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Abstract Estimating the number n of unseen species from a k-sample displaying only p ≤ k

distinct sampled species has received attention for long. It requires a model of species abun-
dance together with a sampling model. We start with a discrete model of iid stochastic
species abundances, each with Gibbs-Poisson distribution. A k-sample drawn from the n-
species abundances vector is the one obtained while conditioning it on summing to k. We
discuss the sampling formulae (species occupancy distributions, frequency of frequencies)
in this context. We then develop some aspects of the estimation of n problem from the size
k of the sample and the observed value of Pn,k , the number of distinct sampled species.

It is shown that it always makes sense to study these occupancy problems from a Gibbs-
Poisson abundance model in the context of a population with infinitely many species. From
this extension, a parameter γ naturally appears, which is a measure of richness or diversity
of species. We rederive the sampling formulae for a population with infinitely many species,
together with the distribution of the number Pk of distinct sampled species. We investigate
the estimation of γ problem from the sample size k and the observed value of Pk .

We then exhibit a large special class of Gibbs-Poisson distributions having the property
that sampling from a discrete abundance model may equivalently be viewed as a sampling
problem from a random partition of unity, now in the continuum. When n is finite, this
partition may be built upon normalizing n infinitely divisible iid positive random variables
by its partial sum. It is shown that the sampling process in the continuum should generically
be biased on the total length appearing in the latter normalization. A construction with size-
biased sampling from the ranked normalized jumps of a subordinator is also supplied, would
the problem under study present infinitely many species. We illustrate our point of view with
many examples, some of which being new ones.

T. Huillet (B)
Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS UMR-8089,
Site de Saint Martin, 2 avenue Adolphe-Chauvin, 95302 Cergy-Pontoise, France
e-mail: huillet@u-cergy.fr

S. Martínez
Depto. Ingenieria Matematica and Centro Modelamiento Matematico, Universidad de Chile, UMI 2071,
Uchile-Cnrs, Casilla 170-3 Correo 3, Santiago, Chile
e-mail: smartine@dim.uchile.cl

mailto:huillet@u-cergy.fr
mailto:smartine@dim.uchile.cl


764 T. Huillet, S. Martínez

Keywords Occupancy distributions · Sampling from Gibbs-Poisson distribution · Species
abundance and frequencies · Biodiversity · Combinatorial probability · Subordinators

1 Introduction and Outline of Main Results

Estimating the number n of unseen species from a k-sample displaying only p ≤ k distinct
sampled species has been a challenging problem since the mid-twentieth century, [21]. It
requires a model of species abundance together with a sampling model [16], and the answer
to the latter question is of course model-dependent. In this work, we start with a discrete
model of independent and identically distributed (iid) stochastic species abundances ξn :=
(ξ1, . . . , ξn), based on compound Poisson distributions for ξ

d= ξ1. We discuss the sampling
formulae (species occupancy distributions, frequency of frequencies) in this discrete context.
Typically, a k-sample drawn from the n-species abundances vector is the one obtained while
conditioning this vector on summing to k (the sample size). Sampling from iid compound
Poisson abundance random variables (rvs) in this sense results in a Gibbs-Poisson sampling
model from ξn. It has to do with random allocation of balls into boxes, [37, 38]. Various
combinatorial identities arising in this setup are discussed. A distribution for the number
of distinct visited species Pn,k in a k-sample from a population of size n with compound
Poisson abundance is derived. For this class of sampling problems, a ‘temperature’ type
parameter θ > 0 pops in naturally. It is a measure of how similar the box occupancy numbers
look like statistically, after the sampling process: the smaller the values of θ , the more likely
it is that these occupancy numbers are disparate. When sampling from ξn, we then discuss
some aspects of the problem of the estimation of the number of species n from the size k of
the sample and the number Pn,k of distinct sampled species, assuming θ to be known. These
results are supplied in Propositions 1 and 3.

It turns out that it always makes sense to study these occupancy problems from a Gibbs-
Poisson abundance model in the context of a population with infinitely many species, pro-
vided n goes to ∞ together with θ going to 0 while nθ → γ > 0. From this construction,
γ then appears as a measure of species richness or diversity. We rederive the sampling
formulae (species occupancy distributions, frequency of frequencies) for a population with
infinitely many species, together with the distribution of the number Pk of distinct sampled
species. We discuss the problem of the estimation of the diversity parameter γ from the size
k of the sample and the number Pk .

One particular model in the compound Poisson class has been discussed at length in the
literature: the sampling problem from a population with discrete negative binomial distribu-
tion abundance ξ , both when the population is made of a finite number of species and when
there are infinitely many of them. For this particular model, when there are infinitely many
species, the obtained sampling formulae are the ones of Ewens, [18]. It is also well-known
that the Ewens sampling formulae may also be viewed as sampling from a random Dirichlet
partition of the unity when the number of species is finite or as sampling from a random
Poisson-Dirichlet partition of unity when there are infinitely many classes, [26]. This prop-
erty is remarkable. By sampling from a partition of the continuum [0,1], we mean that we
draw independently k uniform random variables on the unit interval, looking at the subinter-
vals of the partition which are being hit in the process to form the occupancy distributions
of classes.

In this work, we exhibit a large class of compound Poisson distributions sharing with the
negative binomial distribution this property that sampling from a discrete abundance model
may equivalently be viewed as a sampling problem from a random partition of unity in the
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continuum. When n is finite, this partition may be built upon normalizing n infinitely divis-
ible iid non-negative random variables Yn := (Y1, Y2, . . . , Yn) by its partial sum. We exhibit

the one-to-one correspondence between the laws of ξ and Y
d= Y1, assuming ξ to be in the

special class. It is however shown that the sampling process in the continuum should generi-
cally be biased on the total length appearing in the latter normalization. A construction with
such biased sampling from the ranked normalized jumps of a subordinator is also supplied,
would the problem under study present infinitely many species. The biasing factors account
for the fact that the Gibbs-Poisson occupancy models are not in general sampling consistent
as k varies (are not EPPFs). A complete classification of EPPFs induced by the unbiased
multinomial sampling from partition of unity can be found in [23, 25].

With this correspondence in mind, we discuss several examples, among which the Engen
extended negative binomial model [15], the Berestycki-Pitman model [3] for the enumer-
ation of forests of trees with generalized binomial generator, the polylog and the Mittag-
Leffler models. When there are some reasons to suspect that the ranked species frequencies
decay algebraically with the rank number, then the Engen model is well suited. Would one
think of the ranked species frequencies as decaying exponentially with the rank number,
then the Ewens model seems relevant. If the ranked species frequencies are believed to de-
cay exponentially as some power of the rank number, then one should opt for the polylog
model.

We end up giving a new example of ξ sharing some common issues with the Engen’s
model (in particular the algebraic decay property of the ranked frequencies). For this precise
model, we are able to give an exact estimator of the biodiversity parameter.

2 Sampling from Discrete Gibbs-Poisson Distributions

The sampling problem from a negative binomial abundance model and its Dirichlet counter-
part in the continuum suggest to study the following general construction (see [3, 27, 28, 37]
and [45] for similar recent interest).

2.1 Generating and Partition Function (see [10] and [45], Sect. 1)

With φ• := (φm;m ≥ 1) a sequence of non-negative real numbers with φ1 > 0, let

φ(x) :=
∑

m≥1

φm

m! x
m (1)

be a formal power series in x. Assume that x0 := sup(x > 0 : φ(x) < ∞) ∈ (0,+∞] is its
convergence radius. Then φ(x) defines a convergent series on |x| < x0 and it is absolutely
monotone on (0, x0) in the sense that φ(n)(x) ≥ 0 for all n ≥ 0 and x ∈ (0, x0). We call it the
local exponential generating function.

Let θ > 0 and consider the exponential ‘partition’ generating function

Zθ(x) = eθφ(x). (2)

This function also defines a convergent series on |x| < x0 with Zθ(0) = 1. Further, with
σk(θ) = k![xk]Zθ(x) (where [xk]f (x) is the xk-coefficient in the series expansion of the
function f (x)):

Zθ(x) = 1 +
∑

k≥1

xk

k! σk(θ).



766 T. Huillet, S. Martínez

Since ∂xZθ(x) = θφ′(x)Zθ(x), we get the recurrence:

σk+1(θ) = θ

k∑

l=0

(
k

l

)
φk−l+1σl(θ), k ≥ 0, σ0(θ) ≡ 1. (3)

Similarly, since ∂θZθ (x) =: Z′
θ (x) = φ(x)Zθ (x), we find:

σ ′
k(θ) =

k−1∑

l=0

(
k

l

)
φk−lσl(θ), k ≥ 1, σ0(θ) = 1. (4)

Then, clearly,

σk(θ) =
k∑

l=1

Bk,l(φ•)θ l, (5)

with:

Bk,l(φ•) = k!
l!

[
xk

]
φ(x)l = k!

l!
∑

ml :|ml |=k

l∏

j=1

φmj

mj ! ≥ 0.

In the latter sum, summation runs over ml := (m1, . . . ,ml) ∈N
l , with |ml | := ∑l

j=1 mj = k

and N := {1,2, . . .}; there are
(
k−1
l−1

)
terms in such sums. So σk(θ) is a degree-k Bell polyno-

mial in θ whose θ l coefficient is Bk,l(φ•) which is known as the Bell exponential polynomial
in the variables φ• (see [10]). On θ > 0, the function σk(θ) is convex and log-concave, for
all k. As a polynomial with non-negative coefficients of degree k, σk(θ) has no strictly pos-
itive real root and at most k real non-positive roots (including 0), counting roots with their
multiplicity.

Remarks (Bell polynomials and convolutions)

(i) Define (φ ∗φ)m := ∑m−1
l=1

(
m

l

)
φlφm−l , m ≥ 2, as the binomial self-convolution sequence

of φm. Define φ
∗p
m as the mth term, m ≥ p, of the sequence φ∗p := φ ∗ · · · ∗ φ, p times;

then the following convolution identity is well-known to hold:

Bk,p(φ•) = φ
∗p

k /p!.

(ii) Because Zθ+θ ′(x) = Zθ(x)Zθ ′(x), the polynomials σk(θ) satisfy

σk

(
θ + θ ′) =

k∑

l=0

(
k

l

)
σl(θ)σk−l

(
θ ′) for all θ, θ ′ > 0, (6)

and so they form a so-called binomial convolution sequence of polynomials.
If p ≥ 1 is an integer, with σ(1)

∗p

k := (σ (1)∗p)k , kp := (k1, . . . , kp) in N
p

0 , |kp| :=
k1 + · · · + kp and N0 := {0,1,2, . . .}

σk(p) = σ(1)
∗p

k =
∑

kp∈Np
0 :|kp |=k

(
k

k1 . . . kp

) p∏

q=1

σkq (1).
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We clearly have

σk(p) =
p∑

q=1

(
p

q

) ∑

kq∈Nq :|kp |=k

(
k

k1 . . . kq

) q∏

r=1

σkr (1).

In other words,

σk(p) =
k∑

q=1

(
p

q

) ∑

kq∈Nq :|kp |=k

(
k

k1 . . . kq

) q∏

r=1

σkr (1), (7)

where
(
p

q

) = 0 if q > p. This expression extends to non-integral arguments θ > 0 of
σk(·) as

σk(θ) =: σ(1)∗θ
k =

k∑

q=1

(
θ

q

) ∑

kq∈Nq : |kp |=k

(
k

k1 . . . kq

) q∏

r=1

σkr (1), (8)

where
(
θ

q

) =: {θ}q/q! with {θ}q := Γ (θ + 1)/Γ (θ − q + 1) = θ(θ − 1)..(θ − q + 1),

the usual extension of
(
p

q

)
for the expansion of (1 + x)θ . From (8), it is clear again that

σk(θ) is a degree-k polynomial in θ with no constant term. This expression should be
used instead of (5) whenever the values at θ = 1 of σk(·) are available in the first place,
instead of the φ•.

(iii) Putting the expression of σk(θ) in (5) into the recurrence equation (3) which (σk(θ);
k ≥ 1) satisfies gives

l · Bk,l(φ•) =
k−1∑

j=l−1

(
k

j

)
φk−jBj,l−1(φ•). (9)

Recalling the boundary conditions

Bk,0(φ•) = B0,l(φ•) = 0, k, l ≥ 1 and B0,0(φ•) := 1,

we get

Bk,1(φ•) = φk and Bk,k(φ•) = φk
1 . (10)

(iv) While performing the substitution θ → 1/θ , σk(θ) should be mapped into the new
polynomial with respect to 1/θ

σk(1/θ) = θ−(k+1)

k∑

l=1

Bk,k−l+1(φ•)θ l,

involving the ‘reversed’ Bell sequence Bk,k−l+1(φ•).

2.2 Discrete Compound Poisson Distributions Arising from Zθ(x)

Let now ξ ∈ N0 be a discrete random variable whose probability generating (pgf) is given
by:

Φ(u) := E
[
uξ

] = Zθ(xu)

Zθ (x)
, |u| ≤ 1.
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Since

E
[
uξ

] = e
−θφ(x)(1− φ(xu)

φ(x)
)
, (11)

ξ is in the compound Poisson (CP) class, as a Poisson sum of iid jumps, hence infinitely
divisible. The jumps’ height law is given by its pgf E[uδ] = φ(xu)

φ(x)
, where δ ∈ N is one of

these jumps. Note that both E[δ] = x
φ′(x)

φ(x)
and E[ξ ] = θφ(x)E[δ] = θxφ′(x) are finite when

|x| < x0. Clearly

P(δ = m) = φmxm

φ(x) · m! , m ≥ 1 and

P(ξ = k) = σk(θ)xk

Zθ (x) · k! , k ≥ 0.

With y defined by x =: e−y , y is indeed the Legendre conjugate of μ := E(ξ). So the pa-
rameter x in (11) can serve to adjust the mean μ of ξ . The random variable ξ will be used
in the sequel as the abundance of some species in a population with n species. Due to its
compound Poisson structure, it is tacitly assumed that species abundance is modelled as a
Poisson sum of iid ‘clusters’ each with random size distributed like δ ≥ 1.

Consider now a sequence ξ := (ξ1, . . . , ξn, . . .) of iid compound Poisson random vari-
ables, each on N0. Let ζn := ∑n

m=1 ξm denote their partial sum. Then, because ξ is in the
compound-Poisson class due to Zθ(x)n = Znθ (x)

P(ζn = k) = σk(nθ)xk

Znθ (x) · k! , k ≥ 0.

This is also a compound Poisson distribution with corresponding partition function Znθ (x).

Remark One could think of starting with φ(x) := φ0 +∑
m≥1

φm

m! x
m with φ0 ≥ 0 but because

we shall deal with CP distributions whose pgfs are given by (11), φ0 plays no role in our
problem.

