
Genomic and SNP Analyses Demonstrate a Distant
Separation of the Hospital and Community-Associated
Clades of Enterococcus faecium
Jessica Galloway-Peña1,2,3., Jung Hyeob Roh1,2., Mauricio Latorre4, Xiang Qin5, Barbara E. Murray1,2,3*

1 Division of Infectious Disease, Department of Medicine, University of Texas Medical School, Houston, Texas, United States of America, 2 Center for the Study of Emerging

and Reemerging Pathogens, University of Texas Medical School, Houston, Texas, United States of America, 3 Department of Microbiology and Molecular Genetics,

University of Texas Medical School, Houston, Texas, United States of America, 4 Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago,
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Abstract

Recent studies have pointed to the existence of two subpopulations of Enterococcus faecium, one containing primarily
commensal/community-associated (CA) strains and one that contains most clinical or hospital-associated (HA) strains,
including those classified by multi-locus sequence typing (MLST) as belonging to the CC17 group. The HA subpopulation
more frequently has IS16, pathogenicity island(s), and plasmids or genes associated with antibiotic resistance, colonization,
and/or virulence. Supporting the two clades concept, we previously found a 3–10% difference between four genes from HA-
clade strains vs. CA-clade strains, including 5% difference between pbp5-R of ampicillin-resistant, HA strains and pbp5-S of
ampicillin-sensitive, CA strains. To further investigate the core genome of these subpopulations, we studied 100 genes from
21 E. faecium genome sequences; our analyses of concatenated sequences, SNPs, and individual genes all identified two
distinct groups. With the concatenated sequence, HA-clade strains differed by 0–1% from one another while CA clade
strains differed from each other by 0–1.1%, with 3.5–4.2% difference between the two clades. While many strains had a few
genes that grouped in one clade with most of their genes in the other clade, one strain had 28% of its genes in the CA clade
and 72% in the HA clade, consistent with the predicted role of recombination in the evolution of E. faecium. Using estimates
for Escherichia coli, molecular clock calculations using sSNP analysis indicate that these two clades may have diverged $1
million years ago or, using the higher mutation rate for Bacillus anthracis, ,300,000 years ago. These data confirm the
existence of two clades of E. faecium and show that the differences between the HA and CA clades occur at the core
genomic level and long preceded the modern antibiotic era.
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Introduction

Over the past 30 years, the epidemiology of enterococcal

infections has changed with Enterococcus faecium progressively

increasing from causing ,5% of enterococcal infections to now

causing ,35% of these infections [1,2]. Several studies have

shown that E. faecium strains that cause hospital-associated

infections are often different from strains that colonize the

gastro-intestinal tracts of community-based healthy individuals

and food animals, with the former having higher frequencies of

ampicillin resistance, espefm, hylefm, microbial surface components

recognizing adhesive matrix molecules (MSCRAMMs), and the

presence of IS16 [1,3,4,5,6,7,8,9,10,11]. Early population-based

studies by Willems and colleagues using multi-locus sequence

typing (MLST) and the algorithm eBURST suggested that strains

from nosocomial infections belonged to a distinct genetic lineage

named Clonal Complex 17 [5,12,13]. It has since been reported

using Bayesian modeling and other methods that eBURST-based

clustering is inaccurate for determining evolutionary decent for

species, like E. faecium, with high levels of recombination

[14,15,16,17]. Nonetheless, other studies based on comparative

genome array, amplified fragment length polymorphism (AFLP),

and pyrosequencing have also indicated the existence of two

different subpopulations or ‘‘clades’’ in which the clinical, hospital-

associated (HA) strains belong to a group that is distinct from the

group that consists primarily of non-clinical, community-associat-

ed (CA) strains, such as those found in the stools of healthy

individuals in the community [6,18].

