Reaction of 4,5-Diamino-3-methyl-1-phenylpyrazole with 3-Dimethylaminopropiophenones. Synthesis of New 4-Aryl-6-methyl-8-phenyl-2,3-dihydropyrazolo[3,4-b]diazepines and 4-Aryl-8-methyl-6-phenyl-2,3-dihydropyrazolo[4,3-b]diazepines Braulio Insuasty O*, Henry Insuasty I. and Jairo Quiroga P. Department of Chemistry, Universidad del Valle, A.A. 25360, Cali, Colombia Claudio Saitz [a] and Carolina Jullian [b] [a] Departamento de Química Orgánica y Fisico-Química, (b) CEPEDEQ, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Casilla 233, Santiago 1, Chile New 4-Aryl-6-methyl-8-phenyl-2,3-dihydropyrazolo[3,4-b]diazepines and 4-aryl-8-methyl-6-phenyl-2,3-dihydropyrazolo[4,3-b]diazepines were obtained from the reaction of 4,5-diamino-3-methyl-1-phenylpyrazole 1 with one equivalent of the 3-dimethylaminopropiophenones 2 in absolute ethanol. The structures of 4-aryl-6-methyl-8-phenyl-2,3-dihydropyrazolo[3,4-b]diazepines 3 and 4-aryl-8-methyl-6-phenyl-2,3-dihydropyrazolo[4,3-b]diazepines 4 were determined by detailed nmr measurements. Benzodiazepines are an important class of psychotherapeutic compounds. In recent years, some examples of heterocyclic rings fused to the seven-member diazepine ring system have appeared in literature [1,2]. In particular, good CNS activity was reported for various pyrazolodiazepines [3]. Some of these compounds are known to have activities as psycotropics [4-7]. We have reported that the reaction of α,β -unsaturated ketones and its precursors as β -dimethylaminopropiophenones with 1,2-diamines [8-18] is a very convenient and versatile method for the synthesis of fused diazepine system. In this work we studied the reaction of 4,5-diamino-3-methyl-1-phenylpyrazole 1 with 1-aryl-2-propenones generated *in situ* from β-dimethylaminopropiophenones 2 (Scheme 1). Reaction of 4,5-Diamino-3, methyl-1-phenylpyrazole 1 with β-dimethylaminopropiophenones 2 in ethanol afforded compounds 3a-d and 4a-d. Because diamine 1 has non-equivalent amino groups at the *ortho* position, the regioisomeric cyclization products 3 and 4 were expected. In all cases, the formation of products 3 and 4 was observed. The compounds 3a-d and 4a-d were separated by column chromatography. Structural assignment of 3 and 4 was made on spectroscopic grounds. The infrared spectra of 3a-d and 4a-d showed typical absorption between 3174 and 3404 cm⁻¹ (N-H) and 1554-1594 cm⁻¹ (C=N and C=C). The uv/visible spectrum of 3a-d and 4a-d in ethanol contains three or four bands; most characteristic is an absorption maximum in the range of 243-288 nm and a second one shifted towards longer wavelengths (345 $\leq \lambda_{max} \leq$ 419 and 386 $\leq \lambda_{max} \leq$ 454 nm for 3 and 4 respectively). The ¹H-nmr spectra of compounds 3a-d showed the geminal protons joined to C-2 and C-3 at δ 3.38-3.53 (multiplet) and δ 3.13-3.29 (multiplet) ppm, respectively. The proton of the N-H group appears as a triplet at δ 4.44-4.71 ppm indicating the vicinal position of the protons on C-2. In addition, two doublets are observed in the spectra of 3b-d (multi- signals. DEPT experiments indicated that one signal corresponds to CH₃, two to CH₂, six to CH and six to Cq. The ¹³C-nmr data of 3a-d and 4a-d are summarized in Table 2 respectively. Assignment of the ¹H and ¹³C resonances