2.3 Sampling from Infinitely Divisible CP Distributions

Define a random allocation scheme of k distinguishable particles or balls into n distinguish-
able boxes by

Kn,k := (
Kn,k(1), . . . ,Kn,k(n)

) d= (ξ1, . . . , ξn | ζn = k),

so that Kn,k(m) counts the number of particles in box m, m = 1, . . . , n in a k-sample. Defin-
ing Kn,k from n iid ξ ’s conditioned on summing to k, we get the generalized allocation
scheme defined by Kolchin, (see [37]). When the ξ ’s are in addition CP distributed, we call
this model sampling from Gibbs-Poisson (GP) distributions.

Remark Since E[ξ ] = Φ ′(1) = θxφ′(x), θ > 0 and x ∈ (0, x0), we could adjust the mean
μ of ξ so that E[ξ ] = μ. Then we would have the relation μ/θ = xφ′(x) (Legendre con-
jugation of x and μ) from which, by Lagrange inversion formula, an expression of x as a
function of μ/θ would follow. However, as we shall see, the actual value of the mean μ does
not really matter after the sampling process.
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Taking now into account the conditioning on the sample size in the definition of
Kn,k’s law, with kn := (k1, . . . , kn) ∈ N

n
0 a vector of non-negative integers obeying |kn| :=∑n

m=1 km = k

P(Kn,k = kn) = P(ξ1 = k1, . . . , ξn = kn)

P(ζn = k)
= 1

σk(nθ)

(
k

k1 . . . kn

) n∏

m=1

σkm(θ), (12)

this (Maxwell-Boltzmann) joint law being independent of x and so of the mean μ of the
ξ ’s. In other words, the joint probability generating function of Kn,k reads (|um| ≤ 1;m =
1, . . . , n):

E

[
n∏

m=1

u
Kn,k(m)
m

]
= 1

σk(nθ)

∑

kn∈Nn
0 : |kn|=k

(
k

k1 . . . kn

) n∏

m=1

σkm(θ)ukm
m . (13)

From (12), wkm(θ) := σkm(θ)/km! is seen to be the Boltzmann weight of box m with
ekm(θ) := − log(σkm(θ)/km!) being the energy required to put km balls into box number
m. More precisely, for our random allocation GP model of particles (13) and from (5), the
price to pay for having the lth particle, l ∈ {1, . . . , km}, in box m simply is l and this event is
assigned the weight Bkm,l(φ•)/km!. From this, one may view θ as a box temperature param-
eter which, under our assumptions, is here common to all boxes (or species). Due to σkm(θ)

being a polynomial in θ with positive coefficients, the energy ekm(θ) is indeed a decreasing
function of θ and one may therefore interpret θ as some temperature1 of the boxes (maybe
through the monotone transformation θ ↔ e−1/T ). Note that when θ approaches 0, the en-
ergy ekm(θ) ∼ − log θ tends to +∞: because the price to pay to put any number of particles
into a box is extremely high, the optimal strategy is to put them all into a single box. One
therefore expects that, as θ gets very small, the vector Kn,k gets very skewed (most balls
into a single box), that is, completely opposite to the balanced multinomial (k; 1

n
, . . . , 1

n
)

situation

P(Kn,k = kn) = k!∏n

m=1 km!n
−k, |kn| = k,

which is obtained for θ → ∞, as a result of σkm(θ) ∼ (φ1θ)km . As a conclusion, smaller the
values of θ , the more likely it is that the occupancy numbers Kn,k(m) are disparate.

From (12), the random vector-count Kn,k has exchangeable distribution (invariance under
any permutation of the boxes numbers). But obviously, in the ordered version K(n),k of the
box occupancies Kn,k , say with K(n),k(1) ≥ · · · ≥ K(n),k(n), the boxes are not equally filled
and so K(n),k is not exchangeable.

– Let us now compute the distribution of one of its typical components, say Kn,k(1). With
l ∈ {0, . . . , k}, we get

P
(
Kn,k(1) = l

) = P(ξ1 = l)
[uk−l]Φ(u)n−1

[uk]Φ(u)n

= σl(θ)xl

l!
[uk−l]Zθ(xu)n−1

[uk]Zθ(xu)n
=

(
k

l

)
σl(θ)σk−l ((n − 1)θ)

σk(nθ)
.

Note that
∑k

l=0 P(Kn,k(1) = l) = 1, as required, in view of (6) with θ ′ = (n − 1)θ .

1In statistical contexts, this temperature parameter is also called the concentration parameter.
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– Proceeding similarly, with l ∈ {0, . . . , k}, we would obtain the law of the partial sums
Kn,k(1) + · · · + Kn,k(m), m < n, as

P
(
Kn,k(1) + · · · + Kn,k(m) = l

) =
(

k

l

)
σl(mθ)σk−l ((n − m)θ)

σk(nθ)
.

As required also,
∑k

l=0 P(Kn,k(1) + · · · + Kn,k(m) = l) = 1, as a result of σk(θ) being a
convolution sequence of polynomials, from (6).

– Finally, define {k}l := k(k − 1) · · · (k − l + 1) with {k}0 := 1 and let us now consider the
falling factorial moments of Kn,k .

Fix ln := (l1, . . . , ln) ∈N
n
0 summing to l ≤ k. We have

E

[
n∏

m=1

{
Kn,k(m)

}
lm

]
=

n∏

m=1

lm! [v
k]∏n

m=1[vlm
m ]Zθ(xv(vm + 1))

[vk]Znθ (xv)
.

Since lm![vlm
m ]Zθ(xv(vm + 1)) = ∑

km≥lm

σkm (θ)·(xv)km

(km−lm)! , with kn summing to |kn| = k, with
kn ≥ ln meaning k1 ≥ l1, . . . , kn ≥ ln, we get

E

[
n∏

m=1

{
Kn,k(m)

}
lm

]
=

∑
kn≥ln

∏n

m=1 σkm(θ)/(km − lm)!
σk(nθ)/k! . (14)

These combinatorial quantities arise in the following resampling problem:

Subsampling Without Replacement from Kn,n Suppose Kn,n(m), m = 1, . . . , n are the ran-
dom box occupancies of some sample with size exactly equal to the number n of boxes, gen-
erated by some compound-Poisson vector ξn := (ξ1, . . . , ξn). So there are at most n boxes
filled by a singleton as a result of

∑n

m=1 Kn,n(m) = n. Let p ≤ k ≤ n. In connection with
the theory of compound-Poisson coalescent processes, [31], we are interested in the event
that after a random k-subsampling without replacement from Kn,n, balls are reassigned at
random into boxes so as to end up in a new occupancy K′

n,k := (K ′
n,k(q);q = 1, . . . , p)

where only a fixed number p of the random number Πn,k of filled boxes (labeled in arbi-
trary order) are occupied. So K′

n,k obeys
∑p

q=1 K ′
n,k(q) = k and K ′

n,k(q) ≥ 1. Then, with
(k1, . . . , kp) ∈N

p summing to k, the sampling without replacement strategy yields:

P
(
K ′

n,k(1) = k1, ..,K
′
n,k(p) = kp;Πn,k = p

) =
(

n

p

)(
k

k1..kp

)E(
∏p

q=1{Kn,n(q)}kq )

{n}k

=
(
n

p

)
(
n

k

) E
p∏

q=1

(
Kn,n(q)

kq

)
.

Summing over (k1, . . . , kp) ∈N
p

P(Πn,k = p) =
(
n

p

)

{n}k

∑

kp∈Np :|kp |=k

(
k

k1 . . . kp

)
E

(
p∏

q=1

{
Kn,n(q)

}
kq

)

is the probability that in a k-subsampling without replacement from Kn,n exactly p ≤ k ≤ n

boxes will be filled. Using (14), with kp := (k1, . . . , kp) ∈ N
p a vector of positive integers
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satisfying |kp| := ∑p

q=1 kq = k, we have

E

[
p∏

q=1

{
Kn,n(q)

}
kq

]
=

∑
lp∈Np

0

∏p

q=1 σkq+lq (θ)/ lq !
σn(nθ)/n! ,

and the full expression of the probabilities P(Πn,k = p) can be obtained in terms of the
original weights wk(θ) = σk(θ)/k!.

These questions arise in the discrete theory of compound-Poisson coalescent processes.
Suppose Kn,n is the random exchangeable reproduction law of some Markov branching
process preserving the total number n of individuals over the subsequent generations, [31].
That is, independently in each generation, individual number m produces Kn,n(m) offspring,
m = 1, . . . , n and

∑n

m=1 Kn,n(m) = n.
We first wish to count, forward in time, the number of descendants of any size-m sub-

sample of the full population with size n, defining thereby a discrete-time Markov chain.
Clearly, the (m, l) entry of the transition matrix of this Markov process on the state-space
{0, . . . , n} is

P
(
Kn,n(1) + · · · + Kn,n(m) = l

) =
(

n

l

)
σl(mθ)σn−l ((n − m)θ)

σn(nθ)
, m, l ∈ {0, . . . , n},

looking at the descent of all size-m subsamples. For this Markov chain, clearly, the states
{0, n} are both absorbing.

Looking now at this branching process backward in time, individuals are seen to merge,
giving rise to some ancestral coalescent process where individuals are identified if they
share a common ancestor one generation backward in time. The process stops when a single
individual is present (at time to their most recent common ancestor).

The quantity P(K ′
n,k(1) = k1, . . . ,K

′
n,k(p) = kp;Πn,k = p) is then the probability that a

one-step back (k1, . . . , kp) to p merger for a subsample of size k occurs in this ancestral
process. The lower-triangular stochastic matrix Q(n)

k,p := P(Πn,k = p) is the transition matrix
of this pure death coalescent Markov process on {0, . . . , n}, with both states {0,1} absorbing.
The forward and backward Markov processes are easily seen to be duals in the sense and for
the duality kernel defined in [39].

Number of Filled Boxes in Kn,k With I(·) denoting the indicator function, let now
Pn,k := ∑n

m=1 I(Kn,k(m) > 0) count the number of non empty boxes in the sampling process
from ξn. With 1 ≤ p ≤ n∧ k, the probability that there are only Pn,k = p ∈ [n] visited boxes
in the sampling process, the n − p remaining ones remaining empty, is easily obtained as
follows: In the event Pn,k = p, for any fixed subset (m1, . . . ,mp) of p different box numbers
and each kp = (k1, . . . , kp) in N

p summing to k, we have from (12)

P
((

Kn,k(mq) = kq, q = 1 . . . , p
);Pn,k = p

) = k!
σk(nθ)

p∏

q=1

σkq (θ)

kq ! .

The above probability is independent of the
(
n

p

)
different subsets (m1, . . . ,mp). Denote by

{L1, ..,Lp} the random subset of indexes of the occupied p boxes in the event Pn,k = p.
From the above argument, we get

P
({

Kn,k(Lq), q = 1, . . . , p
} = {kq, q = 1, . . . , p};Pn,k = p

) =
(

n

p

)
k!

σk(nθ)

p∏

q=1

σkq (θ)

kq ! ,
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where {Kn,k(Lq), q = 1, . . . , p} = {kq, q = 1, . . . , p} is an equality of multisets (the multi-
sets are needed to keep in mind the repetitions that could exist in kq , q = 1, ..,p). Letting
K̂n,k(q) := Kn,k(Lq), q = 1, ..,p, the last equality will simply be written as

P
(
K̂n,k(1) = k1, . . . , K̂n,k(p) = kp;Pn,k = p

) =
(

n

p

)
k!

σk(nθ)

p∏

q=1

σkq (θ)

kq ! . (15)

This is the probability that there are p ∈ [n] non-empty boxes labeled in arbitrary way and
that (k1, . . . , kp) are their respective occupancies. Note that

P (n)
k,p := P(Pn,k = p) =

(
n

p

)
k!

σk(nθ)

∑

kp∈Np : |kp |=k

p∏

q=1

σkq (θ)

kq !

is the probability that in a k-sample from n species with abundance ξn, the exact number
of distinct observed species is p. In particular, P (n)

k,1 := n
σk(θ)

σk(nθ)
is the probability that in this

k-sample, only one species is discovered (whichever it is).
The lower-triangular stochastic matrix with (k,p) entries P (n)

k,p := P(Pn,k = p) is the
transition matrix of some other pure death Markov process on {0, . . . , n} which does not
coincide in general with the coalescent transition matrix Q(n)

k,p defined in the latter paragraph
(in fact both transition matrices match iff ξ is negative binomial distributed, see [32]).

The expression (15) turns out to be the canonical Gibbs distribution on finite size-n par-
titions of k into p distinct clusters (the filled boxes), derived from the weight sequence φ•.
In this language, the normalizing quantity σk(nθ)/k! is called the canonical Gibbs partition
function.

Now, from (15), with {n}p := n!/(n − p)!

P(Pn,k = p) = {n}p

σk(nθ)
Bk,p

(
σ•(θ)

)
, p ∈ {1, . . . , n ∧ k}, (16)

where

Bk,p

(
σ•(θ)

) := k!
p!

∑

kp∈Np : |kp |=k

p∏

q=1

σkq (θ)

kq ! = k!
p!

[
xk

](
Zθ(x) − 1

)p
(17)

is now a Bell polynomial in the polynomial variables σ•(θ) := (σ1(θ), σ2(θ), . . .).
Conditioning the canonical Gibbs distribution on the number of filled cells being equal

to p yields the corresponding micro-canonical distribution as

P
(
K̂n,k(1) = k1, . . . , K̂n,k(p) = kp | Pn,k = p

)

= k!
p!

1

Bk,p(σ•(θ))

p∏

q=1

σkq (θ)

kq ! .

The new normalizing constant Bk,p(σ•(θ))/k! may be called the microcanonical partition
function.

The microcanonical distribution is independent of n. So, for all models studied here, Pn,k

is a sufficient statistic in the estimation of n problem from occupancy data (assuming θ

known).
Let us now give some additional details on the distribution of Pn,k .
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Proposition 1

(a) Assume k ≥ n. The probability generating function of Pn,k is given by

E
(
uPn,k

) =
n−1∑

p=0

(
n

p

)
un−p(1 − u)p σk((n − p)θ)

σk(nθ)
, (18)

with:

P(Pn,k = p) =
(

n

p

) p∑

q=1

(−1)p−q

(
p

q

)
σk(qθ)

σk(nθ)
, p ∈ {1, . . . , n}. (19)

In addition,

E(Pn,k) = n

(
1 − σk((n − 1)θ)

σk(nθ)

)

Var(Pn,k) = n

(
σk((n − 1)θ)

σk(nθ)
+ (n − 1)

σk((n − 2)θ)

σk(nθ)
− n

(
σk((n − 1)θ)

σk(nθ)

)2)
.

