Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the refinement of Crystal Structures, University of Göttingen, Germany. affords a highly stabilized free radical after reacting with species such as HOz, the degree of conjugation between the two aromatic rings, associated with the planarity of the biphenyl moiety, is a key factor in its antioxidant activity.

Acta Cryst. (1996). C52, 1581-1583

(S)-1,10-Dimethoxy-2,9-dihydroxyaporphinium Chloride (Boldine Hydrochloride), $C_{19}H_{22}NO_4^+$.Cl⁻

M. Asencio,^{*a*} B. K. Cassels,^{*a*} V. Manríquez^{*a*} and D. Boys^{*b*}

^aDepartamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile, and ^bDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile. E-mail: dboys@uchcecvm.cec.uchile.cl

(Received 20 January 1995; accepted 13 December 1995)

Abstract

Boldine (5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-4H-dibenzo[de,g]quinoline-2,9-diol) is an aporphine alkaloid noted for its antioxidant properties. A salient feature of the molecule is the non-planarity of the biphenyl system, which exhibits a dihedral angle of $151.1(8)^{\circ}$ between the least-squares planes of the two benzenoid rings and torsion angles of 25.7 (3), -150.6(2), -155.9(2) and 27.8(3)° about the biphenyl bond. Methoxy C atom C13 lies only 0.195 (4) A above the mean plane of the ring to which it is attached, with torsion angles about the C10-O2 bond of 168.6(2) and $-11.3(4)^{\circ}$. Methoxy C atom C14 is displaced -1.101(3) Å from the corresponding ring plane, with torsion angles about the C1-O3 bond of 102.3(2) and $-79.7(3)^{\circ}$. All intramolecular bonds and angles are within the expected range.

Comment

Boldine is the major alkaloidal constituent of the Chilean boldo tree *Peumus boldus Mol. (Monimiaceae)*, and has attracted attention recently due to its potent antioxidant activity (Speisky & Cassels, 1994) attributed to the presence of two phenol groups and a highly conjugated biphenyl system incorporating a benzyl-amine functionality (Cassels *et al.*, 1995). As this alkaloid acts as a chain-breaking antioxidant, which

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of this alkaloid exhibits the common substituted aporphine skeleton, with two aromatic rings, (a) and (b), and two rings, (c) and (d), with near half-chair conformation. The interplanar angle between the aromatic rings is 151.1 (8)°. A fairly large number of aporphine (5,6,6a,7-tetrahydro-6methyl-4H-dibenzo[de,g]quinoline) structures have been studied by X-ray crystallography (Ashida, Pepinsky & Okaya, 1963; Giesecke, 1973; Brown & Hall, 1977; Roques, Declercq & Germain, 1978; Roques, Djakouré & Rossi, 1978; Zabel, Watson, Urzúa & Cassels, 1979; Fonseca & García-Blanco, 1984; Wei, Basu, Einstein & Hingerty, 1984; Touré, Germain & Djakouré, 1985; Ribár, Mészáros, Engel, Gasic & Kanyó, 1991; Ribár, Mészáros, Gasic, Kanyó & Engel, 1991; Ribár, Lazar, Gasic, Kanyó & Engel, 1992).

The twist angles of the biphenyl system have been evaluated by some of these authors, following Klyne & Prelog's (1960) convention, as the average of the torsion angles C1-C11b-C11a-C11 and C11c-C11b-C11a-C7a. The calculated twist angles for a few related compounds are listed in Table 3. The variation of this parameter has been discussed by Brown & Hall (1977) for a very small data set. Several years earlier, Shamma (1972) pointed out that the 1,2,9,10tetraoxygenated aporphines have specific rotations of +119° or less at 589 nm, while in the 1,2,10,11-tetraoxygenated series the corresponding values are +139° or more, and that this difference could be explained on the basis of a greater twist angle in those compounds in which steric compression between C1 and C11 substituents leads to greater steric strain. Now that X-ray structural data are available for a considerably larger number of aporphines and derivatives, it can be seen that this interpretation is generally valid. Boldine and cataline, both bearing a methoxy group at C1 and an H atom at C11, show similar twist angles of 26.8 (3) and 27.9 (1)°, respectively, considerably larger than that of 20.9 (6)° of isoboldine, which has a less bulky hydroxy group at C1, but smaller than that of 31.8 (3)° of isocorydine, which has a methoxy group at C1 and a hydroxy group at C11.