of compounds 3 and 4 was deduced from the concerted application of both direct and long range heteronuclear chemical shift correlation experiments. One-bond proton-carbon chemical shift correlations were established using the HMQC [19] sequence and (CH)_n groups were unambiguously characterized from the analysis of long-range correlation responses over to two and three bonds (²J or ³J couplings) using the HMBC [20] thecnique. This procedure was exemplified for compounds 3a and 4a, for which all the connectivities, observed in the HMBC diagram are given in Table 3. For the unequivocal Table 1 H NMR Chemical Shift (δ) for Compounds 3a-d and 4a-d (Chloroform-d, 300 MHz) | | | 11.1.1. | The Chelines | | | | | | | | |-------------------------|--|--|--|--|--|--|--|--|--|---------------------------------------| | C | CH ₃ | Pyrazolo
1-NH | diazepine
2-CH ₂ | 3-CH ₂ | H _o | Phenyl
H _m | Hp | H _o | Aryl
H _m | H _p | | 3a 3b 3c 3d 4a 4b 4c 4d | 2.38
2.36
2.35
2.46
2.25
2.26
2.27
2.29 | 4.44
4.46
4.46
4.71
3.45
3.46
3.47
3.63 | 3.39
3.38
3.39
3.53
3.45
3.46
3.47
3.53 | 3.17
3.13
3.13
3.29
3.24
3.21
3.23
3.30 | 7.47
7.46
7.46
7.55
7.77
7.73
7.75
7.74 | 7.40
7.40
7.40
7.51
7.42
7.42
7.44
7.49 | 7.25
7.26
7.26
7.37
7.25
7.26
7.28
7.31 | 7.83
7.77
7.70
8.25
7.86
7.80
7.74
8.22 | 7.33
7.28
7.43
8.05
7.37
7.33
7.51
8.00 | 7.30
-
-
-
7.40
-
- | Table 2 13 C NMR Chemical Shift (δ) for Compounds 3a-d and 4a-d (Chloroform-d, 300 MHz) | | | | | | | | | | | Phe | nul | | | Ar | yl | | |--|--|--|--|--|--|----------------------------------|--|--|---|--|--|--|--|--|--|--| | | CH ₃ | C-2 | C-3 | Pyrazolo
C-4 | diazepine
C-5a | C-6 | C-8 | C-8a | C _i | Co | C _m | C_p | Ci | Co | C _m | Cp | | 3a
3b
3c
3d
4a
4b
4c
4d | 11.5
11.5
11.5
11.4
11.5
11.5
11.5 | 41.6
41.5
41.5
41.2
43.0
42.9
42.8
42.6 | 35.6
35.4
35.3
35.4
36.7
36.6
36.6
36.9 | 156.8
155.2
155.2
153.0
161.1
159.4
159.5
157.3 | 115.9
115.7
115.6
115.8
134.3
134.0
134.0
137.1 | 149.7
149.7
149.7
150.0 | -
-
137.5
137.4
137.4
139.9 | 138.9
139.0
139.0
139.4
123.1
123.3
123.4
123.9 | 138.8
138.7
138.7
138.4
140.2
140.1
140.1 | 123.8
123.8
123.8
123.6
124.1
124.1
124.1
123.7 | 129.6
129.6
131.4
123.8
128.4
128.4
128.6
124.2 | 127.2
127.3
123.0
127.5
125.6
125.7
125.8
126.0 | 141.0
139.4
139.8
146.6
139.9
138.4
138.8
143.0 | 126.5
127.7
128.0
126.9
127.1
128.4
128.4
127.6 | 128.3
128.5
129.6
127.3
128.5
128.6
131.6
128.5 | 128.7
134.7
127.3
147.5
129.7
135.8
124.3
147.3 | plet for 3a) related to aromatic protons (δ 7.28-8.25 ppm) with *ortho*-constant J = 7.7±0.3 Hz. The compounds 4a-d present ¹H-nmr spectra similar to spectra of compounds 3 geminal protons joined to C-2 and C-3 at δ 3.45-3.53 (multiplet) and δ 3.21-3.30 (multiplet) ppm, respectively. The proton of N-H group appears as a triplet at δ 3.45-3.63 ppm and two doublets are observed in the spectra of 4b-d (multiplet for 4a) related to aromatic protons (δ 7.28-8.25 ppm) with ortho-constant J = 7.3±0.3 Hz. The ¹H-nmr spectral data for all the products are summarized in Table 1. The ¹³C-nmr spectra of 3a and 4a showed 15 structural assignment of obtained compounds, the starting point was the C-5a and C-8a resonances for isomers 3 and 4. The C-8a shows correlated peaks to CH₂-2; C-5a and C-8a show correlated peaks to methyl group at position 6 for 