonist.^[1] We have previously reported semi-synthetic transformations of boldine to afford products bearing halogen atoms at C-3 or C-3 and C-8 of the aporphine framework, some of which showed greatly increased potency and selectivity at dopamine and adrenergic receptors.^[2] As an entry to further elaborated boldine derivatives, we carried out the nitrosation of the alkaloid in acetic acid affording 8-nitrosoboldine (**2**) as only reaction product, which opened up the possibility of synthetizing new heterocyclic systems with benzoxazole or benzoxazinone rings fused to the aporphine skeleton, starting from 8-aminoboldine (**3**) obtained by reduction of the nitroso group.

Benzoxazoles have been prepared by heating *o*-aminophenols with carboxylic acids in the presence of condensation agents such as polyphosphoric acid^[3,4] or with ethyl orthoformate in refluxing EtOH.^[5] Other options have been based on the Pomeranz-Fritsch reaction on benzalaminoacetals in P_2O_5/H_2SO_4 ;^[6] by cycloaddition of azomethine ylides to 1-nitroso-2-naphthol;^[7,8] by treatment of 1-nitroso-2-naphthol and phenacylpyridinium bromide with a NaOH solution at -30° C;^[9] and through the condensation of 1-amino-2-naphthols with aromatic aldehydes in the presence of pyridine in BuOH.^[10] Naphth[1,2-d]oxazoles have also been obtained as intermediate products in the preparation of naphthalenesulfonamides as dyes for wool, polyamide fibers and leather.^[11] An easy and quick way of obtaining 2-phenylbenzoxazoles is based on the decomposition of naphtho- and benzoxazinones in 10% KOH/MeOH solution.^[12] These oxazinones are readily available using a variation of Moffet's method starting from an *o*-aminophenol and methyl benzoylformate in pyridine.^[13]

In this communication we describe the formation of the oxazoleannulated "boldine-9,8-oxazole" (4) and the oxazinone-annulated "boldine-9,8-phenyloxazinone" (5) starting from an *o*-aminophenol (3) derived from boldine, and the instantaneous decomposition of 5 with a 5% ethanolic KOH solution at room temperature to give the corresponding "boldine-9,8-phenyloxazole" (6) (Sch. 1).

It is noteworthy that 8-aminoboldine (3) is formed from the oxazinone (5) together with the rapid appearance of the 2-phenyloxazole (6). This behavior is quite different from the reactivity found for benzo- and naphthoxazinones, which require many hours at reflux temperature to

afford the oxazole system in good yield. However, the fast reaction of **5** under relatively mild basic conditions resulting in the ring contraction to **6** suggests the existence of a 2,3-dihydrobenzoxazole intermediate (7). Decarboxylation of this intermediate and dehydrogenation presumably lead to the formation of **6**, while hydrolysis of **7** or of its ring-opened precursor should give 8-aminoboldine **3** (Sch. 2).

No satisfactory, experimentally based mechanistic rationalization of the base-catalyzed decomposition of benzo- or naphtoxazinones is available yet. In the meantime, it seems prudent to postpone any speculations as to why the annulated oxazinone derived from boldine shows such remarkably enhanced reactivity.

EXPERIMENTAL

Boldine (1), isolated from *P. boldus* bark was crystallized from $CHCl_3$ as the 1:1 complex (1-CHCl₃) and used as such. Melting points were

Scheme 2.

determined on a Reichert-Jung Galen III Kofler hot stage. Optical rotations were determined with a Schmidt-Haensch Polartronic electronic polarimeter. Column chromatography was performed on Merck silica gel 60, 230–400 mesh, and TLC on Merck silica gel G. Microanalyses were obtained using a Fisons EA 1108 analyzer and were carried out by the CEPEDEQ, Faculty of Chemical and Pharmaceutical Sciences, University of Chile. NMR spectra were recorded in DMSO- d_6 using a Bruker AMX 300 instrument, operating at 300.13 MHz (¹H) or 75.48 MHz (¹³C). Compounds **4** to **6** were fully characterized by concerted use of one- and two dimensional NMR techniques as described in our previous paper.^[14]