(b) If k < n, (18) and (19) still hold, but now with a modified support for Pn,k’s law:

P(Pn,k = p) =
(

n

p

) p∑

q=1

(−1)p−q

(
p

q

)
σk(qθ)

σk(nθ)
, p ∈ {1, . . . , k}. (20)

Proof

(a) This follows from Bk,p(σ•(θ)) = k!
p! [xk](Zθ (x) − 1)p . Indeed, from (16)

E
(
uPn,k

) =
n∑

p=0

up{n}p

Bk,p(σ•(θ))

σk(nθ)
= k!

σk(nθ)

n∑

p=0

(
n

p

)[
xk

](
u
(
Zθ(x) − 1

))p

= k!
σk(nθ)

[
xk

](
1 − u + uZθ(x)

)n

= k!
σk(nθ)

n∑

p=0

(
n

p

)
un−p(1 − u)p

[
xk

]
Zθ(x)n−p

=
n−1∑

p=0

(
n

p

)
un−p(1 − u)p σk((n − p)θ)

σk(nθ)
.

The alternating sum expression of P(Pn,k = p) follows from extracting [up]E(uPn,k ) and
the mean and variance of Pn,k from the evaluations of the first and second derivatives of
E(uPn,k ) with respect to u at u = 1.

(b) Follows from similar considerations. Indeed, in principle, we should start with E(uPn,k )

= ∑k

p=0 up{n}p
Bk,p(σ•(θ))

σk(nθ)
where the p-sum now stops at p = k = k ∧ n. But the upper

bound of this p-sum can be extended to n because Bk,p(σ•(θ)) = 0 if p > k. �

In the particular case discussed below when σk(θ) = θ(θ + 1) · · · (θ + k − 1) (Ewens-
Dirichlet model), these results can be found in [33].
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In (16), the new combinatorial coefficients Bk,p(σ•(θ)) come into the game. They are
given by

Corollary 2 With Sl,p the second kind Stirling numbers,

Bk,p

(
σ•(θ)

) =
k∑

l=p

Bk,l(φ•)Sl,pθ l = θp ·
k−p∑

l=0

Bk,p+l (φ•)Sl+p,pθ l,

showing that Bk,p(σ•(θ)) is itself a polynomial in θ with larger (smaller) degree k (respec-
tively p).

Proof From (16) and (19), we have2

Bk,p

(
σ•(θ)

) = 1

p!
p∑

q=1

(−1)p−q

(
p

q

)
σk(qθ).

Recalling σk(θ) = ∑k

l=1 θ lBk,l(φ•) and observing Sl,p = ∑p

q=1(−1)p−q
(
p

q

)
ql gives the result

after reversing the sums. This result actually is in accordance with the Faa di Bruno formula
(see [10]) giving the Taylor coefficients of the composition function g of the two analytic
functions g(x) := eλ,θ ◦ φ(x) where eλ,θ (x) := eλ(eθx−1) as

Sk(λ) =
k∑

l=1

el(θ, λ)Bk,l(φ•),

with el(θ, λ) = θ l
∑l

p=1 λpSl,p the lth Taylor coefficient of eλ,θ (x). Clearly indeed,

g(x) = eλ(Zθ (x)−1) = 1 +
∑

k≥1

xk

k! Sk(λ) =: 1 +
∑

k≥1

xk

k!

(
k∑

p=1

λpBk,p

(
σ•(θ)

)
)

and the λp-coefficient of Sk(λ) is exactly
∑k

l=p Bk,l(φ•)Sl,pθ l . �

2.4 The Estimation of n Problem

Let us now discuss the important question of estimating the unknown number of species
n based on the data k and P (assuming θ is known), recalling P(Pn,k = P ) is a sufficient
statistic in this estimation problem. Our forthcoming statement holds for a class of φ which
is such that the degree-k polynomial σk(θ) ∈ ZR− (has only real non-positive zeroes). We
recall that σk(θ) ∈ ZR− iff the matrix M with entries Mi,j = Bk,i−j (φ•), i, j = 0, . . . , k,
with Bk,l(φ•) = 0 if l /∈ {l : Bk,l(φ•) > 0} is totally positive of order k (with l = 1, . . . , k,
each l × l minor of M has a nonnegative determinant), [49]. Therefore, there is no simple
way to check whether or not σk(θ) ∈ ZR−.

We also recall here, [49], that if and only if the matrix M = Mi,j would be such that all its
2 × 2 minors have a nonnegative determinant, then the sequence Bk,l(φ•), l = 1, . . . , k (with
no internal zeros) is l-log-concave (the l-sequence Bk,l(φ•) is a Pòlya frequency sequence
of order 2). If this is the case, we shall say σk(θ) ∈ PF2.

2This identity was derived in a different way in [53].
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Proposition 3 Suppose σk(θ) ∈ ZR−. Then the log-likelihood log P(Pn,k = P ) attains its
maximum in n at least once and at most twice in which latter case, the two values are
adjacent integers. This leads to the maximum likelihood estimator n̂ of n characterized by:

n̂ = sup

{
n > 0 : P(Pn,k = P )

P(Pn−1,k = P )
> 1

}
.

When the set of integers {n > 0 : P(Pn,k=P)

P(Pn−1,k=P)
> 1} is empty, n̂ = P .

When this is not the case and for large n, an approximation of the estimator n̂ of n is
given by the implicit equation

P = n̂

(
1 − σk((̂n − 1)θ)

σk(̂nθ)

)
.

Proof We extend (16) to n a real variable, so we can differentiate log P(Pn,k = P ) with
respect to n > P . In this domain, we have ∂n log{n}P = ∑P−1

q=0
1

n−q
, and so we get

∂n log P(Pn,k = P ) =
P−1∑

q=0

1

n − q
− ∂n logσk(nθ).

Suppose the polynomial σk(θ) ∈ ZR− has zeroes −rl,k where: 0 = r1,k ≤ · · · ≤ rk,k .
Then σk(nθ) = ∏k

l=1(nθ + rl,k) and ∂n logσk(nθ) = ∑k

l=1(n + rl,k/θ)−1, together with
∂2

n logσk(nθ) = −∑k

l=1(n + rl,k/θ)−2 < 0.

If
∑P−1

q=0
1

n−q
− ∑k

l=1(n + rl,k/θ)−1 (∗)= 0 , then

∂2
n log P(Pn,k = P ) = −

P−1∑

q=0

1

(n − q)2
+

k∑

l=1

(n + rl,k/θ)−2 < 0,

showing that the likelihood is log-concave around the critical points. Hence, if n̂ solves (∗)

it is a local maximum and there is no local minimum. The maximum likelihood estimator of
real n is thus unique.

Coming back to n integer, we deduce that the maximum likelihood estimator of n is
the integer sup{n > 0 : P(Pn,k=P)

P(Pn−1,k=P)
> 1}. When n is large, it may thus be approximated by

P(Pn̂,k=P)

P(Pn̂−1,k=P)
= 1, leading to

{̂n}P σk((̂n − 1)θ)

{̂n − 1}P σk(̂nθ)
= 1 or P = n̂

(
1 − σk((̂n − 1)θ)

σk(̂nθ)

)
. �

An Alternative Estimator Let us now come to an alternative estimator of n (see [33]
for a similar approach in the particular context of the Dirichlet model given by φ(x) =
−α log(1 − x)). Suppose that for all θ > 0 and k ≥ 1, Bk,p(σ•(θ)) is a log-concave
p-sequence (equivalently, each degree-k λ-polynomial Sk(λ) ∈ PF2). Then, by Darroch
Theorem [12], Bk,p(σ•(θ)) is p-unimodal or bimodal at two consecutive p. Because the
p-sequence {n}p is also log-concave, {n}pBk,p(σ•(θ)) is itself p-log-concave. For each n

therefore, there is a unique p̃ defined as p̃ = sup{p > 0 : P(Pn,k=p)

P(Pn,k=p−1)
> 1}. Inverting the

map n → p̃(n), given p = P , there exists a unique ñ, approximately characterized by
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P(Pñ,k=P−1)

P(Pñ,k=P)
= 1, which can serve as an alternative estimator of n given the data (k,P ). From

(16), it is thus given by

ñ = P + Bk,P−1(σ•(θ))

Bk,P (σ•(θ))
.

If k ≥ n, taking the expectation with respect to Pn,k , from (19), we have

E(̃n) = E(Pn,k) +
n∑

p=1

Bk,p−1(σ•(θ))

Bk,p(σ•(θ))

{n}p

σk(nθ)
Bk,p

(
σ•(θ)

)

= E(Pn,k) +
n∑

p=2

{n}pBk,p−1(φ•)
σk(nθ)

= E(Pn,k) +
n∑

p=2

(
n − (p − 1)

) {n}p−1Bk,p−1(φ•)
σk(nθ)

= E(Pn,k) + n

(
1 − {n}nBk,n(φ•)

σk(nθ)

)
−

(
E(Pn,k) − n

{n}nBk,n(φ•)
σk(nθ)

)
= n.

So, when k ≥ n, ñ is an unbiased estimator of n. The Fisher information of n is

I (n) = −E
(
∂2

n log P(Pn,k = P )
) = E

(
P−1∑

q=0

1

(n − q)2

)
−

k∑

l=1

(n + rl,k/θ)−2 > 0,

giving the Cramér-Rao bound for the variance: Var(̃n) ≥ I (n)−1.

2.5 Frequency of Frequencies

This suggests to look at the frequency of frequencies distribution problem. For i = 0, . . . , k,
let now

An,k(i) =
n∑

m=1

I
(
Kn,k(m) = i

)
(21)

count the number of boxes visited i times by the k-sample, with An,k(0) = n − Pn,k , the
number of empty boxes.

Let (a1, a2, . . .) be non-negative integers satisfying
∑

i≥1 ai = p and
∑

i≥1 iai = k.
It follows from (12) that

P
(
An,k(1) = a1,An,k(2) = a2, . . .

) = {n}p · k!
σk(nθ)

∏

i≥1

{(
σi(θ)

i!
)ai 1

ai !
}
. (22)

Taking An,k(0) into account, let (a0, a1, . . . , ak) be non-negative integers satisfying∑k

i=0 ai = n and
∑k

i=1 iai = k. Then

P
(
An,k(0) = a0,An,k(1) = a1, . . . ,An,k(k) = ak

) = n! · k!
σk(nθ)

k∏

i=0

{(
σi(θ)

i!
)ai 1

ai !
}
.

Note from this that, with
∑k

i=1 iai = k and
∑k

1 ai ≤ n, the normalization condition gives the
identity

∑

a1,...,ak

k!
(n − ∑k

1 ai)!
k∏

i=1

{(
σi(θ)

i!
)ai 1

ai !
}

= σk(nθ)

n! . (23)
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From this, we get (see also [45] Sect. 1.5):

Proposition 4 If p = n − a0, the joint distribution of (An,k(1), . . . ,An,k(k)) and Pn,k reads

P
(
An,k(1) = a1, . . . ,An,k(k) = ak;Pn,k = p

) = {n}p · k!
σk(nθ)

k∏

i=1

{(
σi(θ)

i!
)ai 1

ai !
}
. (24)

Let us compute the falling factorial moments of An,k(i), i = 1, . . . , k.

Proposition 5 Let ri , i = 1, . . . , k be non-negative integers satisfying
∑k

1 ri = r ≤ n and∑k

1 iri = κ ≤ k. We have

E

[
k∏

i=1

{
An,k(i)

}
ri

]
= {n}r{k}κ

σk−κ ((n − r)θ)

σk(nθ)

k∏

i=1

(
σi(θ)

i!
)ri

. (25)

Proof

E

[
k∏

i=1

{
An,k(i)

}
ri

]

= n! · k!
σk(nθ)

∑

a1,...,ak

1

(n − ∑k

1 ai)!
k∏

i=1

{(
σi(θ)

i!
)ai 1

(ai − ri)!
}

= n! · k!
σk(nθ)

k∏

i=1

(
σi(θ)

i!
)ri ∑

a1,...,ak

1

(n − ∑k

1 ai)!
k∏

i=1

{(
σi(θ)

i!
)ai−ri 1

(ai − ri)!
}
.

The normalization condition (23) gives:

∑

a1,...,ak

1

(n − ∑k

1 ai)!
k∏

i=1

{(
σi(θ)

i!
)ai−ri 1

(ai − ri)!
}

= σk−κ ((n − r)θ)

(n − r)! · (k − κ)! .

Finally, we get

E

[
k∏

i=1

{
An,k(i)

}
ri

]
= {n}r{k}κ

σk−κ ((n − r)θ)

σk(nθ)

k∏

i=1

(
σi(θ)

i!
)ri

.
�

In particular, if all ri = 0, except for one i for which ri = 1 (r = 1, κ = i), then

E
[
An,k(i)

] = n{k}i

σk−i ((n − 1)θ)

σk(nθ)

σi(θ)

i! = nP
(
Kn,k(1) = i

)
. (26)

This shows that the expected number of cells visited i times is n times the probability that
there are i visits to (say) cell one. In fact, we have the more general statement (see also [45]
Sect. 1.5):
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Corollary 6 If ri = #{m ∈ {1, . . . , n} : km = i}, then

E

[
k∏

i=1

{
An,k(i)

}
ri

]
= n!P(

Kn,k(1) = k1, . . . ,Kn,k(n) = kn

)
,

so that the joint falling factorial moments of the A’s can directly be obtained in terms of the
joint distribution of the K’s.

Proof With the ri as stated, using a sampling without replacement argument

P
(
Kn,k(1) = k1, . . . ,Kn,k(n) = kn | An,k(1), . . . ,An,k(k)

)

= 1

n!
k∏

i=1

{
An,k(i)

}
ri
.

Averaging over the A’s gives the announced result. �

2.6 The ∗-Limit of Sampling Distributions (the Infinitely Many Species Abundance
Model)

Theoretical biologists work in a framework of a population with infinitely many species,
with the more frequent one occurring with abundance ξ(1), second more frequent with abun-
dance ξ(2), . . . with ξ(1) ≥ ξ(2) ≥ · · · . Sampling from (ξ(1), ξ(2), . . .) turns out to be a chal-
lenging problem. This requires the introduction of a model with infinitely many species (not
only n) with ordered abundance ξ(m), m ≥ 1. For such abundance models, a k-sample will
represent the met individuals of various species when sampling from a population with in-
finitely many species, [8]. One can think of obtaining such models while considering the
limit n → ∞ and θ → 0 in the finite model with n species. Indeed, as we saw, small val-
ues of the temperature θ > 0 was an indication on how disparate the abundance numbers
ξn were. Then, although (as a result of P(ξ1 = 0) = σ0(θ)/Zθ (x) →

θ→0
1) the (ξm)n

m=1 are all

small in the limit, there is some hope that sampling from the ranked ξ(m)’s would have a
non-degenerate limit as n → ∞, θ → 0 while nθ → γ > 0. We call such a limit the ∗-limit.