3 and position 8 for 4 respectively. The signal of C-5a appear at 8 115.6-115.9 and 134.0-137.1 ppm for 3 and 4, respectively. On the other hand, C-8a show signal at 138.9-139.4 for 3 and 123.1-123.9 ppm for 4. These can be explained in the terms of the *push-pull* effect of the amino and C=N groups linked to the C=C double bond in structure 3 and 4. Also, the assignation of structures for Table 3 Long-range Proton-carbon Couplings Found in the HMBC Spectra of compounds 3a and 4a Protons Showing HMBC Correlation (³J couplings) | Carbon | 3a | 4a | |--------|-------------------------------|-----------------------| | 2 | display in the engine display | Chora, 31, 1372 | | 3 | H-1 | H-1 | | 4 | H-2; H _o | H-2, H _o | | 5a | CH ₃ ; H-I | H-1 | | 6 | _ | _ | | 8 | <u> -</u> | H-1 | | 8a | H-2 | CH ₃ ; H-2 | compounds 3 and 4 were done by results from selective low-power ¹³C, ¹H decoupling experiments. In fact, C-5a in 3 and 4 appears as doublets in the coupled ¹³C nmr spectra. Radiation onto the proton signal of 1-NH turns the C-5a signal into a singlet. ## **EXPERIMENTAL** All melting points are uncorrected. Column chromatographic purifications were performed on Merck silica gel (60-200 mesh). The ir spectra were recorded on a ATI-Mattson spectrophotometer in potassium bromide pellets. The uv-vis spectra were recorded on a Shimadzu UV-160 A spectrophotometer on an ethanol solution. The ¹H and ¹³C nmr spectra were run on a Bruker AVANCE DRX 300 spectrometer in deuteriochloroform. The mass spectra were recorded on a Fisons-Platform interface APCI in methanol. The elemental analyses were determinated on a LECO CHNS-900 analyzer. 4-Aryl-6-methyl-8-phenyl-2,3-dihydropyrazolo[3,4-b]-diazepines 3 and 4-Aryl-8-methyl-6-phenyl-2,3-dihydropyrazolo[4,3-b]diazepines 4. ## General Procedure. A solution of 1-phenyl-3-(dimethylamino)-1-propanone hydrochloride (0.68 g, 3.2 mmoles), 4,5-diamino-3-methylpyrazole (0.51 g, 3.2 mmoles) was refluxed in 15 ml of absolute ethanol for 1-7 hours (reaction control by tlc). The reaction mixture was evaporated and resulting precipitate was filtered, washed with ethanol, dryed and purified by silica gel chromatography with a mixture ethyl acetate/n-hexane (40:60) as the eluent. The first chromatographic fraction corresponds to compound 3 and the second one to compound 4. The yields and melting points of compounds 3 and 4 are summarized in Scheme 1. 6-Methyl-4,8-diphenyl-2,3-dihydropyrazolo[3,4-b]diazepine 3a. The mass spectrum shows $(M+H)^+ = 303 (100)$. Anal. Calcd. for C₁₉H₁₈N₄: C, 75.47; H, 6.00; N, 18.53. Found: C, 75.39; H, 6.14; N, 18.42. 4-(p-Chlorophenyl)-6-methyl-8-phenyl-2,3-dihydropyrazolo{3,4-b}diazepine 3b. The mass spectrum shows (M+H)* = 339/337 (80/100). Anal. Calcd. for $C_{19}H_{17}N_4Cl$: C, 67.75; H, 5.09; N, 16.63. Found: C, 67.70; H, 5.17; N, 16.56. 4-(p-Bromophenyl)-6-methyl-8-phenyl-2,3-dihydropyrazolo[3,4-b]diazepine 3c. The mass spectrum shows $(M+H)^+ = 383/381 (100/73)$. Anal. Calcd. for $C_{19}H_{17}N_4Br$: C, 59.85; H, 4.49; N, 14.69. Found: C, 59.74; H, 4.44; N, 14.76. 6-Methyl-4-(p-nitrophenyl)-8-phenyl-2,3-dihydropyrazolo-[3,4-b]diazepine 3d. The mass spectrum shows $(M+H)^+ = 348$ (70). Anal. Calcd. for $C_{19}H_{17}N_5O_2$: C, 65.70; H, 4.93; N, 20.16. Found: C, 65.63; H, 4.65; N, 20.23. 