Some of the aforementioned publications have suggested that

the presence of specific accessory genes and IS elements in HA

strains has been the driving force behind the evolution of this

organism [6,18]. It has been hypothesized that these elements

contributed to the ecological success of E. faecium and that

acquiring adaptive mechanisms under selective pressure was

pivotal for survival and proliferation in the hospital environment

and/or in patients [6,18]. That is, the acquisition of genes, rather
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than evolutionary descent, was predicted to be the driving force in

determining the fitness of E. faecium strains [6,18]. Although the

acquisition of antibiotic resistance and virulence/fitness determi-

nants has almost certainly contributed to the persistence and

success of some members of this species in the nosocomial

environment, there may be fundamental differences between the

two subpopulations at the level of the core genome that have also

contributed to the success of hospital-associated strains. Funda-

mental differences have been suggested by analysis of pyrose-

quenced genomes [18] and by our previous study’s findings that

strains separated clearly into two distinct groups based on four

genes, with a 3% nucleotide difference for gls20, 5% for pbp5, 7%

for pbp2, and 10% for wlcA between these genes from strains in the

two groups [19].

In this study, genomic, SNP, and phylogenetic analyses showed

that the differences between HA-clade strains and CA-clade

strains are found throughout the core genome. In addition,

molecular clock estimations indicate that the divergence of these

two clades was a distant evolutionary event.

Results

Analysis of 100 genes from 21 E. faecium genomes
illustrates the differences in core genome components of
two clades

A total of 1608 orthologs (defined as .80% identity and

aligning to .60% match length) were common to all 21 genomes;

638 of these had the same DNA length in the available sequences

from all the genomes analyzed. The 100 gene sequences chosen

(Figure 1 and Table S1) had $95% identity and were

concatenated into a 106,818 bp nucleotide sequence for each of

the strains (information on genomes listed in Table 1). The

comparisons between all the strains were determined and are

shown in Table 2. The nucleotide percent identities among the

strains within the CA clade (in yellow) ranged from 98.9%–100%,

and the divergence scores from 0–1.2; the nucleotide percent

identities between the strains in the HA clade (in green) range from

99–100% and the divergence scores from 0–1 (Table 2). However,

when the two clades were compared to each other, the percent

identities ranged from 95.8–96.5% and the divergence scores from

3.6–4.3 (Table 2). Therefore, 1141733, Com12, Com15, E980,

and TX1330 are more closely related to each other than to the

other 16 E. faecium strains and in turn, these 16 strains were found

to be more related to each other than to the above 5 strains,

reinforcing the grouping into two distinct clades.

The phylogenetic tree constructed using the concatenated

sequences is shown in Figure 2. The tree separates the genomes

into two distinct groups with one group consisting primarily of the

strains from healthy volunteer fecal samples (Com12, Com15,

TX1330, and E980), while most of the strains from clinical

samples were in the other branch. Similar to previous terminology

[6,18], we designated these two branches the community-

associated (CA) clade and the hospital-associated (HA) clade,

respectively. There were, however, two exceptions. Strain

1141733 (which is a blood culture from a hospitalized patient)

grouped in the branch with the commensal, fecal strains, and

E1039, which is a healthy volunteer fecal sample, grouped with the

clinical strains.

One E. faecium strain, 1231408 (in blue), isolated from the blood

of a hospitalized patient, was found to have a ‘‘hybrid’’ genome

sequence of both groups. The sequence between ORF No. 10017

and 10683 of 1231408 was found to be more similar to the

sequences of strains in the CA clade whereas the rest of the

1231408 sequence was more similar to E. faecium strains in the HA

clade. The overall percent identities of 1231408 ranged from

98.4–98.9% against HA clade strains and 96.7–96.8% against CA

clade strains with divergence scores ranging from 1.1–1.6 against

HA clade strains, and 3.3–3.5 against CA clade strains (Table 2).

The sequences of the individual genes from each of the 21

genomes were also compared and UPGMA trees constructed (data

not shown) to create 100 individual trees; 92 of the 100 genes split

the genomes into two distinct groups, while the other 8 genes were

either 100% conserved or the sequences were not distinct enough

to give two clear groupings (Table S1). For each genome, we

counted the genes that segmented into the HA clade or the CA

clade (Table 3). The CA clade strains ranged from strain 1141733

with 92 of 92 genes in the CA clade to E980 with 84/92 genes in

the CA clade and 8/92 genes within the HA clade. The HA clade

strains ranged from D344SRF, TX82, TX0133, E1162, and C68,

all with 92/92 genes grouping with the HA clade strains, to E1039

with 86/92 genes grouping with the HA clade and 6/92 genes in

the CA clade. The hybrid strain 1231408 had 66/92 genes group

with the HA clade and the other 26 with the CA clade, consistent

with the percent identity and divergence scores above.

