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Summary
Diff erentiation of vascular smooth muscle cells (VSMC) is 

an essential process of vascular development. VSMC have 

biosynthetic, proliferative, and contractile roles in the ves-

sel wall. Alterations in the diff erentiated state of the VSMC 

play a critical role in the pathogenesis of atherosclerosis and 

intimal hyperplasia, as well as in a variety of other human 

diseases, including hypertension, asthma, atherosclerosis and 

vascular aneurysm. Th is review provides an overview of the 

current state of knowledge of molecular mechanisms involved 

in controlling VSMC proliferation, with particular focus on 

glucose metabolism and its relationship with mitochon-

drial bioenergetics. Increased levels of glucose transporter 

1 (GLUT1) are observed in VSMC aft er endothelial injury, 

suggesting a relationship between glucose uptake and VSMC 

proliferation. Mitochondrial dysfunction is a common feature 

in VSMC during atherosclerosis. Alterations in mitochondrial 

function can be produced by dysregulation of mitofusin-2, a 

small GTPase associated with mitochondrial fusion. More-

over, exacerbated proliferation was observed in VSMC from 

pulmonary arteries with hyperpolarized mitochondria and 

enhanced glycolysis/glucose oxidation ratio. Several lines of 

evidence highlight the relevance of glucose metabolism in the 

control of VSMC proliferation, indicating a new area to be 

explored in the control of vascular pathogenesis.
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Zusammenfassung
Einfl uss des Glukosestoff wechsel auf die Proliferation vaskulärer 

glatter Muskelzellen

Die Diff erenzierung vaskulärer glatter Muskelzellen (VSMC) ist 

ein wesentlicher Prozess der vaskulären Entwicklung. VSMC 

haben biosynthetische, proliferative und kontraktile Eigenschaf-

ten in der Gefäßwand. Störungen des diff erenzierten Zustands 

der VSMC spielen eine entscheidende Rolle in der Pathogene-

se der Atherosklerose und Intimahyperplasie, sowie bei einer 

Vielzahl anderer Erkrankungen wie arterielle Hypertonie und 

vaskuläre Aneurysmata. Dieser Artikel gibt einen Überblick 

über den aktuellen Stand der Kenntnisse der molekulären 

Mechanismen, die die VSMC-Proliferation kontrollieren, mit 

Schwerpunkt auf den Glukosestoff wechsel und dessen Bezie-

hung zu der mitochondrialen Bioenergetik. Eine Verletzung 

des Endothels erhöht den Glukosetransporter 1 in den VSMC, 

so dass von einer Beziehung zwischen Glukoseaufnahme und 

VSMC-Proliferation ausgegangen werden kann. Im Prozess 

der Atherosklerose ist die Mitochondrien-Dysfunktion ein ge-

meinsames Merkmal: es können zum Beispiel Änderungen in 

der mitochondrialen Funktion durch eine Fehlregulation des 

Mitofusin-2 (ein kleines GTPase mit einer wichtigen Rolle in 

der mitochondrialen Fusion) gefunden werden. Darüber hinaus 

wird eine erhöhte Proliferation von VSMC der Lungenarterien 

mit hyperpolarisierten Mitochondrien und einem verbesserten 

Verhältnis von Glykolyse und Glukoseoxidation beobachtet. 

Mehrere Befunde weisen auf die Bedeutung des Glukosestoff -

wechsels bei der Steuerung der VSMC-Proliferation hin, was 

einen neuen Forschungsschwerpunkt eröff net.

Introduction

Vascular smooth muscle cells 

(VSMC) are the main component of 

the artery’s medial layer. Th ese cells 

undergo contraction and thereby 

regulate blood vessel tone and con-

sequently blood fl ow and pressure. 

VSMC contraction depends on the 

interaction between smooth muscle 

(SM)--actin, -myosin heavy chain, 

h-caldesmon and calponin [11, 45]. 