It turns out that for the class of Gibbs-Poisson allocation models considered in this Sec-
tion, the ∗-limit always makes sense. This illustrates that limiting models should come down
from some finitary counterpart, [22]. We first verify our claim intuitively (see also [45],
Sect. 1.5). Observing indeed that

σk(θ) ∼θ↓0 θBk,1(φ•) = θφk and Bk,p

(
σ•(θ)

) ∼θ↓0 θpBk,p(φ•)

and recalling {n}p ∼n→∞ np , we easily get:

Proposition 7 From (15), with (k1, . . . , kp) ∈N
p summing to k and p ≤ k

P
(
K̂n,k(1) = k1, . . . , K̂n,k(p) = kp;Pn,k = p

)

→∗ P∗(K̂k(1) = k1, . . . , K̂k(p) = kp;Pk = p
) = k!

p!
γ p

σk(γ )

p∏

q=1

φkq

kq ! (27)
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and, from (16), (17)

P(Pn,k = p) →∗ P∗(Pk = p) = γ p

σk(γ )
Bk,p(φ•). (28)

Equivalently, the limiting probability generating function of Pk also reads

E∗(uPk
) = σk(γ u)

σk(γ )
, (29)

with mean E∗(Pk) = γ
σ ′
k
(γ )

σk(γ )
. From this,

P∗(K̂k(1) = k1, . . . , K̂k(p) = kp | Pk = p
) = k!

p!
1

Bk,p(φ•)

p∏

q=1

φkq

kq ! (30)

which is independent of γ .
Further, from (22), with (a1, a2, . . .) satisfying

∑
i≥1 iai = k and

∑
i≥1 ai = p

P
(
An,k(1) = a1,An,k(2) = a2, . . .

)

→∗ P∗(Ak(1) = a1,Ak(2) = a2, . . .
) = γ pk!

σk(γ )

k∏

i=1

(φi/i!)ai

ai ! . (31)

Equivalently, from (24)

P
(
An,k(1) = a1, . . . ,An,k(k) = ak;Pn,k = p

)

→∗ P∗(Ak(1) = a1, . . . ,Ak(k) = ak;Pk = p
) = γ pk!

σk(γ )

k∏

i=1

(φi/i!)ai

ai ! (32)

and

P∗(Ak(1) = a1, . . . ,Ak(k) = ak | Pk = p
) = k!

Bk,p(φ•)

k∏

i=1

(φi/i!)ai

ai ! , (33)

which is also independent of γ .

Equations (27) or (32) are the canonical Gibbs distributions on partitions of k into p dis-
tinct clusters, derived from the weight sequence φ•. In this context, the normalizing quantity
σk(γ )/k! is called the canonical Gibbs partition polynomial.3 Conditioning the canonical
Gibbs distribution on the number of filled boxes being equal to p yields the correspond-
ing micro-canonical distributions (30) or (33). The new normalizing constant Bk,p(φ•)/k! is
called the microcanonical partition function.

Let us finally compute the falling factorial moments of Ak(i), i = 1, . . . , k.

3The occupancy distribution (32) also appears in Ecology in a species abundance model occurring in the
Hubbell’s unified neutral theory of biodiversity. In this context, γ is the fundamental biodiversity number,
[29].
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Proposition 8 Let ri , i = 1, . . . , k be non-negative integers satisfying
∑k

1 ri = r and∑k

1 iri = κ ≤ k. We have

E∗
[

k∏

i=1

{
Ak(i)

}
ri

]
= γ r{k}κ

σk−κ (γ )

σk(γ )

k∏

i=1

(
φi

i!
)ri

. (34)

Proof This follows straightforwardly from Proposition 5 while taking the ∗-limit and using
σi(θ) ∼ θφi for small θ . This formula is a generalization of the Watterson expression [52]
obtained in the special Ewens context when φ(x) = − log(1 − x), with φi = (i − 1)! and
σk(γ ) = Γ (γ + k)/Γ (γ ) =: (γ )k ; see Sect. 3 for a special account on this model. From
(34), we easily get a closed-form expression for the mean E∗(Ak(i)), i ≤ k, the variance
Var∗2(Ak(i)), for all i with 2i ≤ k and the covariance Cov∗(Ak(i1),Ak(i2)) for all i1 �= i2,
i1 + i2 ≤ k. �

We observed that (30) or (33) were independent of γ , meaning that Pk is a sufficient
statistic in the estimation of γ problem. Let us now briefly investigate this problem.

2.7 The Estimation of γ Problem

We wish now to discuss the question of estimating γ from the data k and P . From (28)

∂γ log P∗(Pk = P ) = P/γ − ∂γ logσk(γ ).

Suppose the polynomial σk(γ ) ∈ ZR− with zeroes −rl,k where: 0 = r1,k ≤ · · · ≤ rk,k . Then
σk(γ ) = ∏k

l=1(γ + rl,k) and ∂γ logσk(γ ) = ∑k

l=1(γ + rl,k)
−1, together with ∂2

γ logσk(γ ) =
−∑k

l=1(γ + rl,k)
−2 < 0 (γ → σk(γ ) is log-concave).

If P/γ − ∑k

l=1(γ + rl,k)
−1 (∗)= 0 , then

∂2
γ log P∗(Pk = P ) = −P/γ 2 +

k∑

l=1

(γ + rl,k)
−2 < 0,

showing that γ̂ solving (∗) is a local maximum and that log P∗(Pk = P ) has no local min-
ima. So γ̂ is the maximum likelihood estimator of γ . Even though σk(γ ) (1/σk(γ )) is a
log-concave (respectively log-convex) function of γ , the log-likelihood is a log-concave
function of γ leading to the existence of γ̂ . To summarize, there exists a maximum likeli-
hood estimator γ̂ of γ which is characterized by the implicit equation:

P = γ̂
σ ′

k(γ̂ )

σk(γ̂ )
.

Let us now come to another estimator of γ . If σk(γ ) ∈ ZR−, then by Newton’s inequality
([24], p. 52)

Bk,p(φ•)2 ≥ Bk,p−1(φ•)Bk,p+1(φ•)
(

1 + 1

p

)(
1 + 1

k − p

)
> Bk,p−1(φ•)Bk,p+1(φ•).

So Bk,p(φ•) is p-log-concave and by Darroch Theorem, Bk,p(φ•) is p-unimodal or bimodal
at two consecutive p, with mode (maybe up to one unit) equal to σ ′

k(1)/σk(1). Because the
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p-sequence γ p is also log-concave (and log-convex), γ pBk,p(φ•) is itself p-log-concave
and therefore there exists a unique γ̃ such that P∗(Pk=P)

P∗(Pk=P−1)
= 1. It is thus defined by

γ pBk,P (φ•)
γ p−1Bk,P−1(φ•)

= 1, or γ̃ = Bk,P−1(φ•)
Bk,P (φ•)

.

This γ̃ is an alternative explicit estimator of γ based on the data k and P .
Taking the expectation with respect to Pk , we have

E∗(γ̃ ) =
k∑

p=1

Bk,p−1(φ•)
Bk,p(φ•)

γ p

σk(γ )
Bk,p(φ•) = γ

k∑

p=2

Bk,p−1(φ•)
γ p−1

σk(γ )

= γ

k−1∑

p=1

Bk,p(φ•)
γ p

σk(γ )
= γ

(
1 − (φ1γ )k

σk(γ )

)
< γ.

This shows that γ̃ is not an unbiased estimator of γ .

Remark The estimator γ̃ only requires that the sequence Bk,p(φ•) be p-log-concave and,
although sufficient, it is therefore not necessary that σk(γ ) ∈ ZR−; the sequence Bk,p(φ•)
only needs to be a Pòlya frequency sequence of order 2 (so σk(γ ) ∈ PF2) for γ̃ to be well-
defined. In this spirit, we draw the attention on a result in [2], stating that if the non-null roots
of σk(γ ) all lie in the angular cone φ ∈ (2π/3,4π/3) of the complex plane, then σk(γ ) has
p-log-concave coefficients. See [47] for a bulk of work pertaining to the diversity estimation
parameter for Gibbs partitions.

3 Sampling from Dirichlet Partition: A Special Case

We now briefly investigate one particular model of species abundance ξn.

• Sampling from a negative binomial sample.

Assume φ(x) = − log(1 − x), with φm = (m − 1)! and let Zθ(x) = (1 − x)−θ . Thus,
with (θ)k := θ(θ + 1) · · · (θ + k − 1) denoting the (rising factorial) Pochhammer symbol,
σk(θ) = (θ)k and ξ is a negative binomial random variable with parameters θ and 1 − x.
Note that σk(θ) ∈ ZR−. From (11), the jumps’ height δ of ξ is seen to obey a logarithmic
series distribution.

When sampling from this discrete species-abundance model ξn = (ξ1, . . . , ξn), for in-
stance (12) takes the particular form:

P(Kn,k = kn) = P(ξ1 = k1, . . . , ξn = kn)

P(ζn = k)
= k!

(nθ)k

n∏

m=1

(θ)km

km! . (35)

Substituting (θ)k to σk(θ) in (15) gives its particular expression.
Because σk+1(θ) = (k + θ)σk(θ), it follows from (3) and (4) that with Sk(λ) =

k![xk]eλ((1−x)−θ −1), Sk+1(λ) = (θλ + k)Sk(λ) + θλS ′
k(λ). Thus, the Bell coefficients

Bk,p(σ•(θ)) = Bk,p((θ)•) = [λp]Sk(λ), appearing in (16), obey a simple 3-term recurrence
[14, 30]

Bk+1,p

(
(θ)•

) = θBk,p−1
(
(θ)•

) + (pθ + k)Bk,p

(
(θ)•

)
,



782 T. Huillet, S. Martínez

which should be considered with the boundary conditions

Bk,0

(
(θ)•

) = B0,p

(
(θ)•

) = 0,

except for B0,0((θ)•) := 1. This observation is important because it follows from (16), that,
there exist transition probabilities

P(Pn,k+1 = p + 1 | Pn,k = p) = (n − p)θ

nθ + k
and

P(Pn,k+1 = p | Pn,k = p) =
∑p

r=1(θ + kr)

nθ + k
= pθ + k

nθ + k

such that,

P(Pn,k+1 = p) = (n − p + 1)θ

nθ + k
P(Pn,k = p − 1) + pθ + k

nθ + k
P(Pn,k = p).

The first transition probability gives the probability of the event that a new species is dis-
covered given p < n of them were discovered from a previous sample of size k ≥ p (the
so-called law of succession, [17, 19]) in a population with n species. Note that Pn,k is a
Markov chain in k.

Considering the sampling formulae in the ∗-limit, the expressions (30) and (33) with
φi = (i − 1)! and Bk,p(φ•) = sk,p (the absolute first kind Stirling numbers) are the Ewens
sampling formulae [18]. Due to σk+1(θ) = (k + θ)σk(θ), the Bell coefficients Bk,p(φ•) =
Bk,p((• − 1)!) also obey a 3-term recurrence

Bk+1,p

(
(• − 1)!) = Bk,p−1

(
(• − 1)!) + kBk,p

(
(• − 1)!).

• Sampling from a symmetric Dirichlet prior.

It turns out that this sampling formula can be obtained while following a different path for
the sampling procedure:

Consider indeed the following random partition into n fragments of the unit inter-
val. Let θ > 0 be some parameter and assume that the random fragments sizes Sn(θ) :=
(S1,θ , . . . , Sn,θ ) (with

∑n

m=1 Sm,θ = 1) are distributed according to the (exchangeable)
Dirichlet Dn(θ) density function on the n-simplex, that is to say

fS1,θ ,...,Sn,θ
(s1, . . . , sn) = Γ (nθ)

Γ (θ)n

n∏

m=1

sθ−1
m · δ(

∑n
m=1 sm=1). (36)

Alternatively, with (θ)q := Γ (θ + q)/Γ (θ), the law of Sn(θ) is characterized by its joint
moment function

E

(
n∏

m=1

S
qm

m,θ

)
= 1

(nθ)∑n
m=1 qm

n∏

m=1

(θ)qm . (37)

We shall put Sn(θ)
d∼ Dn(θ) if Sn(θ) is Dirichlet distributed with parameter θ . Sn(θ) can be

obtained while considering (Yθ
d= Y1,θ , . . . , Yn,θ ), an iid random vector with Yθ

d∼ gamma(θ)

and letting Sm,θ = Ym,θ/(Y1,θ + · · · + Yn,θ ), m = 1, . . . , n (normalizing the Ym,θ ’s by their
sum). Sn(θ) accounts now for a n-species frequency (proportion) model, but now in the
continuum. We now come to the sampling procedure from Sn(θ).
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Let (U1, . . . ,Uk) be k iid uniform throws on the unit interval partitioned according to
Sn(θ). Let

Kn,k := (
Kn,k(1), . . . ,Kn,k(n)

)

be an integral-valued random vector which counts the number of visits to the different frag-
ments of Sn(θ) in this k-sample. Hence, if Ml is the random fragment label in which the lth
trial Ul falls, Kn,k(m) := ∑k

l=1 I(Ml = m), m = 1, . . . , n.
With |kn| = k and kn := (k1, . . . , kn) ∈ N

n
0 the non-negative occupancy vector, as sam-

pling in terms of uniforms Ul is equivalent to the multinomial, Kn,k follows the conditional
multinomial distribution:

P
(
Kn,k = kn | Sn(θ)

) = k!∏n

m=1 km!
n∏

m=1

S
km
m,θ . (38)

Averaging over Sn(θ), we find

P(Kn,k = kn) = EP
(
Kn,k = kn | Sn(θ)

) = k!
(nθ)k

n∏

m=1

(θ)km

km! , (39)

which is the Dirichlet-multinomial distribution, with E(Kn,k(m)) = k/n. We shall put

Kn,k

d∼ Dn,k(θ).

The sampling from Sn(θ)
d∼ Dn(θ) formula (39) coincides with the one (35) obtained

while sampling from a discrete species abundance model ξn with negative binomial distri-
butions. The ∗-limit of this Dirichlet model is known to lead to the Ewens sampling formulae
which are particular incarnation of (30) and (33) with φi = (i − 1)! and Bk,p(φ•) = sk,p . See
[35] and [36].

It is worthwhile exploring if this remarkable property (or maybe a weaker one) propa-
gates to sampling from other discrete species abundance model.