8-Methyl-4,6-diphenyl-2,3-dihydropyrazolo[4,3-b]diazepine 4a. The mass spectrum shows $(M+H)^+ = 303$ (100). Anal. Calcd. for $C_{19}H_{18}N_4$: C, 75.47; H, 6.00; N, 18.53. Found: C, 75.52; H, 6.07; N, 18.36. 4-(p-Chlorophenyl)-8-methyl-6-phenyl-2,3-dihydropyrazolo[4,3-b]diazepine 4b. The mass spectrum shows $(M+H)^+ = 339/337 (77/100)$. Anal. Calcd. for $C_{19}H_{17}N_4Cl$: C, 67.75; H, 5.09; N, 16.63. Found: C, 67.81; H, 5.03; N, 16.66. 4-(p-Bromophenyl)-8-methyl-6-phenyl-2,3-dihydropyra-zolo[4,3-b]diazepine 4c. The mass spectrum shows (M+H)⁺ = 382/381 (83/100). Anal. Calcd. for $C_{19}H_{17}N_4Br$: C, 59.85; H, 4.49; N, 14.69. Found: C, 59.78; H, 4.54; N, 14.61. 8-Methyl-4-(p-nitrophenyl)-6-phenyl-2,3-dihydropyrazolo[4,3-b]diazepine 4d. The mass spectrum shows $(M+H)^+ = 348 (100)$. *Anal.* Calcd. for $C_{19}H_{17}N_5O_2$: C, 65.70; H, 4.93; N, 20.16. Found: C, 65.74; H, 4.84; N, 20.11. ## Acknowledgment. This work was financially supported by Colciencias and Universidad del Valle. Authors thank CEPEDEQ (Centro para el Desarrollo de la Química, Universidad de Chile) for use of instruments. ## REFERENCES AND NÖTES - [1] M. J. Fray, D. J. Bull, K. Cooper, M. J. Parry and M. H. Stefaniak, J. Med. Chem., 38, 3524 (1995) and references therein. - [2] T. A. Kelly, D. W. McNeil, J. M. Rose, E. David, C.-K. Shih and P. M. Grob, *J. Med. Chem.*, 40, 2430 (1997) and references therein. - [3] H. A. DeWald, S. Lobbestaell and B. P. H. Poschel, J. Med. Chem., 24, 982 (1981). - [4] L. M. Sternbach, Prog. Drug. Res., 22, 229 (1978). - [5] J. T. Sharp in Comprehensive Heterocyclic Chemistry, 10, 1, A. R. Katritzky, C. W. Rees and W. Lwowski, eds, 1984, p 593 and references therein. - [6] A. Chimini, R. Gitto, S. Grasso, A. M. Monforte, G. Romero and M. Zappala, *Heterocycles*, 36, 601 (1993) and references therein. - [7] T. Tsuchiya, Yuki Gosei Kagaku Kyokaishi, 41, 641 (1983); Chem. Abstr., 99, 212426n (1983). - [8] V. D. Orlov, J. Quiroga and N. N. Kolos, Khim. Geterotsikl. Soedin., 363 (1987). - [9] V. D. Orlov, J. Quiroga, A. Marrugo, N. N. Kolos and S. V. Iksanova, Khim. Geterotsikl. Soedin., 1563 (1987). - [10] B. Insuasty, R. Abonía and J. Quiroga, An. Quim., 88, 718 (1992). - [11] V. D. Orlov, N. N. Kolos, J. Quiroga, Z. Kaluski, E. Figas and A. Potekhin, *Khim. Geterotsikl, Soedin.*, 506 (1992). - [12] B. Insuasty, M. Ramos, J. Quiroga, A. Sanchez, M. Nogueras, N. Hanold and H. Meier, *J. Heterocyclic Chem.*, 31, 61 (1994). - [13] B. Insuasty, M. Ramos, R. Moreno, J. Quiroga, A. Sánchez, M. Nogueras, N. Hanold and H. Meier, *J. Heterocyclic Chem.*, 32, 1229 (1995). - [14] B. Insuasty, R. Rodríguez, J. Quiroga, R. Martínez and E. Angeles, J. Heterocyclic Chem., 34, 1131 (1997). - [15] B. Insuasty, A. Pérez, J. Valencia and J. Quiroga, J. Heterocyclic Chem., 34, 1555 (1997). - [16] B. Insuasty, J. Quiroga and H. Meier, Trends Heterocyclic Chem., 5, 83 (1997). - [17] B. Insuasty, J. C. Argoti, S. Gomez, J. Quiroga, R. Martínez, E. Angeles and R. Gabiño, *J. Heterocyclic Chem.*, 35, 1397 (1998). - [18] B. Insuasty, H. Insuasty, J. Quiroga, C. Saitz and C. Jullian, J. Heterocyclic Chem., 1998 (In press). - [19] A. Bax and S. Subramanian, J. Magn. Reson., 65, 565 (1986). - [20] A. Bax and M. F. Summers, J. Am. Chem. Soc., 108, 2093 (1986).