VSMC also possess important se-

cretory properties that ensure synthe-

sis and repair of extracellular matrix 

components and regulate the struc-

ture of the vascular wall [11]. Healthy 

VSMC are not terminally diff erenti-

ated cells with very low rates of prolif-

eration and secretion [11, 45]. How-

ever, changes in the VSMC phenotype 

have been extensively described in 

the development and progression 

of atherosclerosis, hypertension and 

neointimal formation [10, 11, 45]. 

Th is phenotypic switching includes 
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altered expression of contractile pro-

teins, increased matrix production, 

expression of infl ammatory cytokines 

and production of proteases [10]. 

Th e capacity for contraction, prolif-

eration, migration and secretion in 

VSMC is aff ected by a wide range of 

factors, including mechanical forces, 

contractile agonists such as angioten-

sin II, extracellular matrix, reactive 

oxygen species (ROS), endothelial-

VSMC interactions, platelet derived 

growth factor (PDGF), transforming 

growth factor--1 (TGF--1), and 

many other growth factors [10, 11]. 

As a result, VSMC constitute basic 

structural and functional elements in 

the artery wall and their malfunction 

leads to vascular disease. Th e impor-

tance of correct glucose metabolism 

on VSMC is depicted in diabetic pa-

tients: restenosis and atherosclerosis 

aft er balloon angioplasty, stroke, cor-

onary heart disease, and peripheral 

arterial disease are more common in 

individuals with diabetes than in the 

general population [6, 24], suggest-

ing a potential link between VSMC 

glucose metabolism and the progres-

sion of lesion formation. Recently, 

VSMC glucose metabolism, and par-

ticularly mitochondrial bioenerget-

ics have been raised as part of novel 

mechanisms involved in the complex 

regulation of the VSMC phenotype, 

especially involving VSMC prolifera-

tion [48, 49]. Th erefore, the focus of 

this review will be unifying current 

knowledge on glucose metabolism 

and related signaling pathways as-

sociated to VSMC proliferation with 

mitochondrial function. Unless oth-

erwise indicated, the term VSMC will 

refer to conductance vessels-derived 

smooth muscle cells.

Glucose metabolism and 
VSMC proliferation

Glucose metabolism is a key player in 

vascular reactivity [27]. VSMC exhib-

it unusually high rates of glucose uti-

lization and lactate production under 

normal, well-oxygenated conditions 

[9]. In fact, under resting conditions, 

the rate of oxygen consumption and 

lactate production are oft en almost 

equal on a molar basis, resulting in 

approximately 30 % of the ATP sup-

ply coming from “aerobic glycolysis”, 

but at least 90 % of the fl ux through 

glycolysis resulting in lactate pro-

duction[36]. Th is enhanced lactate 

production conditions seems not to 

be associated with inadequate tissue 

oxygenation or a limitation in the oxi-

dative capacity of the muscle [9]. Paul 

et al. postulated that, under fully oxy-

genated conditions, glycolysis with 

lactate formation provides the ATP 

required for Na+ and K+ transport 

across plasmatic membrane, while 

oxidative metabolism is the energy 

source for the contractile machinery 

on SMC from porcine coronary ar-

teries, suggesting functional “meta-

bolic destination” of glucose [36]. 

Furthermore, the same group has 

demonstrated compartmentaliza-

tion of glycolysis and glycogenolysis 

in VSMC, such that glucose taken up 

from the medium appears as lactate, 

whereas glycogen is preferentially 

oxidized [28]. Th ese data are consis-

tent with the idea that ATP generated 

from glycolysis and from respiration 

could provide the energy supply for 

diff erent processes. Such compart-

mentalization could result from an 

association of the glycolytic enzymes 

with the Na+/K+ pump (Figure 1) 

[36]. Another possibility is that cre-

atine kinase might be localized near 

the contractile elements so that phos-

phocreatine generated by respiration 

through the phosphocreatine shuttle 

mechanism is preferentially used for 

actin-activated myosin ATPase activ-

Figure 1: Compartmentalization of ATP generated by glycolysis and respi-
ration. VSMC from porcine coronary artery show high rates of glycolysis 
with high lactate formation even under oxygenated conditions [9]. ATP 
derived from this process is required for Na+ and K+ transport and is ob-
tained mainly from glucose taken from the medium. On the other hand, 
ATP derived from oxidative metabolism in the mitochondria is used for the 
contractile mechanism using glycogen as its main substrate [36].
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ity [5]. Th e work of Hellstrand et al. 