4 Sampling Problems from a Special CP Class

We shall now exhibit a sub-class of CP models whose statistical properties are very similar
to the ones developed in the latter Section for the Dirichlet model.

4.1 Sampling from a Special CP Class

Let us first define the class of φ we will be interested in.

The Special Class S We first recall that a function h(x) defined on some interval x ∈
(−∞, x0) is absolutely monotone on some open interval I ⊆ (−∞, x0) if it is C∞ with
h(n)(x) ≥ 0 for all n ≥ 0 and x ∈ I .

We shall consider the following special class model

Definition 1 Suppose that φ(x) (with φ1 > 0 and φm ≥ 0, m ≥ 2) as from (1), is defined
(finite) on the unbounded half-domain x ∈ (−∞, x0) with 0 < x0 ≤ ∞ and that φ′(x) is
absolutely monotone for all x ∈ (−∞, x0). If this is the case, we shall put φ ∈ S . If φ ∈ S ,
Zθ(x) = exp(θφ(x)) is also defined on x ∈ (−∞, x0) and absolutely monotone there.
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• Examples of φ ∈ S are x, ex − 1 (Bell), − log(1 − x), (1 − x)−α − 1, α > 0 and
1 − (1 − x)α , α ∈ (0,1).

• Examples of φ /∈ S are polynomials with positive coefficients
∑d

l=1 clx
l (d ≥ 2), xex ,

sinh(x), cosh(x) − 1 and tan(x). Although the latter φ’s can be expanded as in (1) and
all have non-negative Taylor coefficients φm (φ1 > 0), the corresponding φ′(x) are not
absolutely monotone on (−∞, x0) although they are of course on (0, x0).

Remarks and properties:

– If φ ∈ S , so does clearly φ̃(x) := aφ(bx) for all a, b > 0. We can check that: Bk,p(φ̃•) =
apbkBk,p(φ•).

– If φ1, φ2 ∈ S , then φ1 + φ2 ∈ S and the composition φ1 ◦ φ2 ∈ S . This allows to produce
a lot of new examples of φ’s in S from the ones already introduced. For instance because
φ1 = (1 − x)−α − 1 and φ2 = 1 − (1 − x)α both belong to S , would α ∈ (0,1), φ1 +
φ2 = 2 sinh(−α log(1 − x)) belongs to S , together with φ1 ◦ φ2 = (1 − x)−α2 − 1 and
φ2 ◦ φ1 = 1 − (2 − (1 − x)−α)α .

– If φ1, φ2 ∈ S , the product φ := φ1 · φ2 /∈ S (in the first place because φ1 = 0). The Taylor
coefficients φm of φ are

φm =
m−1∑

l=1

(
m

l

)
φ1

l φ
2
m−l = (

φ1 ∗ φ2
)
m
, m ≥ 2

and the φm do not necessarily form a log-convex sequence, even though φ1
m, φ2

m, m ≥ 1,
would be log-convex themselves. This is not in contradiction with the Davenport and
Pòlya theorem [13] stating that the binomial convolution of two log-convex sequences
is log-convex because the φ1, φ2 sequences here have no constant terms: φ1

0 = φ2
0 = 0

(resulting in φ1 = 0). The reason why, when φ(x) ∈ S , log-convexity of the sequences
(φm)m≥1 pops in is (see [4] and [48]):

Proposition 9 When φ ∈ S , the function h(x) := φ′(−x) is completely monotone on
the domain x ∈ (−x0,∞), meaning it is C∞ with (−1)nh(n)(x) ≥ 0 for all n ≥ 0 and
x ∈ (−x0,∞). So (from Bernstein theorem [5]), h(x) is the Laplace-Stieltjes transform
(LST) of some finite non-negative measure μ on [0,+∞): h(x) = ∫ ∞

0 e−xtμ(dt). We have

h(x) =
∑

m≥0

φm+1

m! (−x)m

and so φm+1 is the mth moment of μ, with finite total mass φ1. By the Cauchy-Schwarz
inequality, for all m ≥ 2, φm+1φm−1 ≥ φ2

m, showing that when φ ∈ S , (φm)m≥1 is a log-
convex sequence. Upon shifting, (φm)m≥1 is the moment sequence of some non-negative
measure π(dt) := t−1μ(dt).

Let us now consider Zθ(−x) = eθφ(−x) =: e−θψ(x), with

ψ(x) := −φ(−x), x > −x0.

Proposition 10 When φ ∈ S , it holds that ψ ′(x) = h(x) = ∫ ∞
0 e−xt tπ(dt) is completely

monotone, so Zθ(−x) = e−θψ(x) is the LST of some infinitely divisible random variable (or
subordinator process) Yθ on [0,+∞), whose integral moments are all finite. The coefficients
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(φm)m≥1 are the cumulants of Yθ . The function ψ is the Laplace exponent of Yθ with ψ(x) =
cx + ∫ ∞

0 (1 − e−xt )π(dt) for some c ≥ 0 and some positive Lévy measure π(dt) on (0,∞),
integrating 1 ∧ t [50]. Therefore, when φ ∈ S ,

Zθ(−x) = E
(
e−xYθ

) = e−θψ(x) = 1 +
∑

k≥1

(−x)k

k! σk(θ),

with (σk(θ), k ≥ 0) being the Stieltjes moment sequence of Yθ : σk(θ) = E(Y k
θ ). Thus, when

φ ∈ S , for all θ > 0, (σk(θ))k≥0 forms a k-log-convex sequence and for all k ≥ 1, all θ > 0:
σk+1(θ)σk−1(θ) ≥ σk(θ)2.

Since E(e−xYn,θ ) = e−nθψ(x), σk(nθ) is also the kth moment of the sum Y n,θ := Y1,θ +
· · · + Yn,θ of n iid terms Ym,θ := Ymθ − Y(m−1)θ . So, σk(nθ) = E(Y

k

n,θ ) = E(Y k
nθ ).

Note finally that taking Zθ(x) = Z1
θ (x)Z2

θ (x) where Zi
θ (x) = eθφi (x) for two φi in S , with

σ i
k (θ) defined by Zi

θ (x) = 1 + ∑
k≥1

xk

k! σ
i
k (θ), two k-log-convex sequences, the sequence

σk(θ) defined by Zθ(x) = 1 + ∑
k≥1

xk

k! σk(θ) obeys

σk(θ) =
k∑

l=0

(
k

l

)
σ 1

l (θ)σ 2
k−l (θ) = (

σ 1(θ) ∗ σ 2(θ)
)
k
, k ≥ 0,

and is k-log-convex by Davenport and Pòlya theorem, as a binomial convolution of two
log-convex sequences.

Sampling from ξn when φ ∈ S Assume φ ∈ S and consider the sampling problem from ξn,
where ξ is constructed as in Sect. 2 from φ, but now for φ ∈ S . Note that in this case

E
(
uξ

) = eθ[φ(xu)−φ(x)] = e−θ[ψ(−xu)−ψ(−x)].

In a general sampling problem from ξn, the joint probability generating function of Kn,k was
given by (13). From (12) and making use of φ ∈ S , from Proposition 10, we have

P(Kn,k = kn) = k!
σk(nθ)

n∏

m=1

σkm(θ)

km! =
(

k

k1 . . . kn

)∏n

m=1 E(Y
km
m,θ )

E(Y
k

n,θ )
, (40)

Remark Because (40) does not depend on the common mean of the Ym,θ ’s, we can as well
define the reduced (iid) random variables with mean 1: Xm,θ := Ym,θ/(θφ1), m = 1, . . . , n

and Xn,θ := ∑n

m=1 Xm,θ . Then, with Sm,θ := Xm,θ/Xn,θ , m = 1, . . . , n defining a random
partition Sn(θ) = (S1,θ , . . . , Sn,θ ) of unity into n exchangeable (mean 1/n) parts

P(Kn,k = kn) =
(

k

k1 . . . kn

)∏n

m=1 E(X
km
m,θ )

E(X
k

n,θ )

=
(

k

k1 . . . kn

)∏n

m=1 E(X
km

n,θS
km
m,θ )

E(X
k

n,θ )
=

(
k

k1 . . . kn

)
E(X

k

n,θ

∏n

m=1 S
km
m,θ )

E(X
k

n,θ )
(41)

as well. The latter expression is identified to an occupancy distribution arising from sampling
from the random partition of unity Sn(θ) but now biased by the total length Xn,θ . In the
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occupancy distribution (41) indeed, realizations of (Xm,θ )
n
m=1 giving rise to large values

of the sum Xn,θ are favored, compared to the “unbiased” multinomial one, say Q(Kn,k =
kn) := (

k

k1...kn

)∏n

m=1 E(S
km
m,θ ), based on the same Sn(θ).

Would Xn,θ be independent of Sm,θ = Xm,θ/Xn,θ , m = 1, . . . , n, (the only possible way,
by Lukacs’ criterion, to have this is when Sn(θ) has Dirichlet(θ) distribution, [26]), the latter
expression boils down to the usual sampling one

P(Kn,k = kn) =
(

k

k1 . . . kn

)
E

(
n∏

m=1

S
km
m,θ

)
= Q(Kn,k = kn).

Alternatively, from (41), the joint pgf of Kn,k also reads

E

[
n∏

m=1

u
Kn,k(m)
m

]
= E[(∑n

m=1 umXm,θ )
k]

E(X
k

n,θ )
= E[Xk

n,θ (
∑n

m=1 umSm,θ )
k]

E(X
k

n,θ )
.

Its computation is thus amenable to the normalized kth moment of the weighted sum∑n

1 umXm,θ of iid mean 1 infinitely divisible random variables with LST E(e−xXθ ) =
eθφ(−x/(θφ1)) = e−θψ(x/(θφ1)) and moments E(Xk

θ ) = σk(θ)/(θφ1)
k, k ≥ 1. Unlike (Yθ ; θ ≥ 0),

the process (Xθ ; θ ≥ 0) is not a Lévy process.
Note also that with kp := (k1, . . . , kp) ∈ N

p obeying |kp| = k

P
(
K̂n,k(1) = k1, . . . , K̂n,k(p) = kp;Pn,k = p

)

=
(

n

p

)(
k

k1 . . . kp

)∏p

q=1 E(X
kq

n,θS
kq

q,θ )

E(X
k

n,θ )
=

(
n

p

)(
k

k1 . . . kp

)E(X
k

n,θ

∏p

q=1 S
kq

q,θ )

E(X
k

n,θ )

is the joint probability that there are p ∈ [n] non-empty boxes and that (k1, . . . , kp) are the
respective occupancies of the p filled boxes, labeled in arbitrary order. Again

P (n)
k,p :=

(
n

p

) ∑

kp∈Np :|kp |=k

(
k

k1 . . . kp

)∏p

q=1 E(X
kq

n,θS
kq

q,θ )

E(X
k

n,θ )

=
(

n

p

) ∑

kp∈Np :|kp |=k

(
k

k1 . . . kp

)E(X
k

n,θ

∏p

q=1 S
kq

q,θ )

E(X
k

n,θ )

is the probability that in a k-sample from n species with abundance ξn in the special class S ,
the exact number of distinct visited species is p.

To summarize, we conclude

Proposition 11 When φ ∈ S and when the discrete species abundance model ξn is built
on φ, its occupancy distribution (12) can alternatively be given the interpretation of an
occupancy distribution (41) arising from sampling from the random partition of unity Sn(θ)

but biased by the total length Xn,θ appearing in the normalization of Sm,θ := Xm,θ/Xn,θ .

The positive random variable Xθ
d= X1,θ is infinitely divisible. The correspondence between

ξ and (mean 1) Xθ is:

E
[
uξ

] = e
−θφ(x)(1− φ(xu)

φ(x)
) and E

(
e−xXθ

) = eθφ(−x/(θφ1)) = e−θψ(x/(θφ1)).
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Note finally that ψ(x/(θφ1)) being the Laplace exponent of Xθ :

E
(
e−xXθ

) = e−θ
∫ ∞

0 (1−e−xt )πθ (dt),

where the Lévy measure πθ(dt) integrates 1 ∧ t . The measure tπθ (dt) is a finite pos-
itive measure with all finite m-moments:

∫ ∞
0 tmtπθ (dt) = φm+1/(θφ1)

m+1, m ≥ 0. So
((θφ1)

−mφm)m≥1 is the moment sequence of πθ(dt).
With S1,θ := X1,θ /Xn,θ , define finally μk := E[Sk

1,θ ], k ≥ 1, the sequence of the moments
of S1,θ .

Examples Examples of admissible φ ∈ S were − log(1 − x), (1 − x)−α − 1, α > 0 and
1 − (1 − x)α , α ∈ (0,1).

The LST E(e−xXθ ) of Xθ in each case is (1 + x/θ)−θ , exp[−θ(1 − (1 + x
αθ

)−α)]
and exp[−θ((1 + x

αθ
)α − 1)] corresponding respectively to a Gamma(θ, θ) distribution,

a compound Poisson sum of iid gamma(α,αθ) random variables and an exponentially
damped stable(θ,α). For this last case, let Σ > 0 be a stable(θ,α) random variable i.e.
with LST E(e−xΣ) := exp[−θxα], x ≥ 0. Let fΣ be its density. Define a random vari-
able Yθ with damped density fYθ

(t) = 1
E(e−Σ)

e−t fΣ(t), t > 0. Its LST is E(e−xYθ ) =
E(e−(x+1)Σ)/E(e−Σ) = exp−θ [(1 + x)α − 1]. Upon scaling Yθ , Xθ := Yθ/(θα) is mean 1.
In the sampling context, the last example was recently considered in [15, 16, 27, 28]. They
were named the generalized inverse Gaussian or Engen models.

Remark In the degenerate case, φ(x) = x, Xθ is purely atomic with Xθ

d∼ δ1. The LST of
Xθ can be obtained from the one of the first gamma(θ, θ) example: E(e−xXθ ) = (1+x/θ)−θ

as θ → ∞. In this very particular (admissible) case, Sn = (1/n, . . . ,1/n) is the uniform
deterministic partition of unity (the Maxwell-Boltzmann case).

4.2 The ∗-Limit

We now come back to the ∗-limit.
Let φ ∈ S . With γ > 0, let (Yγ )γ≥0 be a subordinator with Y0 = 0 and LST

E
(
e−xYγ

) = e−γψ(x), ψ(x) = −φ(−x).