2,9-Dihydroxy-1,10-dimethoxy-6-methyl-8-nitrosodibenzo[*de*,g]quinoline (2): A solution of 1-CHCl₃ (2.4 g, 7.33 mmol) dissolved in HOAc (60 mL) was treated with solid NaNO₂ (0.64 g, 9.28 mmol) at room temperature. After 1 h stirring, the mixture was poured into 100 mL cold H₂O, and the aqueous solution was adjusted to pH 8–9 with concentrated NH₃, extracted with EtOAc (4×50 mL), worked up, and separated from unreacted 1 by Si gel flash chromatography (EtOAc) to give **2** as the only reaction product (1.66 g, 64%), *R_f* (EtOAc) 0.4, (CHCl₃-MeOH 4:1) 0.8. **2** crystallized in CHCl₃ as reddish rhombi, m.p. 128–130°C; $[\alpha]_D^{24} + 231°$ (*c* 0.11, MeOH); ¹H NMR (DMSO-*d*₆) δ 2.20 (1H, dd, J = J' = 14.0 Hz), 2.36 (3H, s), 2.39 (1H, s),

3690

2.6 (1H, m), 2.74 (1H, dd, J = 14.4 Hz, J' = 3.8 Hz), 2.9 (3H, m), 3.6 (3H, m), 3.90 (3H, s), 6.61 (1H, s), 8.03 (1H, s); ¹³C NMR (DMSO- d_6) δ 28.99, 29.03, 44.08, 53.35, 57.19, 60.39, 62.11, 113.7, 116.2, 120.9, 124.1, 125.5, 129.7, 138.7, 141.0, 144.0, 147.7, 150.3. Anal. calcd for C₁₉H₂₀N₂O₅. 0.7 CHCl₃: C, 54.60; H, 4.81; N, 6.37%. Found: C, 54.41; H, 4.90; N, 7.30%.

2,9-Dihydroxy-1,10-dimethoxy-6-methyl-8-aminodibenzo[*de*,g]quinoline (3): A solution of **2** (0.316 g, 0.88 mmol) dissolved in EtOH (120 mL) was catalytically hydrogenated over 10% Pd/C (60 mg) at 50 psi and room temperature. After 2.5 h, the mixture was filtered over Celite and concentrated to give a brown residue. After work up as before, **3** (0.312 g, 100%) crystallized from C₆H₆ as gray needles, m.p. 177–179°C; $[\alpha]_D^{24}+189^\circ$ (*c* 0.094, MeOH); ¹H NMR (DMSO-*d*₆) δ 1.85 (1H, dd, J = J' = 13.8 Hz), 2.33 (1H, m), 2.46 (3H, s), 2.5 (1H, m), 2.7 (1H, m), 2.9 (2H, m), 3.16 (1H, dd, J = 14.3 Hz, J' = 4.0 Hz), 3.50 (3H, s), 3.77 (3H, s), 6.48 (1H, s), 7.36 (1H, s); ¹³C NMR (DMSO-*d*₆) δ 27.75, 28.81, 44.12, 53.21, 56.05, 59.51, 62.69, 101.7, 114.2, 115.0, 122.9, 125.9, 127.4, 128.7, 132.7, 133.8, 143.2, 145.8, 149.4. Anal. calcd for C₁₉H₂₂N₂O₄: C, 66.65; H, 6.48; N, 8.18%. Found: C, 66.24; H, 6.46; N, 8.27%.

1,11-Dimethoxy-2-hydroxy-6-methyloxazolo[4,5-*k*]5,6,6a,7-tetrahydro-4*H*-dibenzo[*de*,g]quinoline (4): A solution of **3** (0.150 g, 0.44 mmol) dissolved in EtOH (20 mL) was treated with ethyl *ortho*-formate (1.5 mL, 9 mmol) and refluxed with stirring for 48 h under N₂. After concentrating the solution under reduced pressure, the residue was chromatographed on Si gel (4:1 CHCl₃–MeOH) affording **4** (0.138 g, 89%), R_f 0.65, which crystallized from C₆H₆ as brownish white needles, m.p. 189–191°C; $[\alpha]_{18}^{18}$ +227° (*c* 0.069, MeOH); ¹H NMR (DMSO-*d*₆) δ 2.3 (2H, m), 2.44 (3H, s), 2.5 (1H, m), 2.84 (1H, dd, *J* = 14.1 Hz, *J'* = 4.0 Hz), 2.9 (2H, m), 3.58 (3H, s), 3.66 (1H, dd, *J* = 14.0 Hz, *J'* = 4.0 Hz), 3.99 (3H, s), 6.61 (1H, s), 8.01 (1H, s), 8.71 (1H, s), 9.18 (1H, s); ¹³C NMR (DMSO-*d*₆) δ 27.13, 27.98, 43.13, 52.11, 55.50, 59.02, 61.23, 107.5, 114.8, 120.0, 125.3, 128.3, 128.7, 136.9, 138.7, 142.1, 142.6, 148.8, 153.3. Anal. calcd for C₂₀H₂₀N₂O₄: C, 68.17; H, 5.72; N, 7.95%. Found: C, 67.93; H, 5.82; N, 8.02%.