[17] on the rat portal vein supports 

this hypothesis in general, but sug-

gests that the compartmentalization 

is not absolute.

Glucose transport is an important 

step in glucose metabolism and is 

controlled through a family of glu-

cose transporter proteins (GLUT1-

GLUT14), with GLUT1 being the 

predominant isoform in VSMC 

[23]. Th ese cells also express the in-

sulin-responsive glucose transporter 

GLUT4, which exhibits a signifi cant 

insulin-responsive glucose uptake 

similar to that of skeletal muscle 

and adipose tissue [2]. Besides the 

classical insulin receptor substrate 

1 (IRS1)/phosphoinositide 3-kinase 

(PI3K)/Akt signaling pathway, Ber-

gandi et al. have shown that in human 

VSMC derived from microarterioles, 

insulin also elicites glucose trans-

port and GLUT4 recruitment into 

the plasma membrane mediated by 

an increased synthesis of NO, which 

stimulates the production of cGMP 

and the subsequent activation of a 

cGMP-dependent protein kinase [4].

Few studies have examined the regu-

lation of GLUT1-mediated glucose 

uptake in VSMC. Activation of the 

PI3K/Akt pathway by growth factors 

induced phosphorylation and inacti-

vation of both glycogen synthase ki-

nase 3-β (GSK-3) and tuberous scle-

rosis complex 2 (TSC2) [8]. Chronic 

inhibition of GSK-3- resulted in in-

creased GLUT1 levels and enhanced 

glucose uptake on the aortic SMC line 

A7r5 [8]. Conversely, when the PI3K/

Akt pathway is inactivated, that is, on 

withdrawal of growth factors, GSK-3 

and TSC2 are activated resulting in 

TSC2-mediated inhibition of Rheb, 

which, in turn, inactivates the mam-

malian target of rapamycin (mTOR), 

leading to decreased GLUT1 content 

as well as decreased glucose uptake 

[8]. 

VSMC, accumulated in the neo-

intima aft er endothelial injury, have 

increased GLUT1 expression [16], 

increasing the contribution of glu-

cose to lactate and acetyl-CoA for-

mation, while glucose incorporation 

into glycogen did not change [16]. 

Moreover, increased GLUT1 expres-

sion in VSMC reduces apoptosis and 

induces proliferation by changing the 

expression of c-FLICE inhibitory pro-

tein (cFLIP) [53]. Vesely et al. showed 

that induction of cFLIP is essential for 

the antiapoptotic and cell prolifera-

tive eff ects in GLUT1-overexpressing 

VSMC subjected to serum withdraw-

al (Figure 2) [53].

Transgenic mice overexpressing 

GLUT1 in VSMC show a signifi cant 

increase in glucose uptake in VSMC 

without altering circulating concen-

trations of glucose, insulin, or non-es-

terifi ed fatty acids [1]. Th ese animals 

showed impaired contractility of the 

vessel wall and, in the absence of vas-

cular intervention, GLUT1 overex-

pression did not induce hypertrophy 

or proliferation of VSMC. In response 

to vascular injury, increased infl am-

mation and medial hypertrophy was, 

however, detected [1]. 

Exposure to high extracellular con-

centrations of glucose in vitro induces 

VSMC proliferation and increases 

growth rates [18, 35]. Th e enhanced 

cell proliferation is through increased 

DNA synthesis, which results in ac-

celeration of the cell cycle by stimulat-

ing the progression of cells from G1 to 

S/M phases [18]. Th is eff ect could be 

due, at least in part, to activation of al-

dose reductase [51] which is induced 

by hyperglycaemia (Figure 2) [41]. 