03 04

Fig. 1. Structure of of boldine hydrochloride with atom labelling, showing 50% probability displacement ellipsoids. H atoms are drawn as small circles of arbitrary radii.

Experimental

The title compound was recrystallized in 2-propanol/ether.

 $\theta_{\text{max}} = 35.0^{\circ}$ $h = -7 \rightarrow 12$ $k = -11 \rightarrow 18$ $l = -17 \rightarrow 32$

2 standard reflections monitored every every 100 reflections reflections intensity decay: none

Crystal data

$C_{19}H_{22}NO_4^+.Cl^-$	Mo $K\alpha$ radiation
$M_r = 363.8$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 30
$P2_{1}2_{1}2_{1}$	reflections
a = 7.556 (2) Å	$\theta = 10 - 30^{\circ}$
b = 11.587(2) Å	$\mu = 0.239 \text{ mm}^{-1}$
c = 20.255 (4) Å	T = 298 K
$V = 1773.5(9) \text{ Å}^3$	Parallelepiped
Z = 4	$0.70 \times 0.44 \times 0.28 \text{ mm}$
$D_x = 1.363 \text{ Mg m}^{-3}$	Colourless
-	

Data collection

Siemens R3m/V four-circle diffractometer
$\theta/2\theta$ scans
Absorption correction:
none
5023 measured reflections
4887 independent reflections
2818 observed reflections
$[I > 2\sigma(I)]$
$R_{\rm int} = 0.0154$

Refinement

Refinement on F	Extinction correction: none
R = 0.0409	Atomic scattering factors
wR = 0.0466	from International Tables
S = 1.19	for Crystallography (1992,
2818 reflections	Vol. C, Tables 4.2.6.8. and
249 parameters	6.1.1.4)
Only H-atom U's refined	Absolute configuration:
$w = 1/[\sigma^2(F) + 0.0006F^2]$	Rogers (1981) parameter
$(\Delta/\sigma)_{\rm max} = 0.057$	= 1.22 (16)
$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$	

Table	1. Fractional	atomic	coord	inates	and	equival	ent
	isotropic di	splacem	ent pai	ramete	ers (Å	²)	

$U_{\rm cq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Cl	0.3574(1)	0.3645(1)	0.1444 (1)	0.054 (1)
N6	-0.5508(3)	0.0906 (2)	0.3042(1)	0.045(1)
01	-0.6056(3)	0.4487 (2)	0.5962(1)	0.057(1)
O2	-0.4115 (3)	0.6177 (2)	0.5389(1)	0.058(1)
03	-0.0265(2)	0.4796(1)	0.3706(1)	0.045(1)
04	0.1496 (2)	0.3894 (2)	0.2691 (1)	0.062(1)
C1	-0.1039 (3)	0.3898 (2)	0.3359(1)	0.037(1)
C2	-0.0151 (3)	0.3466 (2)	0.2804(1)	0.043(1)
C3	-0.0945 (3)	0.2650 (2)	0.2411 (1)	0.045(1)
C3a	-0.2616 (3)	0.2218 (2)	0.2571(1)	0.040(1)
C4	-0.3460 (4)	0.1345 (2)	0.2119(1)	0.052(1)
C5	-0.5337 (4)	0.1036 (2)	0.2311(1)	0.054(1)
C6a	-0.5176 (3)	0.2043 (2)	0.3383(1)	0.037(1)
C7	-0.5100 (3)	0.1866 (2)	0.4125(1)	0.040(1)
C7a	-0.4752 (3)	0.3012 (2)	0.4453(1)	0.035(1)
C8	-0.5550 (3)	0.3263 (2)	0.5056(1)	0.039(1)
C9	-0.5289 (3)	0.4313 (2)	0.5357(1)	0.042(1)
C10	-0.4240 (3)	0.5147 (2)	0.5050(1)	0.040(1)
C11	-0.3423 (3)	0.4905 (2)	0.4455(1)	0.038(1)
Clla	-0.3634 (3)	0.3811(2)	0.4154(1)	0.032(1)
Cllb	-0.2689 (3)	0.3456 (2)	0.3543 (1)	0.032(1)
Cllc	-0.3451 (3)	0.2575 (2)	0.3145(1)	0.035(1)
C12	-0.7294 (4)	0.0431 (3)	0.3207 (2)	0.065(1)
C13	-0.2832 (5)	0.6980(3)	0.5177 (2)	0.075(1)
C14	0.1114 (4)	0.4463 (3)	0.4148(1)	0.058(1)