The encoded proteins of the 100 genes were also concatenated,

resulting in a 35,606 amino acid sequence. The percent identities

and divergence scores were tabulated as well as a UPGMA

phylogenetic tree constructed for the concatenated protein

sequence (Table S2 and Figure S1, respectively). As expected,

the results were similar to the nucleotide results, grouping the

strains into two distinct clades.

SNP analysis emphasizes clade-specific differences
5,932 SNP sites (5.6% of the total sequence) were identified in

the 106,818 bp aligned sequences. Among these, 929 SNPs were

strain specific SNPs (identified in only one strain) and the

remaining 5,003 SNPs were identified in two or more E. faecium

strains. Each SNP was concatenated into a continuous sequence;

the percent identities and divergent scores for this analysis can be

seen in Table S3 and the UPGMA tree seen in Figure S2. The

percent identities of the concatenated SNP sequences among the

CA clade strains ranged from 79–100% and the divergence scores

from 0–26. Within the HA clade, the percent identities of the SNP

sequences ranged from 82–100% and the divergence scores from

0–21. When the two clades were compared by pair-wise analysis of

each strain to one another, the percent identities ranged from 24–

37% and the divergence score was 350. For the hybrid strain

1231408, the identities ranged from 38–42% and the divergence

scores 23–39 with CA clade strains and 71–81% and 350 with HA

clade strains.

Of the 5,932 SNPs, 5,147 (86.8%) were synonymous SNPs,

whereas 785 (13.2%) were non-synonymous and found in 87 out

of the 100 genes. Using the criteria described in the methods, 479

of the 785 non-synonymous SNPs were considered clade specific

and were found in 72 of the 100 genes (Table S1). When searching

through the KEGG map, the clade specific SNPs were found in 33

different metabolic pathways and 5 different genetic/environmen-

tal/cellular processes (Table S1).

Molecular clock determination using sSNP analysis shows
an evolutionarily distant separation between the CA and
HA clades

We estimated the time of divergence using sSNP [20,21,22,23].

The median number of sSNP in the CA clade was 979 (ranging

from 1–1077), the median number of sSNPs in the HA clade was

401 (ranging from 2–916), and the median number of sSNPs

between the two clades was 3812 (ranging from 3368–4065).

Hospital and Community Clades of E. faecium
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These numbers were used to calculate the molecular clock and the

results are shown in Table 4. Using the E. coli synonymous mutation

rate and a range of generation times of 100–300 per year, the

molecular clock determination estimated that strains within the CA

clade diverged from each other on the average of ,300,000 to

900,000 years ago, whereas strains within the HA clade diverged on

the average of ,100,000–300,000 years ago. When we used the

same formula to calculate the divergence between the two clades, it

is estimated that the two clades diverged between one million and

three million years ago. Even with the faster mutational rate

previously used with B. anthracis, the time of divergence was

estimated at 300,000 years between the two clades (Table 4).

16S rRNA and ribosomal protein analyses show clade-
specific SNPs and a similar time of divergence to the SNP
analysis

One specific SNP at base-pair 61 out of 1569 differed between

the strains following the CA and HA clade grouping as seen in the

other analyses (Figure S3A). CA clade strains had a thymine at this

Figure 1. Position of the 100 genes analyzed on the TX16 (DO) chromosome. The chromosomal map of the Enterococcus faecium genome
of the endocarditis isolate TX16, commonly referred to as DO. The arrows represent the 100 genes chosen for clade and SNP analysis and their
position on the chromosome. The red arrows depict genes transcribed in the forward orientations, and blue arrows depict genes transcribed in the
reverse orientation. The general location of a few subset of the 100 genes are labeled.
doi:10.1371/journal.pone.0030187.g001

Hospital and Community Clades of E. faecium
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position, while HA clade strains had an adenine. Two other SNPs

occurred at positions 103 and 193 in some of the strains (Figure

S3A). Ribosomal protein L32 gene (rpmF) (Figure S3B), as well as

ribosomal proteins L35, L21, S18 and S16 showed that all CA

clade strains differed from the HA clade strains by one to two

nucleotides and there were no differences within a given clade.