In agreement with that, Suzuki et al. 

showed that the stimulatory eff ect of 

diabetes in vivo on VSMC prolifera-

tion and accumulation is also likely to 

be mediated by altered plasma lipid 

profi les or indirectly through other 

cell types present in the lesion, rather 

Figure 2: Effect of increased glucose availability in cell proliferation. An 
increase in glucose uptake due to augmented extracellular glucose or 
GLUT1 levels, leads to VSMC proliferation and impaired contractility [16]. 
Two molecular mechanisms that mediate this process have been identi-
fi ed: the induction of cFLIP [53] and the activation of aldose reductase [51]. 
However, in vivo studies showed that an initial vascular injury is required 
to trigger these effects [1].
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than by a direct growth-promoting 

eff ect of hyperglycaemia [50], sug-

gesting that high glucose does not 

directly stimulate proliferation in the 

absence of injury [50].

Hyperglycaemia and 
IGF-1/insulin signaling

Atherosclerosis is more common 

in individuals with type 2 diabetes 

than in the general population [6, 

24]. VSMC proliferation, commonly 

observed in patients with type 2 dia-

betes, is probably triggered by a com-

bined eff ect of hyperinsulinemia with 

hyperglycaemia. Due to hyperinsu-

linemia, the main eff ects of insulin 

on VSMC proliferation depend on the 

transactivation of insulin-like growth 

factor receptor (IGF-1R) rather than 

activation of insulin receptor [43, 

54]. In fact, Avena et al. showed in 

infragenicular VSMC of diabetic pa-

tients, that insulin and glucose eff ect 

over proliferation and DNA synthesis 

rate are mediated through IGF-1R, 

but not insulin receptor [3]. Th is phe-

nomena could be due to substantial 

structural and functional homology 

of IGF-1R with IR, and because IGF-

1R is more abundant in VSMC than 

insulin receptor [20]. On the other 

hand, hyperglycaemia also alters 

the signal transduction of IGF-1R. 

When VSMC from porcine aorta 

were cultured in normal physiologi-

cal glucose (5.6 mM), they respond 

to IGF-1 with increased protein syn-

thesis, but they do not proliferate. 

In contrast, when these cells were 

cultured under hyperglycaemia (25 

mM) the responsiveness to IGF-1 was 

altered, resulting in the induction of 

VSMC proliferation and migration 

[40]. Once activated, IGF-1 recep-

tor (IGF-1R) phosphorylates down-

stream signaling molecules including 

IRS-1 and SHP substrate-1 [SHPS-1] 

promoting DNA synthesis and pro-

liferation [39, 40]. IRS-1 is, however, 

down-regulated in response to hy-

perglycaemia in VSMC [39], leading 

to reduced tyrosine phosphorylation 

of IRS-1 and the subsequent Grb2 

binding in response to IGF-1 [30]. 

In those conditions, phosphoryla-

tion of SHPS-1 predominates and 

the subsequent assembly of a signal-

ing complex that includes SHP-2, Src, 

Shc, and Grb2 enhances the ability of 

IGF-1 to activate the MAPK pathway, 

leading to increased proliferation and 

migration [39]. 

Th erefore, the imbalance between 

the PI3K and the MAPK pathways 

of insulin/IGF-1 signaling induced 

by hyperglycaemia may be the basis 

of the predominant vasoconstrictor 

and pro-atherogenic roles of insulin 

in these pathological conditions [33]. 

AMPK, mTOR and VSMC 
proliferation

Th e signaling pathways by which 

changes in glucose metabolism 

modulate VSMC biology are poorly 

understood. Recently, AMP activated 

protein kinase (AMPK) has emerged 

as a major metabolic regulator, and 

has been the subject of intense re-

search into obesity, diabetes and heart 

failure [46]. AMPK activation leads 

to the down-regulation of anabolic 

processes and the stimulation of cata-

bolic processes [46]. 