Under our assumptions on φ, E(Yγ ) = γφ1 < ∞. Then the Laplace exponent ψ reads

ψ(x) =
∫ ∞

0

(
1 − e−xt

)
π(dt), (42)

for some positive Lévy measure π on (0,∞), integrating 1 ∧ t , [6]. Let π(t) := ∫ ∞
t

π(ds)

be the tail function of π and assume π(t) → ∞ as t → 0.4 Then

Yγ =
∑

k≥1

π−1(Γk/γ ) (43)

4If π has a finite limit, the random partition of unity defined in (46) is finite with a random Poisson number
of pieces (see Example (iii) below). The corresponding subordinator has an atom at point γ = 0 with positive
probability. This case deserves a special treatment.
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where (Γk)k≥1 are the points of a standard Poisson Point Process (PPP) on (0,∞) with
intensity 1. The random variables

Δ(k)(γ ) := π−1(Γk/γ )

with Δ(1)(γ ) ≥ Δ(2)(γ ) ≥ · · · constitute the ranked jumps’ heights of the subordinator Yγ

(they are countably many, with 0 as a limit point). They form a PPP on the half-line with
intensity γπ(dt), and the law of Δ(k)(γ ) can easily be computed to be [6]

P
(
Δ(k)(γ ) ∈ dt

) = γ kπ(t)k−1

(k − 1)! e−γπ(t)π(dt). (44)

By Campbell formula (see [36, 40]), for all measurable function g for which
∫ ∞

0 (1 −
e−xg(t))π(dt) < ∞, we have

E
(

exp

{
−x

∑

k≥1

g
(
π−1(Γk/γ )

)})
= exp

{
−γ

∫ ∞

0

(
1 − e−xg(t)

)
π(dt)

}
.

Putting g(t) = t , E(e−xYγ ) = e−γψ(x), showing that (43) holds in law.
From the above construction, when π has infinite mass, we can define a random distribu-

tion on the infinite-dimensional 1-simplex by normalizing the ranked jumps’ heights of Yγ

by itself. Consider again Yγ and, with θ := γ /n, define Ym,θ := Ymθ −Y(m−1)θ , m = 1, . . . , n

which are mutually independent. Then, Yn,θ := ∑n

m=1 Ym,θ = Ynθ = Yγ . If we rank the
Ym,θ ’s, with Y(1),θ ≥ · · · ≥ Y(n),θ ,5 then, [34], as n → ∞, θ → 0, nθ = γ

(Y(1),θ , . . . , Y(n),θ ,0,0, . . .)
d→∗

(
Δ(1)(γ ),Δ(2)(γ ), . . .

)
. (45)

Normalizing,

(Y(1),θ /Yγ , . . . , Y(n),θ /Yγ ,0,0, . . .)

d→∗
(
Δ(1)(γ )/Yγ ,Δ(2)(γ )/Yγ , . . .

) =: S∞(γ ) := (S(1),γ , S(2),γ , . . .), (46)

with S∞(γ ) defining a random partition of unity with infinitely many (ordered) pieces.
If t > 0 is some (small) cutoff or threshold value, let N+(t) := ∑

k≥1 I(Δ(k)(γ ) > t) count
the numbers of atoms of the partition of Yγ exceeding t . By Campbell formula

E
(
exp

{−xN+(t)
}) = exp

{
−γ

∫ ∞

0

(
1 − e−xI(s>t)

)
π(ds)

}

= exp
{−γπ(t)

(
1 − e−x

)}
(47)

is the full LST of N+(t). This shows that N+(t) is Poisson distributed with mean γπ(t).
Recalling π(t) →

t→0
∞, the law of large numbers gives

N+(t)/π(t)
a.s.→ γ, as t → 0. (48)

5If Yθ has a density (π has no atom), these inequalities are strict.
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The fact that N+(t) is Poisson may be also checked as follows. We have N+(t) =
inf(k ≥ 1 : Δ(k)(γ ) ≤ t) − 1 and P(N+(t) ≥ k) = P(Δ(k)(γ ) > t) = P(Γk ≤ γπ(t)) =
e−γπ(t)

∑
l≥k

[γπ(t)]l
l! . So N+(t) is Poisson with mean γπ(t).

Because also, by the strong law of large numbers, Γk/k → 1 a.s. as k → ∞, recalling
Γk = γπ(Yγ S(k),γ ), we get

γπ(Yγ S(k),γ )/k → 1 a.s. as k → ∞.

From the behavior of π(t) near t = 0, the decay rate of S(k),γ to 0 as k → ∞ follows.
Sampling from Sm,θ := Ym,θ/Yγ , m = 1, . . . , n. Define as in (40) a biased sampling pro-

cedure for which (|kn| = k)

P(Kn,k = kn) =
(

k

k1 . . . kn

)
E(Y k

γ

∏n

m=1 S
km
m,θ )

E(Y k
γ )

. (49)

Recall that this biased procedure is not the standard sampling one from a k uniform throw
on Sm,θ , m = 1, . . . , n, obtained while counting the number of uniform hits within each Sm,θ .
Indeed, would the latter sampling model hold, instead of (49), one would rather expect the
strict multinomial occupancy distribution

Q(Kn,k = kn) =
(

k

k1 . . . kn

)
E

(
n∏

m=1

(Ym,θ /Yγ )km

)
,

and in general, we have Q(Kn,k = kn) �= P(Kn,k = kn). According to (49), the joint pgf of
Kn,k is

E

(
n∏

m=1

u
Kn,k(m)
m

)
= 1

E(Y k
γ )

∑

kn∈Nn
0 : |kn|=k

(
k

k1 . . . kn

) n∏

m=1

ukm
m E

(
n∏

m=1

Y
km
m,θ

)

= E[(∑n

m=1 umYm,θ )
k]

E(Y k
γ )

, (50)

which is akin to (40).
Biased sampling from S∞(γ ) = (S(1),γ , S(2),γ , . . .) can also be defined whenever the sam-

pling process amounts to draw k points at random in the unit interval partitioned accord-
ing to S∞(γ ), counting the number of points in each subintervals and when biasing some
functional f (S(1),γ , S(2),γ , . . .) under concern to produce E∗(Y k

γ f (S(1),γ , S(2),γ , . . .))/E∗(Y k
γ )

when averaging over S∞(γ ).
From these considerations, we can state the following results:

Proposition 12 Let γ = nθ . When φ ∈ S , with (σk(θ), k ≥ 0) the Stieltjes moment sequence
of some infinitely divisible subordinator Yγ with Laplace exponent ψ(x) = −φ(−x), the
occupancy distributions (12), (15) and (24) are biased sampling multinomial distributions
from Sm,θ := Ym,θ/Yγ , m = 1, . . . , n as defined by (49).

Corollary 13 When φ ∈ S and π has infinite mass (φ(x) →
x→−∞ −∞), the occupancy dis-

tributions (27), (31) and (32) are biased sampling multinomial distributions from S∞(γ ) =
(S(1),γ , S(2),γ , . . .) defined in (46) from the subordinator Yγ with Laplace exponent ψ(x) =
−φ(−x).
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Proof The proof follows from the previous Proposition, the fact that (27) and (32) were
obtained as weak ∗-limits of (15) and (24), from (46) and from exchangeability of the
Kn,k(m)’s. �

Let us now illustrate Corollary 13. For instance, when φ ∈ S , from (27),

P∗(K̂k(1) = k1, . . . , K̂k(p) = kp;Pk = p
)

= k!
p!

γ p

σk(γ )

p∏

q=1

φkq

kq ! = E∗(Y k
γ

∑
1≤m1<···<mp

∏p

q=1 S
kq

(mq ),γ )

E∗(Y k
γ )

is the probability that there are p observed species, labeled in arbitrary way, in the k-sample,
each visited kq times, and that they were obtained after biased sampling from S(m1),γ > · · · >
S(mp),γ for any ordered sequence 1 ≤ m1 < · · · < mp .

In particular, the probability that, in a biased sampling procedure from S∞(γ ), all ele-
ments of the k-sample are of the same species (whichever species it can be) is thus

P∗(K̂k(1) = k;Pk = 1
) = E∗(Y k

γ

∑
m≥1 Sk

(m),γ )

E∗(Y k
γ )

= γ
φk

σk(γ )
= E∗(Ak(k)

)
. (51)

The latter identity also follows from (31) with a1 = · · · = ak−1 = 0, ak = 1 and p = 1 (only
one species visited k times).

We observe that, as γ → 0 (or E∗(Yγ ) → 0 as well), due to σk(γ ) ∼ γφk , this probability
tends to 1, showing that γ itself may be viewed as some temperature parameter for the
population with infinitely many species: the smaller γ , the larger the probability is that any
k-sample visits a single one species (among which the one with largest frequency S(1),γ ).

Similarly, the probability that all elements of the k-sample reveal only two species
(whichever species they can be) is

k−1∑

l=1

E∗(Y k
γ

∑
1≤m1<m2

Sl
(m1),γ Sk−l

(m2),γ )

E∗(Y k
γ )

= 1

2

γ 2k!
σk(γ )

k−1∑

l=1

φl

l!
φk−l

(k − l)! = γ 2

σk(γ )
Bk,2(φ•).

This identity follows from (31) with al = 1, ak−l = 1, aj = 0 if j �= {l, k− l} and p = 2 (only
two species visited, one l times and the other one k − l times), summing on l = 1, . . . , k − 1
and from φ∗2

k = 2Bk,2(φ•). More generally, if p ≤ k, γ p

σk(γ )
Bk,p(φ•) is the probability that

all elements of the k-sample reveal p distinct species (consistently with (28)), (γ φ1)k

σk(γ )
the

probability that all species in the k-sample are of distinct types. When γ is small this latter
probability is polynomially small ∼ γ k−1.

Finally, the probability that only one species is visited by the k-sample and that it is the
mth more abundant one is

E∗(Y k
γ Sk

(m),γ )

E∗(Y k
γ )

= E∗(Δ(m)(γ )k)

E∗(Y k
γ )

= 1

(m − 1)!
∫ ∞

0 e−xxm−1π−1(x/γ )kdx

σk(γ )

= γ

σk(γ )

1

(m − 1)!
∫ ∞

0
tk

(
γπ(t)

)m−1
e−γπ(t)π(dt), (52)

consistently with (44). Summing (52) over m ≥ 1, we recover from (51), that φk =
1
γ

∫ ∞
0 π−1(x/γ )kdx = ∫ ∞

0 tkπ(dt) is the kth moment of the Lévy measure π . In particu-
lar, the probability that only one species is visited by the k-sample and that it is the more
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abundant one is (compare with (51))

E∗(Y k
γ Sk

(1),γ )

E∗(Y k
γ )

= γ

σk(γ )

∫ ∞

0
tke−γπ(t)π(dt)

= γφk

σk(γ )

[
1 − 1

φk

∫ ∞

0
tk

(
1 − e−γπ(t)

)
π(dt)

]
.

When γ gets very small, this probability approaches 1 from below, up to an O(γ ) residual
term: again, S(1),γ dominates the other smaller S(m),γ and for small values of the biodiversity
parameter γ therefore, the species frequencies S(m),γ ; m ≥ 1 turn out to be very disparate.

Similarly, from (32), when φ ∈ S

P∗(Ak(1) = a1, . . . ,Ak(k) = ak;Pk = p
)

= γ pk!
σk(γ )

k∏

i=1

(φi/i!)ai

ai ! = k!∏
i≥1(i!ai ai !)

E∗(Y k
γ

∑∏
i≥1

∏ai

j=1 Si
(mi,j ),γ )

E∗(Y k
γ )

where in the latter numerator, the unindexed sum runs over all distinct (mi,j ), i = 1, . . . , k;
j = 1, . . . , ai with (a1, a2, . . .) satisfying

∑
i≥1 iai = k and

∑
i≥1 ai = p.

5 Examples

Let us supply some Examples illustrating our results.

(i) Take the Fisher logarithmic series model φ(x) = − log(1 − x) ∈ S , resulting in ξ

obeying a negative binomial distribution with parameters θ > 0 and 1 − x ∈ (0,1),
[21]. Here φ• = (• − 1)!. Then Yγ is a Moran subordinator with Lévy-measure:
π(dt) = t−1e−t dt . The Laplace exponent of Yγ is ψ(x) = log(1 + x), in accor-
dance with ψ(x) = −φ(−x). In that particular case, (S(1),γ , S(2),γ , . . .) ∼ PD(0, γ ),
a Poisson-Dirichlet partition with parameter γ , [20, 26]. Because, due to well-known
properties of Gamma-distributed random variables, Yγ is independent of Sm,θ =
Ym,θ/Yγ , m = 1, . . . , n, the biased sampling distributions from (S1,θ , . . . Sn,θ ) corre-
sponds to the usual multinomial one. In this well-known model for species frequency,
σk(θ) = (θ)k . So σk(θ) ∈ ZR−.

Because π(t) ∼ − log t as t → 0, N+(t) := #{k : Δ(k)(γ ) > t} grows like −γ log t

as t → 0. Besides,

− logS(k),γ ∼ k/γ as k → ∞
and the ordered frequencies decay exponentially fast with k: species with small fre-
quency get exponentially rare.

Assuming θ known, the Maximum Likelihood Estimator (MLE) estimator of n in
the finitely many species model is given implicitly by P = n̂(1 − σk((̂n−1)θ)

σk (̂nθ)
), so here

P = n̂

(
1 − ((̂n − 1)θ)k

(̂nθ)k

)
.

When θ = 1, this estimator is explicitly given by

n̂ = (k − 1)P

k − P
,



792 T. Huillet, S. Martínez

where, as conventional wisdom suggests, n̂ will be large when the difference between
1/P and 1/k is small (new species are being frequently discovered). The MLE es-

timator of γ in the infinitely many species model is given implicitly by P = γ̂
σ ′
k
(γ̂ )

σk(γ̂ )
,

[51], so here

P =
k−1∑

l=0

γ̂

γ̂ + l
.

The estimator γ̂ is biased but its bias decreases as k grows. The alternative estimator
γ̃ = Bk,P−1(φ•)

Bk,P (φ•)
with Bk,p(φ•) = sk,p is also biased and can be computed using the

recursion for third kind Stirling numbers

Bk+1,p

(
(• − 1)!) = Bk,p−1

(
(• − 1)!) + kBk,p

(
(• − 1)!).

(ii) The full two-parameters PD(α,γ ) defined in [43] can be obtained while subordi-
nating the damped α-stable subordinator (see (iii) below) to an independent Moran
one with parameter γ /α. And considering the normalized ranked sizes of the subor-
dinate jumps: here, independently of this partition of unity, Yγ again is gamma(γ )

distributed. As shown in [43], PD(α,γ ) has many interesting properties, [20, 41].
This partition of unity leads to a generalized (unbiased) Ewens’ sampling formula
called Pitman’s sampling formula, [42]. Connection of the two-parameters PD(α,γ )

partition to Gibbs (EPPF) partitions and a complete classification of EPPFs induced
by the unbiased multinomial sampling from partition of unity can be found in [25]
and [23].