These results corroborated the molecular clock determination by

SNP analysis. Using estimates of approximately 1% change every

25 million years in the 16S rRNA [24,25,26], a one to two

nucleotide change out of 1569 bp (0.06–0.1%) would approximate

the time of divergence of the two clades as somewhere between 1.5

million to 2.5 million years ago.

Discussion

A number of previous publications have demonstrated differ-

ences between many hospital-associated and community-associat-

ed E. faecium strains, including differences in the rates of putative

virulence genes, antibiotic resistance determinates, IS elements

and transposons [1,3,5,6,8,9,10,11,13,18]. Many of these, howev-

er, are part of the accessory genome presumably acquired through

lateral gene transfer. Pyrosequencing and microarray studies also

noted the genomic differences between such strains, suggesting the

existence of two different clades, while still emphasizing the

importance of the accessory genome differences in distinguishing

these subpopulations [6,18]. In a recent publication, we noted a

large intra-species difference (3–10%) in the nucleotide sequences

of pbp5, pbp2, wlcA, and gls20 between HA clade and CA clade

strains [19]. Interestingly, we subsequently noted an ,6%

difference (data not shown) between HA clade and CA clade

strains in the purK allele (used for MLST) which also separated the

strains into two distinct groups using UPGMA. Although not all

HA-clade strains contained the purK1 allele, we found that these

strains were still distinctly different from strains in the CA clade

(data not shown). With the advent of numerous draft genome E.

faecium sequences and one closed E. faecium genome sequence

(manuscript in preparation) and the fact that extensive analysis

had yet to be reported regarding the core genomic differences, we

sought to determine the extent of the differences between the two

groups at a more fundamental level.

Consistent with our previous study of four genes [19] as well as

consistent with the division seen in the phylogenomic tree for 7 of

these strains using a concatenation of 649 proteins by van Schaik

et al. [18], the difference in the concatenated sequences of 100

genes between the two clades is approximately 3.5–4.2%, clearly

establishing the core genomic differences between these two

subpopulations. The fact that .90% of the 100 core genes

separated into two distinct groups and that the associated amino

acid changes were found in most of the proteins analyzed and in a

wide variety of metabolic and cellular processes (Table 3 and

Table S1) , shows that there are likely differences between the two

clades at a fundamental level. In addition, a relatively large

number of the sequence changes between the strains (,60%) were

clade-specific changes. Changes in metabolism and cellular

processes could be another reason why some strains adapt better

to the hospital environment.

Not all strains that grouped genetically with the strains of the

HA or CA clades had a hospital or community origin. One blood

culture strain from a hospitalized patient, 1141733, always

associated with strains in the CA clade, and E1039, a healthy

Table 1. The sequence type, country, date, and source of isolation for the 21 sequenced E. faecium genomes used in this study.