Table 2. Selected geometric parameters (Å, °)

N6C5	1.493 (3)	C3a—C11c	1.386 (3)
N6C6a	1.508 (3)	C4—C5	1.513 (4)
N6-C12	1.496 (4)	C6aC7	1.518(3)
O1C9	1.370 (3)	C6a—C11c	1.520(3)
O2C10	1.379 (3)	C7—C7a	1.508 (3)
O2—C13	1.411 (4)	C7a—C8	1.392 (3)
O3—C1	1.385 (3)	C7a—C11a	1.393 (3)
O3—C14	1.428 (3)	C8—C9	1.375 (3)
O4—C2	1.359 (3)	C9-C10	1.396 (3)
C1-C2	1.401 (3)	C10-C11	1.383 (3)
C1—C11b	1.398 (3)	C11C11a	1.416 (3)
C2—C3	1.375 (3)	Clla—Cllb	1.486 (3)
C3—C3a	1.397 (3)	C11b—C11c	1.422 (3)
C3a—C4	1.507 (3)		
C5—N6—C6a	110.6 (2)	C7-C6a-C11c	109.6 (2)
C5-N6-C12	109.7 (2)	C6a—C7—C7a	109.0 (2)
C6a-N6-C12	111.6 (2)	C7—C7a—C11a	119.9 (2)
C10	117.8 (2)	O1-C9-C8	117.8 (2)
C1-03-C14	115.1 (2)	O1-C9-C10	122.5 (2)
O3-C1-C2	118.2 (2)	O2C10C9	114.6 (2)
O3-C1-C11b	121.1 (2)	O2-C10-C11	125.3 (2)
O4—C2—C1	116.3 (2)	C7a—C11a—C11	118.4 (2)
O4C2C3	123.5 (2)	C7a-C11a-C11b	118.0 (2)
C4—C3a—C11c	121.2 (2)	C1-C11bC11c	118.2 (2)
C3a—C4—C5	113.5 (2)	Clla—Cllb—Cllc	118.4 (2)
N6C5C4	111.1 (2)	C3aC11cC6a	122.3 (2)
N6—C6a—C7	110.0 (2)	C6a—C11c—C11b	117.3 (2)
N6C6aC11c	110.6 (2)		

Table 3. Twist angles (°) in the biphenyl system in related compounds

268 and	compounas				
.2.0.8. anu		Twist angle	Reference		
	Leucoxine hydrobromide	14.3 (3)	а		
tion:	Isoboldine hydrobromide	20.9 (6)	а		
arameter	N,O-Diacetyllaurelliptine	22.3 (3), 24.0 (3)	Ь		
	Apomorphine hydrochloride-(H2O)2	22.8 (3), 24.7 (4)	с		
	Nanteine	23.7 (6)	d		
	Laurelliptine (free base)	24.1 (2)	е		
	N.O-Diacetyl-4-hydroxynornantenine	24.1 (4)	f		

Boldine hydrochloride	26.8 (3)	g
Cataline (free base)	27.9(1)	ĥ
Bulbocapnine methiodide	30.1 (3)	i
Isocorydine methiodide	30.6 (6)	i
Bulbocapnine (free base)	31.3 (5)	k
Isocorydine (free base)	31.8 (3)	1

References: (a) Brown & Hall (1977); (b) Roques, Declerq & Germain (1978); (c) Giesecke (1973); (d) Ribár, Mészáros, Engel et al. (1991); (e) Roques, Djakouré & Rossi (1978); (f) Zabel et al. (1979); (g) This work; (h) Fonseca & García-Blanco (1984); (i) Wei et al. (1984); (j) Touré et al. (1985); (k) Ribár, Mészáros, Gasic et al. (1991); (l) Ribár et al. (1992).

Data collection: P3/P4–PC Diffractometer Program (Siemens, 1991). Cell refinement: P3/P4–PC Diffractometer Program. Data reduction: XDISK in SHELXTL-Plus (Sheldrick, 1992). Program(s) used to solve structure: XS in SHELXTL-Plus. Program(s) used to refine structure: XLS in SHELXTL-Plus. Molecular graphics: XP in SHELXTL-Plus. Software used to prepare material for publication: XPUBL in SHELXTL-Plus.