AMPK is present in VSMC and the 

predominant isoforms described 

are 1/1/ and 1/2/ [13, 19, 

46]. Metabolic stress of VSMC, such 

as increase of the AMP/ATP ratio, 

challenge with 2-deoxyglucose plus 

anoxia induces a rapid activation of 

AMPK [42]. AMPK activation inhib-

its VSMC proliferation and migration 

[19, 34, 37]. Suppression of AMPK ac-

tivity with AMPKα siRNA or AMPK-

dominant negative augments VSMC 

proliferation [37]. Th e mechanism 

of growth suppression induced by 

AMPK involves cell cycle arrest at G1 

by increasing CDKI p21CIP. Th is ac-

tion involves the upregulation of p53, 

which in turn inhibits the Rb phos-

phorylation required for cell cycle 

progression [19]. Th erefore, AMPK 

inhibition is a link between hyper-

glycaemia and induction of VSMC 

proliferation under stress conditions.

One possible link between AMPK 

activation and its growth arrest/an-

tiproliferative properties is its down-

stream target, the mTOR complex. 

In simplistic words, AMPK activates 

TSC1/2 complex, which in turn in-

activates mTOR [26]. Th e eff ect of 

this signaling pathway on VSMC 

have been extensively studied since 

rapamycin, a specifi c mTOR inhibi-

tor, was fi rst used on drug-eluting 

stents and was demonstrated to de-

crease the incidence of restenosis 

[33]. Rapamycin inhibits VSMC mi-

gration and proliferation in vitro and 

intimal hyperplasia in vivo and also 

induces diff erentiation in cultures of 

synthetic VSMC [34]. A critical step 

in VSMC proliferation and migration 

is the down-regulation of the cyclin-

dependent kinase inhibitor, p27Kip1. 

Elevated levels of this protein arrest 

VSMC in the G1-phase, block pro-

liferation, and inhibit cellular migra-

tion [35, 36]. Inhibition of mTOR by 

rapamycin induces inactivation of 

P70S6K and eIF4E, increasing the 

activity of p27Kip1 and RB, subse-

quently resulting in inhibition of 

VSMC proliferation [37, 38].

Mitochondria and VSMC 
proliferation

VSMC proliferation and apoptosis 

might be subject to mitochondrial 

control through the action of the 

large dynamin-related GTPase mi-

tofusin-2 (Mfn-2, also called HSG), 

a mitochondrial fusion protein. Chen 

et al. showed that Mfn-2 diminishes 

in highly proliferative aorta VSMC 

from atherosclerosis-prone or bal-
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loon-injured rats and that Mfn-2 

overexpression blocks proliferation 

of neointimal VSMC aft er balloon 

injury [12]. Moreover, Mfn-2 over-

expression also suppresses the pro-

liferating eff ects of oxidized-LDL in 

rabbit VSMC cultures. Th e induction 

of Mfn-2 in vivo reduces proliferating 

cell nuclear antigen (PCNA) positive 

cells at the neointimal and medial 

layers from rabbit carotid arteries 

subjected to air-drying damage [15]. 

Th ese data correlate with the fact that 

overexpression of Mfn-2 promotes 

mitochondrial-mediated apoptosis 

in VSMC cultures, and that Mfn-2 

is up-regulated and necessary for 

proxide-induced apoptosis albeit in 

a mitochondrial fusion-independent 

mechanism [14]. Th is anti-prolifera-

tive activity of Mfn-2 can be nega-

tively regulated by protein kinase A 

(PKA) as shown by the decreased 

PCNA positive cells and neointimal 

hyperplasia aft er balloon injury on 

rats with overexpression of a Mfn-2 

S422A mutant form (a variant that 

cannot be phosphorylated on Ser422, 

the residue within the PKA-phos-

phorylation consensus site) [56]. Th e 

authors suggest that the anti-prolifer-

ative/pro-apoptotic activity of Mfn-2 

might be because of down-regulation 

of the Raf/MAPK pathway or control 

over apoptotic-related proteins, given 

that cells overexpressing Mfn-2 ex-

hibit lower levels of ERK-1/2 and Akt 

in response to certain hormones [12, 

14, 15] and an increased Bax/Bcl-2 

ratio (Figure 3) [14].