Strain STa Countryb year Source Accession #

C68 16 USA (OH) 1998 Endocarditis patient (blood) ACJQ00000000

Com12 107 USA 2006 Healthy volunteer fecal sample ACBC00000000

Com15 583 USA 2006 Healthy volunteer fecal sample ACBD00000000

D344SRF 21 France 1985 Clinical isolate ACZZ00000000

E980 94 Netherlands 1998 Healthy volunteer fecal sample ABQA01000001

E1039 42 Netherlands 1998 Healthy volunteer fecal sample ACOS00000000

E1071 32 Netherlands 2000 Hospitalized patient fecal sample ABQI01000001

E1162 17 France 1997 Blood Culture of Hospitalized Patient ABQJ00000000

E1636 106 Netherlands 1961 Blood Culture of Hospitalized Patient ABRY01000001

E1679 114 Brazil 1998 Swab of Vascular Catheter Tip ABSC01000001

TX16 18 USA (TX) 1992 Endocarditis patient (blood) ACIY00000000

TX82 17 USA (TX) 1999 Endocarditis patient (blood) AEBU00000000

TX0133 17 USA (TX) 2006 Endocarditis patient (blood) AECH00000000

TX1330 107 USA 1994 Healthy volunteer fecal sample ACHL00000000

U0317 78 Netherlands 2005 UTI of Hospitalized Patient (Urine) ABSW01000001

1141733 327 unk. unk. Blood Culture of Hospitalized Patient ACAZ00000000

1230933 18 unk. unk. Wound Swab of Hospitalized Patient ACAS00000000

1231408 582 unk. unk. Blood Culture of Hospitalized Patient ACBB00000000

1231410 17 unk. unk. Skin and Soft Tissue Infection ACBA00000000

1231501 52 unk. unk. Blood Culture of Hospitalized Patient ACAY00000000

1231502 203 unk. unk. Blood Culture of Hospitalized Patient ACAX00000000

aST is the sequence type by multilocus sequence typing.
b‘‘unk.’’ means the information for this isolate is unknown.
doi:10.1371/journal.pone.0030187.t001

Hospital and Community Clades of E. faecium

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e30187



T
a

b
le

2
.

P
e

rc
e

n
t

id
e

n
ti

ty
an

d
d

iv
e

rg
e

n
ce

sc
o

re
m

at
ri

x
o

f
th

e
1

0
0

co
n

ca
te

n
at

e
d

g
e

n
e

n
u

cl
e

o
ti

d
e

se
q

u
e

n
ce

.

P
e

rc
e

n
t

Id
e

n
ti

ty
(%

)

D
iv

e
r-

g
e

n
ce

1
1

4
1

7
3

3
a

C
o

m
1

2
C

o
m

1
5

E
9

8
0

T
X

1
3

3
0

1
2

3
1

4
0

8
b

1
2

3
0

9
3

3
c

1
2

3
1

4
1

0
1

2
3

1
5

0
1

1
2

3
1

5
0

2
C

6
8

D
3

4
4

S
R

F
T

X
1

6
E

1
0

3
9

E
1

0
7

1
E

1
1

6
2

E
1

6
3

6
E

1
6

7
9

T
X

8
2

T
X

0
1

3
3

A
U

0
3

1
7

1
1

4
1

7
3

3
99

.8
98

.9
98

.8
99

.8
9

6
.8

9
5

.9
9

6
9

6
.2

9
6

9
5

.8
9

5
.9

9
5

.9
9

6
.1

9
6

9
5

.9
9

6
9

5
.9

9
5

.9
9

5
.8

9
6

C
o

m
1

2
0.

2
98

.9
98

.9
10

0
9

6
.7

9
6

9
6

9
6

.2
9

6
9

5
.8

9
5

.9
9

6
9

6
.2

9
6

9
5

.9
9

6
9

6
9

5
.9

9
5

.9
9

6

C
o

m
1

5
1.

1
1.

1
99

.2
98

.9
9

6
.6

9
5

.9
9

6
9

6
.2

9
6

.1
9

5
.8

9
5

.9
9

5
.9

9
6

.2
9

6
.1

9
6

9
6

.1
9

6
9

6
9

5
.9

9
6

.1

E
9

8
0

1.
2

1.
1

0.
8

98
.9

9
6

.6
9

6
.2

9
6

.3
9

6
.5

9
6

.3
9

6
9

6
.2

9
6

.2
9

6
.5

9
6

.3
9

6
.2

9
6

.3
9

6
.2

9
6

.2
9

6
.2

9
6

.3

T
X

1
3

3
0

0.
2

0
1.

1
1.