The authors thank the DTI (U. de Chile) for financial support, and Fundación Andes for the purchase of the single-crystal diffractometer currently operating at the Universidad de Chile.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, including contact distances, have been deposited with the IUCr (Reference: PT1029). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ashida, T., Pepinsky, R. & Okaya, Y. (1963). Acta Cryst. A16, 48-49.
- Brown, G. M. & Hall, L. H. (1977). Acta Cryst. B33, 2051–2057. Cassels, B. K., Asencio, M., Conget, P., Speisky, H., Videla, L. A. &
- Lissi, E. A. (1995). *Pharmacol. Res.* **31**, 103–109.
- Fonseca, I. & Garcia-Blanco, S. (1984). Acta Cryst. C40, 176-178.
- Giesecke, J. (1973). Acta Cryst. B29, 1785-1791.
- Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-523.
- Ribár, B., Lazar, D., Gasic, O., Kanyó, I. & Engel, P. (1992). Acta Cryst. C48, 945–947.
- Ribár, B., Mészáros, Cs., Engel, P., Gasic, O. & Kanyó, I. (1991). Acta Cryst. C47, 2500–2501.
- Ribár, B., Mészáros, Cs., Gasic, O., Kanyó, I. & Engel, P. (1991). Acta Cryst. C47, 2612–2614.
- Rogers, D. (1981). Acta Cryst. A37, 734-741.
- Roques, R., Declercq, J. P. & Germain, G. (1978). Acta Cryst. B34, 2017–2020.
- Roques, R., Djakouré, L. A. & Rossi, J. C. (1978). Acta Cryst. B34, 837-841.
- Shamma, M. (1972). Isoquinoline Alkaloids. Chemistry and Pharmacology, pp. 194–228. New York/London: Academic Press.
- Sheldrick, G. M. (1992). *SHELXTL-Plus*. Release 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Speisky, H. & Cassels, B. K. (1994). Pharmacol. Res. 29, 1-12.
- Touré, S., Germain, G. & Djakouré, L. A. (1985). Acta Cryst. 41, 1827–1828.
- Wei, Ch.-Hs., Basu, S. P., Einstein, J. R. & Hingerty, B. E. (1984). Acta Cryst. C40, 1737–1740.
- Zabel, V., Watson, W. H., Urzúa, A. & Cassels, B. K. (1979). Acta Cryst. B35, 3126–3129.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1583-1585

[D-Ala²,D-Leu⁵]-Enkephalin Hydrochloride

JEFFREY R. DESCHAMPS, CLIFFORD GEORGE AND JUDITH L. FLIPPEN-ANDERSON

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA. E-mail: deschamps@lsm.nrl.navy.mil

(Received 19 September 1995; accepted 15 January 1996)

Abstract

The title compound, L-tyrosyl-D-alanyl-glycyl-L-phenylalanyl-D-leucine hydrochloride ($C_{29}H_{40}N_5O_7^+.Cl^-$), cocrystallizes with 2-butanone (C_4H_8O). The structure determination reveals a slightly distorted type I' β -bend conformation stabilized by one intramolecular hydrogen bond. This conformation is similar to that observed for other [Leu]-enkephalin analogues.

Comment

[D-Ala²,D-Leu⁵]-enkephalin (DADLE) is a linear opioid peptide agonist which has slightly improved δ -receptor selectivity when compared with [Leu]-enkephalin (Schiller, 1991). DADLE is an important opioid peptide often used as a standard in activity studies.

The crystal structure of DADLE is shown in Fig. 1. The bond distances and angles observed in this structure were within accepted limits. Except for the disordered Leu side-chain, the e.s.d.s for the bond lengths ranged from 0.009 to 0.020 Å in the peptide, and from 0.014 to 0.020 Å in the solvent; the e.s.d.s for the bond angles ranged from 0.6 to 1.4° in the peptide, and 1.2 to 1.7° in the solvent. The Leu⁵ side-chain is disordered with approximately equal occupancy for the two positions. The respective conformation of the disorder may be described by the χ^1 torsion angles N5—C5A—C5B—C5G of 68.6 (8)° and N5—C5A—C5B'—C5G' of 159.5 (7)°.