1,12-Dimethoxy-2-hydroxy-6-methyl-9-phenyl-10*H*-oxazin[5,6-*k*]5,6,6a,7tetrahydro-4*H*-dibenzo[*de*,*g*]quinoline-10-one (5): A solution of 4 (0.166 g, 0.49 mmol) in EtOH (30 mL) was treated with methyl benzoylformate (0.6 mL, 4 mmol) and refluxed with stirring for 48 h under N₂. After concentrating under reduced pressure, the residue was chromatographed on Si gel (4 : 1 CHCl₃–MeOH) to give 5 (0.131 g, 60%), R_f 0.77, which crystallized from C₆H₆ as yellowish needles, m.p. 202–203°C; $[\alpha]_{D}^{17}$ +242° (*c* 0.091, MeOH); ¹H NMR (DMSO-*d*₆) δ 2.20 (dd, *J* = 14.0 Hz, *J*' = 3.8 Hz, 1H), 2.3 (1H, m), 2.46 (3H, s), 2.6 (1H, m), 2.9 (3H, m), 3.62 (3H, s), 3.96 (3H, s), 4.17 (1H, dd, *J* = 14.0 Hz, *J*' = 3.8 Hz), 6.65 (1H, s), 7.6 (3H, m), 8.18 (1H, s), 8.26 (2H, s), 9.27 (1H, s); 13 C NMR (DMSO- d_6) & 26.70, 28.32, 43.69, 52.67, 56.18, 59.68, 61.66, 113.1, 115.8, 125.1, 126.0, 127.3, 128.3, 128.6, 128.8, 129.1, 129.3, 131.1, 134.6, 135.2, 143.4, 144.0, 149.4, 150.0, 151.5. Anal. calcd for C₂₇H₂₄N₂O₅: C, 71.04; H, 5.30; N, 6.14%. Found: C, 70.59; H, 5.46; N, 6.26%.

1,11-Dimethoxy-2-hydroxy-6-methyl-9-phenyloxazolo[4,5-k]5,6,6a,7tetrahydro-4H-dibenzo[de,g]quinoline (6): A solution of 5 (0.101 g, 0.22 mmol) in EtOH (100 mL) was treated with a 5% KOH-EtOH solution (0.45 mL) at room temperature. Immediately the yellowish solution changed to a clear orange color. Stirring was stopped within 30s and the solution was immediately concentrated under reduced pressure. The residue was taken up in 100 mL H₂O, and the aqueous solution was adjusted with concentrated NH₃ to pH 8–9 and extracted with CHCl₃. After purifying the mixture by Si gel flash chromatography (4:1 CHCl₃–MeOH), **3** (40 mg, 53%), R_f 0.10 and 6 (32 mg, 34%), R_f 0.74 were obtained, the latter crystallizing in cyclohexane–benzene as beige needles, m.p. 179–181°C; $[\alpha]_D^{16}$ +225° (c 0.24, MeOH); ¹H NMR (DMSO-*d*₆) δ 2.4 (2H, m), 2.48 (3H, s), 2.5 (1H, m), 2.9 (3H, m), 3.60 (3H, s), 3.73 (1H, dd, J = 14.0 Hz, J' = 3.6 Hz), 4.03 (3H, s), 6.62 (1H, s), 7.6 (3H, m), 8.01 (1H, s), 8.2 (2H, m), 9.19 (1H, s); ¹³C NMR (DMSO-d₆) & 27.17, 27.97, 43.18, 52.12, 55.49, 59.03, 61.19, 107.7, 114.8, 119.7, 125.2, 125.3, 125.9, 126.8, 128.4, 128.7, 128.8, 131.3, 137.6, 140.4, 141.8, 142.7, 148.8, 161.5. Anal. calcd for C₂₆H₂₄N₂O₄: C, 72.88; H, 5.65; N, 6.54%. Found: C, 72.54; H, 5.48; N, 6.52%.