1
9

6
.7

9
6

9
6

9
6

.2
9

6
9

5
.8

9
5

.9
9

6
9

6
.2

9
6

9
5

.9
9

6
9

6
9

5
.9

9
5

.9
9

6

1
2

3
1

4
0

8
3

.3
3

.4
3

.5
3

.5
3

.4
9

8
.9

9
8

.8
9

8
.4

9
8

.9
9

8
.7

9
8

.8
9

8
.9

9
8

.5
9

8
.8

9
8

.9
9

8
.5

9
8

.7
9

8
.9

9
8

.9
9

8
.9

1
2

3
0

9
3

3
4

.2
4

.2
4

.2
3

.9
4

.2
1

.1
9

9
.9

9
9

.2
9

9
.8

9
9

.6
9

9
.7

1
0

0
9

9
.2

9
9

.6
9

9
.8

9
9

.4
9

9
.6

9
9

.8
9

9
.8

9
9

.8

1
2

3
1

4
1

0
4

.1
4

.1
4

.1
3

.9
4

.1
1

.2
0

.1
9

9
.2

9
9

.8
9

9
.7

9
9

.6
9

9
.9

9
9

.2
9

9
.6

9
9

.9
9

9
.3

9
9

.5
9

9
.9

9
9

.8
9

9
.8

1
2

3
1

5
0

1
3

.9
3

.9
3

.9
3

.6
3

.9
1

.6
0

.8
0

.9
9

9
.1

9
9

9
9

.3
9

9
.2

9
9

.2
9

9
.1

9
9

.2
9

9
.4

9
9

.2
9

9
.2

9
9

.3
9

9
.1

1
2

3
1

5
0

2
4

.1
4

.1
4

.1
3

.8
4

.1
1

.1
0

.2
0

.2
0

.9
9

9
.5

9
9

.5
9

9
.8

9
9

.2
9

9
.7

9
9

.7
9

9
.2

9
9

.5
9

9
.7

9
9

.7
1

0
0

C
6

8
4

.4
4

.4
4

.4
4

.1
4

.4
1

.3
0

.4
0

.3
1

0
.5

9
9

.5
9

9
.6

9
9

9
9

.5
9

9
.8

9
9

.2
9

9
.4

9
9

.8
9

9
.7

9
9

.5

D
3

4
4

S
R

F
4

.3
4

.2
4

.2
3

.9
4

.2
1

.2
0

.3
0

.4
0

.7
0

.5
0

.5
9

9
.7

9
9

.2
9

9
.5

9
9

.7
9

9
.7

9
9

.7
9

9
.7

9
9

.8
9

9
.5

T
X

1
6

4
.2

4
.2

4
.2

3
.9

4
.2

1
.1

0
0

.1
0

.8
0

.2
0

.4
0

.3
9

9
.2

9
9

.6
9

9
.8

9
9

.4
9

9
.5

9
9

.8
9

9
.8

9
9

.8

E
1

0
3

9
4

4
3

.9
3

.7
4

1
.5

0
.8

0
.8

0
.8

0
.8

1
0

.8
0

.8
9

9
.2

9
9

.2
9

9
.5

9
9

.2
9

9
.2

9
9

.2
9

9
.2

E
1

0
7

1
4

.1
4

.1
4

.1
3

.8
4

.1
1

.2
0

.4
0

.4
0

.9
0

.3
0

.5
0

.5
0

.4
0

.8
9

9
.7

9
9

.3
9

9
.6

9
9

.7
9

9
.6

9
9

.7

E
1

1
6

2
4

.2
4

.2
4

.2
3

.9
4

.2
1

.1
0

.2
0

.1
0

.8
0

.3
0

.2
0

.3
0

.2
0

.8
0

.3
9

9
.4

9
9

.6
1

0
0

9
9

.9
9

9
.7

E
1

6
3

6
4

.1
4

.1
4

.1
3

.8
4

.1
1

.5
0

.6
0

.7
0

.6
0

.8
0

.8
0

.3
0

.6
0

.5
0

.7
0

.6
9

9
.5

9
9

.4
9

9
.5

9
9

.2

E
1

6
7

9
4

.2
4

.2
4

.2
3

.9
4

.2
1

.3
0

.4
0

.5
0

.8
0

.5
0

.6
0

.3
0

.5
0

.8
0

.4
0

.4
0

.5
9

9
.6

9
9

.7
9

9
.5

T
X

8
2

4
.2

4
.2

4
.2

3
.9

4
.2

1
.1

0
.2

0
.1

0
.8

0
.3

0
.2

0
.3

0
.2

0
.8

0
.3

0
0

.6
0

.4
9

9
.9

9
9

.7

T
X

0
1

3
3

A
4

.3
4

.3
4

.3
4

4
.3

1
.1

0
.2

0
.2

0
.7

0
.3

0
.3

0
.2

0
.2

0
.8

0
.4

0
.1

0
.5

0
.3

0
.1

9
9

.7

U
0

3
1

7
4

.1
4

.1
4

.1
3

.8
4

.1
1

.2
0

.2
0

.2
0

.9
0

0
.5

0
.5

0
.2

0
.8

0
.3

0
.3

0
.8

0
.5

0
.3

0
.3

a
T

h
e

n
u

m
b

e
rs

in
it

al
ic

s
(u

p
p

e
r

le
ft

)
ar

e
th

e
p

e
rc

e
n

t
id

e
n

ti
ty

an
d

d
iv

e
rg

e
n

ce
sc

o
re

s
o

f
th

e
C

A
st

ra
in

s.
b

T
h

e
n

u
m

b
e

rs
in

b
o

ld
ar

e
th

e
p

e
rc

e
n

t
id

e
n

ti
ty

an
d

d
iv

e
rg

e
n

ce
sc

o
re

s
o

f
th

e
h

yb
ri

d
st

ra
in

.
c
T

h
e

n
u

m
b

e
rs

in
re

g
u

la
r

te
xt

(d
o

w
n

ri
g

h
t)

ar
e

th
e