(iii) Take φ(x) = (1 − x)−α − 1 ∈ S where α > 0. Here φ• = (α)• resulting in ξ being
a Poisson sum of negative binomial increments δ. The Lévy-measure corresponding
to Yγ is the (mean α) Gamma(α,1) probability density: π(dt) = 1/Γ (α) · tα−1e−t dt .
The Laplace exponent of Yγ is ψ(x) = 1 − (1 + x)−α , in accordance with ψ(x) =
−φ(−x). Because π is integrable with mass 1, Yγ is a subordinator in the compound
Poisson class (a Poisson(γ ) sum of iid positive jumps with Gamma(α,1) density).
For this reason,

Yγ
d=

[
P(γ )∑

k=1

π−1(U[k])

]
· I

(
P (γ ) ≥ 1

) + 0 · I
(
P (γ ) = 0

)
,

where (U[k]; k ≥ 1) are the ranked (U[1] < · · · < U[Pγ ]) points of an iid uniform se-
quence (Uk; k ≥ 1) on (0,1), independent of P (γ ) which is Poisson(γ ) distributed.
Note that Yγ has an atom at Yγ = 0 with positive probability and that, would
P (γ ) ≥ 1, there are finitely many (Poissonian) terms in the Lévy decomposition of Yγ .
In this case, the random variables

Δ(k)(γ ) := π−1(U[k]); k = 1, . . . ,P (γ )

with Δ(1)(γ ) ≥ · · · ≥ Δ(P(γ ))(γ ) constitute the ranked (non-null) jumps’ heights of the
subordinator Yγ . Considering Yγ on the event P (γ ) ≥ 1, with θ := γ /n, the spacings
Ym,θ defined by Ym,θ := Ymθ − Y(m−1)θ , m = 1, . . . , n are non-negative and mutually
independent; also Yn,θ := ∑n

m=1 Ym,θ = Ynθ − Y0 = Yγ > 0. Normalizing the Ym,θ ’s
with Yγ defines a proper finite random partition of unity Sm with a random number
of non-zero parts and bias sampling (with π finite with mass 1) is therefore to be
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understood from this partition. In the ∗-limit, its ranked (non-null) jumps’ heights are
the Δ(k)(γ )’s. Note that when π is integrable with mass 1, the biodiversity param-
eter γ takes on directly the interpretation of the expected number of species in the
population.

Let us come back to our case study. We first recall that for φ• = (α)•

Bk+1,p(φ•) = αBk,p−1(φ•) + (k + pα)Bk,p(φ•).

When α = 1, Bk,p(•!) = (
k−1
p−1

)
k!
p! are the Lah numbers.

Recalling also P∗(Pk = p) = γ p

σk(γ )
Bk,p(φ•), we get the recursion

P∗(Pk+1 = p) = γ p

σk+1(γ )

(
αBk,p−1(φ•) + (k + pα)Bk,p(φ•)

)

= σk(γ )

σk+1(γ )

(
αγ P∗(Pk = p − 1) + (k + pα)P∗(Pk = p)

)
.

This shows that the event Pk+1 = p only depends on the event Pk = p−1 (respectively
Pk = p), when a new species (respectively no new species) is being discovered as the
sample size is increased by one unit. And not on further past events such as Pl = p−1
for p − 1 ≤ l < k. The transition rates are λp,p+1 = αγ

σk(γ )

σk+1(γ )
(independent of p but

dependent on k) and λp,p = (k +pα)
σk(γ )

σk+1(γ )
. λp,p+1 is the rate at which a new species

is being discovered given p of them were previously discovered in a size-k sample.
This suggests an underlying sequential urn scheme, [7, 51].

The estimator γ̃ = Bk,P−1(φ•)

Bk,P (φ•)
of γ can easily be evaluated numerically thanks to

the three-term recurrence which Bk,p(φ•) fulfills. When α = 1, it is

γ̃ = P (P − 1)

k − P + 1
= P

k

1
1

P−1 − 1
k

.

For the four following examples, an appeal to length-biased sampling distributions
from S∞(γ ) is required.

(iv) With α ∈ (0,1), take φ(x) = 1 − (1 − x)α ∈ S , resulting in ξ being a Poisson sum of
extended negative binomial increments δ (also called a Poisson-Pascal random vari-
able). Here φ1 = α, φm = α(1 − α)m−1, m ≥ 1 and the weight of large clusters is
smaller than in Example (i) where φm = (m − 1)!. We therefore expect small clus-
ters sizes to be enhanced. In this case, Yγ is a damped α-stable subordinator with
Lévy-measure: π(dt) = α/Γ (1 − α) · t−(α+1)e−t dt . The Laplace exponent of Yγ is
ψ(x) = (1 + x)α − 1, in accordance with ψ(x) = −φ(−x). The relevant subordinator
is termed the generalized gamma (see [23, 44] and [25]).

Because π(t) ∼ 1/Γ (1−α) · t−α as t → 0, N+(t) := #{k : Δ(k)(γ ) > t} grows like
γ /Γ (1 − α) · t−α as t → 0. Besides,

S(k),γ ∼
(

γ

Γ (1 − α)

)1/α

Y −1
γ k−1/α as k → ∞

and the ordered frequencies only decay algebraically fast with k. Species with small
frequency are long-tailed (there are many small size groups or rare species in the
Engen model, compared to the Ewens model).
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In this model, φ• = α(1 − α)•−1. Because φ1 = α and φm+1 = φm(m − α), m ≥ 1,
it follows from (3), (4) that σk+1(θ) = (θα + k)σk(θ) − θασ ′

k(θ). Thus, the Bell coef-
ficients Bk,p(φ•), appearing in (16), again obey a simple 3-term recurrence

Bk+1,p(φ•) = αBk,p−1(φ•) + (k − pα)Bk,p(φ•).

They constitute generalized Stirling numbers studied by [9]. It can be checked that
σk(θ) /∈ ZR−.

This model is amenable to similar conclusions as the ones from the previous ex-
ample with recursion now given by

P∗(Pk+1 = p) = σk(γ )

σk+1(γ )

(
αγ P∗(Pk = p − 1) + (k − pα)P∗(Pk = p)

)
.

Equation (32) with φ• = α(1 − α)•−1 is the Engen’s extended negative binomial sam-
pling formula [27]. The particular case α = 1/2 is studied in [28]. The microcanonical
distribution (33) coincides when φ• = α(1 − α)•−1 with the one occurring in the Pit-
man sampling formula ([27], Remark 3).

(v) Let φ(x) solve the functional equation φ(x) = x expφ(x). Then φ(x) = ∑
m≥1

φm

m! x
m

with φm = mm−1 is the Cayley generating function appearing in the enumeration of
rooted labeled trees with m nodes. The convergence radius of this series is x0 = e−1

with φ(x0) = 1 and φ′(x0) = ∞. Clearly φm is log-convex, it is a Stieltjes mo-
ment sequence and φ ∈ S . The associated Laplace exponent ψ(x) = −φ(−x) is the
Lambert function. Because ψ(x) ∼ logx as x → ∞, π(t) ∼ − log t as t → 0 and
N+(t) := #{k : Δ(k)(γ ) > t} grows like −γ log t as t → 0. Besides, like in Exam-
ple (i)

− logS(k),γ ∼ k/γ as k → ∞.

The partition function Zθ(x) = exp θφ(x) occurs in the enumeration of forests of
Cayley trees. The Bell coefficients are Bk,p(φ•) = (

k−1
p−1

)
kk−p (number of forests with

k nodes and p trees) in accordance with the global weights σk(θ) = θ(k + θ)k−1.
So σk(θ) ∈ ZR−. Assuming θ known, the MLE estimator of n in the finitely many
species model is given implicitly by P = n̂(1 − σk((̂n−1)θ)

σk (̂nθ)
), so here

P = n̂ − (̂n − 1)

(
1 − θ

k + n̂θ

)k−1

.

The MLE estimator of γ in the infinitely many species model is given by P = γ̂
σ ′
k
(γ̂ )

σk(γ̂ )
,

so here explicit

γ̂ = k(P − 1)

k − P
.

The alternative (biased) estimator is γ̃ = Bk,P−1(φ•)

Bk,P (φ•)
. Thus

γ̃ = k(P − 1)

k − P + 1
= 1

1
P−1 − 1

k

;

it is also explicit and very close to γ̂ .
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(vi) As a next example, let φ(x) solve the functional equation φ(x) = xg(φ(x)) where
g(x) = (1 + bx)a with either b > 0 and a ≥ 1 or a and b both negative. φ(x) is the
generating function appearing in the enumeration of rooted trees when the generating
function g of the offspring is either (generalized) binomial or negative binomial. Then
φm = (m−1)!( am

m−1

)
bm−1 are non-negative numbers. We conjecture that φ ∈ S . It holds

[31] that x0 = (ab)−1(1 − 1/a)a−1 with φ(x0) = 1/(b(a − 1)) and φ′(x0) = ∞. For
this tree model first discussed in [3], the Lagrange inversion formula gives [1]

Bk,p(φ•) =
(

k − 1

p − 1

)
{ak}k−pbk−p,

where {a}l := a(a − 1) · · · (a − l + 1). Recalling γ̃ = Bk,P−1(φ•)

Bk,P (φ•)
, we get

γ̃ = b(P − 1)

k − P + 1

(
(a − 1)k + P

) = b
1

P−1 − 1
k

(
a − 1 + P

k

)
,

which is explicit. Again, would 1/k be close to 1/(P − 1), then γ̃ would be es-
timated to be large. Would a → ±∞, b → ±0 while ab → 1, we recover the re-
sults just obtained for Cayley trees (consistently with g(x) = (1 + bx)a → ex ). If
a = b = 1, we recover Example (iii) with α = 1. When k is large, the minimum of
B2

k,p(φ•)/(Bk,p−1(φ•)Bk,p+1(φ•)) is attained when p = [λk] for some λ ∈ (0,1), with
value

λ

1 − λ

(1 − λ)k + 1

λk − 1

(a − 1 + λ)k + 1

(a − 1 + λ)k
→

k→∞
1

and the sequence Bk,p(φ•) is p-log-concave.
(vii) Let α > 0 and let φ(x) = ∑

m≥1 m−αxm be the polylog function. The convergence
radius of this series is x0 = 1 with φ(x0) < ∞ iff α > 1 and φ′(x0) < ∞ iff α > 2.
φ(x) is defined for x < x0 and φ(x) → −∞ as x → −∞. We have φm = m!m−α and
(φm)m≥1 constitutes a log-convex sequence because for all m ≥ 2,

φm+1φm−1 = (m + 1)!(m − 1)!(m2 − 1
)−α

> (m + 1)!(m − 1)!m−2α > m!2m−2α = φ2
m.

The sequence φm satisfies Carleman’s condition
∑

m≥1 φ
−1/(2m)
m = ∞. Thus φ ∈ S

and ψ(x) = −φ(−x), x > −1, is the Laplace exponent of some polylog subordinator
with Lévy measure π . Because φ(x) ∼ −[log(−x)]α/Γ (1 + α) as x → −∞, [11],
−φ(−x) =: ψ(x) → ∞ as x → ∞ and π has infinite total mass. In this example,
when α > 1, the weight of large clusters φm is smaller than in Example (i) where
φm = (m − 1)!. When α > 1, we therefore expect small clusters sizes to be enhanced
as in Example (iv), but to a lesser extent. Because indeed π(t) ∼ [− log t]α/Γ (1 + α)

as t → 0, N+(t) := #{k : Δ(k)(γ ) > t} grows like γ [− log t]α/Γ (1 + α) as t → 0.
Besides,

− logS(k),γ ∼ (
Γ (1 + α)/γ

)1/α
k1/α as k → ∞

and the ordered frequencies decay exponentially fast, but now with k1/α (in a
‘stretched exponential’ Weibull way).
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(viii) As another example with φ ∈ S but with π integrable, consider the Mittag-Leffler
function φ(x) = ∑

m≥1
1

Γ (1+mα)
xm, where α ∈ (0,1). We have ψ(x) := −φ(−x) =:

1 − ϕ(x) where

ϕ(x) :=
∑

m≥0

1

Γ (1 + mα)
(−x)m.

ϕ(x) is the Mittag-Leffler LST of the random variable S−α
α where Sα is an α-stable

random variable with LST E(e−xSα ) = e−xα
, [46]. Here φ• = Γ (1+•)

Γ (1+α•)
and because of

the latter link with the Mittag-Leffler LST, the φ• sequence is log-convex and φ ∈ S .
For this model, the discrete abundance ξ is thus a Poisson sum of discrete Mittag-
Leffler increments δ with

P(δ = m) = 1

Γ (1 + mα)

xm

φ(x)
, m ≥ 1.

In the bias sampling from a random partition point of view, the Lévy-measure corre-
sponding to Yγ is π(dt) = fα(t)dt where fα(t) is the density of S−α

α . The Laplace
exponent of Yγ is ψ(x) = −φ(−x). Because π is integrable with mass 1, Yγ is a
subordinator in the compound Poisson class (a Poisson(γ ) sum of iid positive jumps
with Mittag-Leffler density fα(t)). In the Mittag-Leffler case, the bias sampling is
again from a finite random partition of unity, as in Example (iii). Note that as α → 0,
φ(x) ∼ (1 − x)−1 − 1 (which is a particular case of (iii)) whereas when α → 1,
φ(x) ∼ ex − 1 which is the Bell model, also in the S class.

(ix) Let φ(x) solve the functional equation φ(x) = xg(φ(x)) where g(x) = 1 + x2/2.
Then φ(x) = (1 − √

1 − 2x2)/x is the generating function appearing in the enumera-
tion of rooted binary labeled trees. Only the odd φm’s are non-zero. The convergence
radius of this series is x0 = 1/

√
2 with φ(x0) = √

2 and φ′(x0) = ∞. Clearly φ /∈ S
because φ is only defined on |x| ≤ x0, so not absolutely monotone on (−∞, x0).

6 A New Engen-Like Example

We end up giving a new example of ξ sharing some common issues with the Engen’s model.

Preliminaries Previously, let us start with a general fact. Let φ�(x) be some ‘local’ gener-
ating function with non-negative coefficients φ�

m. Define Z�
1(x) = expφ�(x), together with

σ �
k (θ), the Bell polynomials associated to φ�(x): Z�

1(x)θ =: 1 + ∑
k≥1

σ�
k
(θ)

k! xk . Define now
the new generating functions

φ(x) = xZ�
1(x) and Zθ(x) = exp

(
θφ(x)

)
.