ACKNOWLEDGMENTS

This work was funded by the Presidential Chair in Science (B.K.C., Chile, 1996). The principal author is grateful to Fundación Andes for a doctoral fellowship.

REFERENCES

- 1. Speisky, H.; Cassels, B.K. Boldo and Boldine: An Emerging Case of Natural Drug Development. Pharmacological Research **1994**, *29*, 1–12.
- Sobarzo-Sánchez, E.; Arbaoui, J.; Protais, P.; Cassels, B.K. Halogenated Boldine Derivatives with Enhanced Monoamine Receptor Selectivity. J. Nat. Prod. 2000, 63, 480–484.
- Hein, L.D.; Alheim, R.J.; Leavitt, J.J. The use of Polyphosphoric Acid in the Synthesis of 2-Aryl- and 2-Alkyl-Substituted Benzimidazoles, Benzoxazoles and Benzothiazoles. J. Am. Chem. Soc. 1957, 79, 427–429.

NEW HETEROCYCLIC SKELETONS

- 4. So, Y.-H.; Heeschen, J.P. Mechanism of Polyphosphoric Acid and Phosphorus Pentoxide–Methanesulfonic Acid as Synthetic Reagent for Benzoxazole Formation. J. Org. Chem. **1997**, *62*, 3552–3561.
- Société de Produits Chimiques et de Synthèse. Benzoxazoles Useful as Antioxidants for Elastomers, Petroleum Hydrocarbons, and Lubricating Greases. Fr. 1493401 (Cl. C07d), 1 Sept. 1967, Appl. 28 Jan 1960; 2 pp. Chem. Abstr. 1968, 69, 2856g.
- 6. Brown, E.V. The Pomeranz-Fritsch Reaction, Isoquinoline vs. Oxazoles. J. Org. Chem. **1977**, *42*, 3208–3209.
- Lown, J.W.; Moser, J.P. The 1,3-Dipolar Addition of 2-Aryl-Aziridines to 1-Nitrosonaphth-2-ol: Novel Syntheses of Substituted Naphtho-[1,2-d]oxazoles. J. Chem. Soc. Chem. Commun. 1970, 247–248.
- Lown, J.W.; Moser, J.P. 1,3-Dipolar Cycloaddition of Nitrosonaphthols to 3-Aryl-Aziridine. Novel Syntheses of Substituted Naphtho[1,2-d]oxazoles and Naphtho[2,1-d]oxazoles. Can. J. Chem. 1970, 48, 2227–2233.
- Krohnke, F. Syntheses Using Pyridinium Salts. IV. Angew. Chem. Int. Ed. Engl. 1963, 2, 380–393.
- Osman, L.A.M.; Mohamed, S.A.; Mahmoud, A.M. Heterocyclic Compounds. III. Preparation of Aryl Naphthoxazoles and Oxidative Naphthoxazoles Dyes. Egypt. J. Chem. 1973, 27, 27–41.
- Katritzky, A.R.; Rachwal, B.; Rachwal, S.; Macomber, D.; Smith, T.P. Naphth[1,2-d]oxazole Intermediates in the Preparation of 3-Hydroxy-4-(1-alkyl-3-methyl-5-hydroxy-4-pyrazolyl)-azo-1-Naphthalenesulfonamide Dyes. J. Heterocyclic Chem. **1993**, *30*, 135–139.
- Saitz, C.; Rodríguez, H.; Márquez, A.; Cañete, A.; Jullian, C.; Zanocco, A. New Synthesis of Naphtho- and Benzoxazoles: Descomposition of Naphtho- and Benzoxazinones with KOH. Synth. Commun. 2001, 31, 135–140.
- 13. Moffett, R.B. 2*H*-1,4-Benzoxazin-2-ones. J. Med. Chem. **1966**, *9*, 475–478.
- Sobarzo-Sánchez, E.; Cassels, B.K.; Saitz-Barría, C.; Jullian, C. Oxazine- and Oxazole-Fused Derivative of the Alkaloid Boldine and their Complete Structural and Spectral Assignment by HMQC and HMBC Experiments. Magn. Reson. Chem. 2001, 39, 361–366.