During hypoxia most blood vessels 

relax but the pulmonary arteries con-

strict, ultimately becoming occluded 

by excessive SMC proliferation, a con-

dition that causes pulmonary hyper-

tension (PAH). Th is is in part because 

the mitochondria of the pulmonary 

artery smooth muscle cells (PASMC) 

are diff erent from those of the sys-

temic arterial smooth muscle cells 

(SASMC). SASMC and PASMC have 

diff erent levels of electron transport 

chain proteins, antioxidant enzymes, 

respiration rates, and mitochondrial 

membrane potential [32]. During 

the incipient pulmonary hyperten-

sion, the mitochondria from PASMC 

become hyperpolarized and generate 

less reactive oxygen species, indices 

of a shift  in metabolism. In wild-type 

mice, these changes are accompanied 

by an excessive PASMC prolifera-

tion, decrease in glucose oxidation 

and increased glycolysis [48]. When 

fatty acid oxidation is abolished by 

deletion of the gene for malonyl-

coenzyme A decarboxylase, thereby 

shift ing the metabolic balance back 

to glucose oxidation, the mice do not 

develop pulmonary hypertension and 

less or no PASMC proliferation is ob-

served [48]. Sutendra et al. suggest 

that the shift  from glucose oxidation 

towards glycolysis and fatty acid us-

age in the PASMC during hyperten-

sion is accompanied by alterations in 

mitochondrial function [48]. Th ese 

changes could be responsible for the 

excessive proliferation of PASMC 

(Figure 3).

Recent work from our group indi-

cates that the association between 

two organelles such as endoplasmic 

reticulum and mitochondria regulate 

mitochondrial energetic function, es-

pecially as a novel adaptative mecha-

nism during ER stress [7]. Interest-

ingly, when the association of both 

organelles is inhibited, by a reduced 

expression of the protein Mfn-2, the 

metabolic changes are abrogated [7]. 

When ER stress is induced by chronic 

normobaric hypoxia in mice PASMC, 

mitochondrial Ca2+ and 2-oxogluta-

rate content and pyruvate dehydro-

genase activity were decreased, de-

picting mitochondrial malfunction 

under these conditions [49]. Sutendra 

et al. show that the Nogo-B protein 

is activated by hypoxia only in lung 

vessels, where it disrupts the contacts 

between the ER and the mitochondria 

[49]. Th is alteration disrupts essen-

tial mitochondrial functions, causing 

overgrowth of PASMC and ultimately 

PAH. Th e protein Nogo controls the 

shape of the ER, forming its tubes and 

tunnels, and inhibits apoptosis during 

vascular remodeling [49]. 

Conclusions

VSMC proliferation plays a key role 

in atherogenesis and restenosis. In-

sulin signaling, high glucose level, 

increased glucose oxidation, AMPK 

inactivation and mitochondrial dys-

function are metabolic features that 

control VSMC phenotype. Clinical 

therapy targeting of mTOR with ra-

pamycin [25, 38, 47], mitochondrial 

function with dichloroacetate [31] 

or trimetazidine [48] has been suc-

cessfully been used to avoid VSMC 

or PASMC proliferation, mostly in 

animal models. To our knowledge, 

there are few studies on human pa-

tients that elucidate VSMC prolifera-

tion mechanism. Even when clinical 

analyses suggest a clear association 

between diabetes/insulin resistance 

and VSMC phenotype, there are not 

cause-eff ect studies regarding this is-

sue [3]. For instance, Creager’s group 

showed in the 90’s that diabetic pa-

tients had lower vasodilation re-

sponses to diff erent agents, such as 

metacholine and the NO-donor ni-

troprusside, with some diff erences 

observed in insulin-dependent and 

non-insulin-dependent patients, 

suggesting a diminished response to 

endothelial-derived vasomodulators 

[21, 55]. Other works have shown that 

SMC derived from saphenous vein 

of type 2 diabetic patients had lower 

proliferative response to calf serum, 

although enhanced migratory prop-

erties [29], and that internal mamma-

ry arteries of diabetic patients present 

resistance to apoptosis [44]. However, 

only mTOR-dependent signaling has 

been proven to modulate VSMC phe-

notype in humans, as rapamycin has 

been tested in human specifi cally in 
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drug eluting stents to avoid resteno-

sis [22, 52]. Interventions on other 

signaling pathways to control VSMC 

proliferation on humans have not yet 

been described.
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