The Taylor coefficients of φ are: φm = mσ�
m−1(1). The Bell polynomials now associated to

φ(x) are: Zθ(x) = 1 + ∑
k≥1

σk(θ)

k! xk , with

σk(θ) =
k∑

p=1

Bk,p

(•σ �
•−1(1)

)
θp.

Because σ �
k (θ) are binomial convolution polynomials, the following identity holds, [1]

Bk,p

(•σ �
•−1(1)

) =
(

k

p

)
σ �

k−p(p). (53)
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Three simple examples are:

– φ�(x) = αx, α > 0. Then σ �
k (θ) = αkθk leading to: Bk,p(•α•−1) = (

k

p

)
(αp)k−p .

– φ�(x) = eαx − 1, α > 0. Then σ �
k (θ) = αk

∑k

p=1 Sk,pθp (where Sk,p are the second

kind Stirling numbers), leading to: Bk,p(α•−1B•−1) = (
k

p

)
αk−p

∑k−p

q=1 Sk−p,qp
q where

Bk = ∑k

p=1 Sk,p are the Bell numbers.

– φ�(x) solves φ�(x) = x exp(αφ�(x)), α > 0. Then σ �
k (θ) = ∑k

p=1 Bk,p(φ�•)θp with

Bk,p(φ�•) = (
k−1
p−1

)
(αk)k−p , leading to

σ �
k (θ) = θ(θ + αk)k−1.

We conclude that, with φ• = •(1 + α(• − 1))•−2

Bk,p(φ•) =
(

k

p

)
p
(
p + α(k − p)

)k−p−1
.

If α = 1, φ• = •(1 + α(• − 1))•−2 = ••−1 and we recover Bk,p(••−1) = (
k

p

)
pkk−p−1 =

(
k−1
p−1

)
kk−p .

Example Let φ�(x) = −α log(1 − x), α > 0. Then σ �
k (θ) = (αθ)k . Looking at φ(x) =

x expφ�(x) and

Zθ(x) = exp
(
θφ(x)

) = eθx(1−x)−α

,

with φ• = •(α)•−1, we get σk(θ) = ∑k

p=1 Bk,p(φ•)θp where

Bk,p

(•(α)•−1

) =
(

k

p

)
(αp)k−p. (54)

Proposition 14 The new model φ(x) = x(1 − x)−α ∈ S iff α ∈ [0,1].

Proof First, the convergence radius of φ is x0 = 1.
We have φ′(x) = (1 − x)−(α+1)(1 − x(1 −α)) and φ′ > 0 for all x < x0 only if α ∈ [0,1].

Let then α ∈ [0,1]. Then φ(k)(x) = (1 − x)−(α+k)(ak − xbk) and suppose both ak and bk are
positive with ak/bk > 1 in such a way that φ(k) > 0 for all x < x0. Then

φ(k+1)(x) = (1 − x)−(α+k+1)
(
(α + k)ak − xbk(α + k − 1)

)

with ak+1 = (α + k)ak and bk+1 = bk(α + k − 1). Both ak+1 and bk+1 are positive with
ak+1/bk+1 > ak/bk > 1. So φ(k+1) > 0 for all x < x0. �

Corollary 15 When α ∈ (0,1), in the infinitely many species context, sampling from a dis-
crete abundance model ξ built on φ(x) = x(1 − x)−α interprets as bias sampling from
a random partition of unity S∞(γ ) with ordered frequencies decaying algebraically fast
with k. The Laplace exponent associated to Yγ is ψ(x) = −φ(−x) = x(1 + x)−α , x > −1.
The estimator γ̃ of the biodiversity parameter γ is explicitly given by

γ̃ = P

k − P + 1

(α(P − 1))k−P+1

(αP )k−P

. (55)
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Proof Clearly ψ(x) ∼ x1−α → ∞ as x → ∞ and the corresponding Lévy measure π has
infinite mass.

We have π(t) ∼ t−(1−α) → ∞ as t → 0 so that N+(t) := #{k : Δ(k)(γ ) > t} grows like
γ t−(1−α) as t → 0 and

S(k),γ ∼ Y −1
γ (k/γ )−1/(1−α) as k → ∞.

Like in the Engen model, the ordered frequencies decay algebraically fast with k.
The expression of γ̃ in (55) follows from (54). �

When both k and P are large, together with k − (1 − α)P , using a simple asymptotic
form for (54)

γ̃ ∼ P (k − (1 − α)P )

k − P + 1

(
1 + α + k − P

α(P − 1)

)−α

.

Acknowledgements T.H. acknowledges partial support from the ANR Modélisation Aléatoire en Écolo-
gie, Génétique et Évolution (ANR-Manège-09-BLAN-0215 project) and from the labex MME-DII (Modèles
Mathématiques et Économiques de la Dynamique, de l’ Incertitude et des Interactions). Part of this work was
done while S.M. was visiting Professor at the University of Cergy-Pontoise. Both authors thank support from
Basal CONICYT project PFB-03. The authors are indebted to their Referees and the Editor in Charge for
suggesting improvements and correcting some mistakes appearing in a former draft.

References

1. Abbas, M., Bouroubi, S.: On new identities for Bell’s polynomials. Discrete Math. 293(13), 5–10 (2005)
2. Bahls, P., Devitt-Ryder, R., Nguyen, T.: On the location of roots of logaritmically concave polynomials

(2010). Preprint available at http://facstaff.unca.edu/pbahls/papers/BahlsDevittRyderNguyenV2.pdf
3. Berestycki, N., Pitman, J.: Gibbs distributions for random partitions generated by a fragmentation pro-

cess. J. Stat. Phys. 127(2), 381–418 (2007)
4. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic analysis on semigroups. In: Theory of positive definite

and related functions. Graduate Texts in Mathematics, vol. 100. Springer, New York (1984)
5. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52(1), 1–66 (1929)
6. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)
7. Blackwell, D., MacQueen, J.B.: Ferguson distributions via Pólya urn schemes. Ann. Stat. 1, 353–355

(1973)
8. Bunge, J., Fitzpatrick, M.: Estimating the number of species: A Review. J. Am. Stat. Assoc. 88, 364–373

(1998)
9. Charalambides, Ch.A., Singh, J.: A review of the Stirling numbers, their generalizations and statistical

applications. Commun. Stat. Theory Methods 17(8) (1988)
10. Comtet, L.: Analyse Combinatoire, vols. 1 and 2. Presses Universitaires de France, Paris (1970)
11. Costin, O., Garoufalidis, S.: Resurgence of the fractional polylogarithms. Math. Res. Lett. 16(5), 817–

826 (2009)
12. Darroch, J.N.: On the distribution of the number of successes in independent trials. Ann. Math. Stat. 35,

1317–1321 (1964)
13. Davenport, H., Pólya, G.: On the product of two power series. Can. J. Math. 1, 1–5 (1949)
14. Donnelly, P.: Partition structures, Pòlya urns, the Ewens sampling formula and the age of alleles. Theor.

Popul. Biol. 30, 271–288 (1986)
15. Engen, S.: On species frequency models. Biometrika 61, 263–270 (1974)
16. Engen, S.: Stochastic Abundance Models. Monographs on Applied Probability and Statistics. Chapman

and Hall, London (1978)
17. Ewens, W.J.: Some remarks on the law of succession. In: Athens Conference on Applied Probability and

Time Series Analysis (1995), Vol. I. Lecture Notes in Statistics, vol. 114, pp. 229–244. Springer, New
York (1996)

18. Ewens, W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972)

http://facstaff.unca.edu/pbahls/papers/BahlsDevittRyderNguyenV2.pdf


Gibbs-Poisson Sampling and Occupancies 799

19. Ewens, W.J.: Population genetics theory—the past and the future. In: Lessard, S. (ed.) Mathematical and
Statistical Developments of Evolutionary Theory. Kluwer, Dordrecht (1990)

20. Feng, S.: The Poisson-Dirichlet distribution and related topics. In: Models and Asymptotic Behaviors.
Probability and Its Applications (New York). Springer, Heidelberg (2010)

21. Fisher, R.A., Corbet, A.S., Williams, C.B.: The relation between the number of species and the number
of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943)

22. Garibaldi, U., Scalas, E.: Finitary Probabilistic Methods in Econophysics. Cambridge University Press,
Cambridge (2010)

23. Gnedin, A., Pitman, J.: Exchangeable Gibbs partitions and Stirling triangles. (English, Russian summary)
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325 (2005), Teor. Predst. Din. Sist.
Komb. i Algoritm. Metody. 12, 83–102, 244–245; translation in J. Math. Sci. (N. Y.) 138(3) (2006)

24. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge
(1952)

25. Ho, M.W., James, L., Lau, J.W.: Gibbs Partitions (EPPF’s) Derived From a Stable Subordinator are Fox
H and Meijer G Transforms (2007). http://arxiv.org/abs/0708.0619

26. Holst, L.: The Poisson-Dirichlet distribution and its relatives revisited (2001). Available at http://www.
math.kth.se/matstat/fofu/reports/PoiDir.pdf

27. Hoshino, N.: Engen’s extended negative binomial model revisited. Ann. Inst. Stat. Math. 57(2), 369–387
(2005)

28. Hoshino, N.: Random clustering based on the conditional inverse Gaussian-Poisson distribution. J. Jpn.
Stat. Soc. 33(1), 105–117 (2003)

29. Hubbell, S.P.: The neutral theory of biodiversity and biogeography and Stephen Jay Gould. Paleobiology
31, 122–123 (2005)

30. Huillet, T.: Unordered and ordered sample from Dirichlet distribution. Ann. Inst. Stat. Math. 57(3), 597–
616 (2005)

31. Huillet, T., Möhle, M.: Asymptotics of symmetric compound Poisson population models. Submitted to
Comb. Probab. Comput. Special issue dedicated to the memory of Philippe Flajolet, Preprint available at
hal-00730734 (2012)

32. Huillet, T., Möhle, M.: Correction on ‘Population genetics models with skewed fertilities: a forward and
backward analysis’. Stoch. Models 28(3), 527–532 (2012)

33. Keener, R., Rothman, E., Starr, N.: Distributions on partitions. Ann. Stat. 15(4), 1466–1481 (1987)
34. Kingman, J.F.C.: Random discrete distributions. J. R. Stat. Soc. Ser. B 37, 1–22 (1975)
35. Kingman, J.F.C.: Mathematics of Genetic Diversity. CBMS-NSF Regional Conference Series in Applied

Mathematics, vol. 34. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1980)
36. Kingman, J.F.C.: Poisson processes. Clarendon Press, Oxford (1993)
37. Kolchin, V.F.: Random Mappings. Translation Series in Mathematics and Engineering. Optimization

Software, Inc., Publications Division, New York (1986). Translated from the Russian. With a foreword
by S.R.S. Varadhan

38. Kolchin, V.F.: Random Graphs. Encyclopedia of Mathematics and Its Applications, vol. 53. Cambridge
University Press, Cambridge (1999)

39. Möhle, M.: The concept of duality and applications to Markov processes arising in neutral population
genetics models. Bernoulli 5(5), 761–777 (1999)

40. Neveu, J.: Processus ponctuels. In: École d’ Été de Probabilités de Saint-Flour, VI 1976. Lecture Notes
in Math., vol. 598, pp. 249–445. Springer, Berlin (1977)

41. Pitman, J.: Random discrete distributions invariant under size-biased permutation. Adv. Appl. Probab.
28, 525–539 (1996)

42. Pitman, J.: Exchangeable and partially exchangeable random partitions. Probab. Theory Relat. Fields
102, 145–158 (1995)

43. Pitman, J., Yor, M.: The two parameter Poisson-Dirichlet distribution derived from a stable subordinator.
Ann. Probab. 25, 855–900 (1997)

44. Pitman, J.: Poisson-Kingman partitions. In: Statistics and science: a Festschrift for Terry Speed, 134.
IMS Lecture Notes Monogr. Ser., vol. 40. Inst. Math. Statist., Beachwood (2003)

45. Pitman, J.: Combinatorial stochastic processes, July 724, 2002. Lectures from the 32nd Summer School
on Probability Theory held in Saint-Flour. Springer, Berlin (2002). With a foreword by Jean Picard.
Lecture Notes in Mathematics, 1875

46. Pollard, H.: The completely monotonic character of the Mittag-Leffler function Ea(−x). Bull. Am.
Math. Soc. 54, 1115–1116 (1948)

47. Prünster, I.: Bibliography: http://sites.carloalberto.org/pruenster/publications.html
48. Schilling, R.L., Song, R., Vondracek, Z.: Bernstein Functions. Theory and Applications. de Gruyter

Studies in Mathematics, vol. 37. Walter de Gruyter & Co., Berlin (2010)

http://arxiv.org/abs/0708.0619
http://www.math.kth.se/matstat/fofu/reports/PoiDir.pdf
http://www.math.kth.se/matstat/fofu/reports/PoiDir.pdf
http://sites.carloalberto.org/pruenster/publications.html


800 T. Huillet, S. Martínez

49. Schoenberg, I.J.: On the zeros of the generating functions of multiply positive sequences and functions.
Ann. Math. (2) 62, 447–471 (1955)

50. Steutel, F.W., van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Mono-
graphs and Textbooks in Pure and Applied Mathematics, vol. 259. Marcel Dekker, New York (2004)

51. Tavaré, S., Ewens, W.J.: Multivariate Ewens distribution. In: Johnson, N.L., Kotz, S., Balakrishnan, N.
(eds.) Discrete Multivariate Distributions, pp. 232–246. Wiley, New York (1997), Chap. 41

52. Watterson, G.A.: The stationary distribution of the infinitely-many neutral alleles diffusion model.
J. Appl. Probab. 13(4), 639–651 (1976)

53. Yang, S.L.: Some identities involving the binomial sequences. Discrete Math. 308, 51–58 (2008)


	Occupancy Distributions Arising in Sampling from Gibbs-Poisson Abundance Models
	Abstract
	Introduction and Outline of Main Results
	Sampling from Discrete Gibbs-Poisson Distributions
	Generating and Partition Function (see [10] and [45], Sect. 1)
	Discrete Compound Poisson Distributions Arising from Ztheta ( x ) 
	Sampling from Inﬁnitely Divisible CP Distributions
	Subsampling Without Replacement from Kn,n
	Number of Filled Boxes in Kn,k

	The Estimation of n Problem
	An Alternative Estimator

	Frequency of Frequencies
	The *-Limit of Sampling Distributions (the Inﬁnitely Many Species Abundance Model)
	The Estimation of gamma Problem

	Sampling from Dirichlet Partition: A Special Case
	Sampling Problems from a Special CP Class
	Sampling from a Special CP Class
	The Special Class S
	Sampling from xin when phiinS

	The *-Limit

	Examples
	A New Engen-Like Example
	Acknowledgements
	References