p
e

rc
e

n
t

id
e

n
ti

ty
an

d
d

iv
e

rg
e

n
ce

sc
o

re
s

o
f

th
e

H
A

st
ra

in
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
3

0
1

8
7

.t
0

0
2

Hospital and Community Clades of E. faecium

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e30187



volunteer fecal sample grouped with the HA clade. The fact that

two of the 21 strains did not separate into the CA or HA clade

according to origin demonstrates the complex ecology of

colonizing and infecting E. faecium. A strain that did not fall

strictly into one or the other clade was 1231408, which we call a

hybrid strain (Table 2 and Table 3). In the SNP analysis, we were

able to see that this strain recombined somewhere around ORF

10683, as the first part of its concatenated SNP sequence before

ORF 10683 showed near identity with the SNP sequence of CA

clade strains, and, after that point, its sequence showed near

identity to the concatenated SNP sequence of the HA strains.

Other evidence of recombination lies in the fact that, frequently, a

few genes from a strain in one clade grouped with genes in the

other clade a limited number per strain.

We also sought to estimate the time of separation of the HA and

CA clades. A number of publications have tried to infer the

molecular evolution of bacteria [20,21,23,24,25,26], with two

main strategies having been used: 16S rRNA and synonymous

SNPs for the whole genome. Our 16S rRNA analysis showed a

0.06% to 0.1% difference between the two clades; this is a

relatively large percentage within a species (Table 4 and Figure S3)

and estimates the time of divergence between the clades as

between 1.5–2.5 million years ago. However, since recent studies

have expressed concerns about 16S rRNA being a reliable

chronometer for bacterial evolution we also used the sSNPs to

calculate the molecular clock. It has been suggested that the sSNP

sites of protein-encoding genes reflect the underlying rate of

mutation more reliably because they are not affected by selection

or genetic drift and are distributed across genomes [22,27]. This

methodology seems to be especially useful for species with high

levels of lateral gene transfer, such as E. faecium [22]. Whole

genome SNP phylogenies have been shown to be highly accurate

in terms of phylogeny and are more robust in defining deeper and

higher resolution relationships among closely related individuals

[22]. In a recent publication, it was determined that a select

number of SNPs was sufficient to accurately determine the current

phylogenetic position of any B. anthracis strain and could replace a

tedious genome-wide SNP analysis, indicating that our approach,

using 100 genes present in all strains and spread throughout the

chromosome [27], was justified.

According to our sSNP molecular clock estimate using E. coli

parameters, strains in the HA clade diverged from each other

,100,000 to 300,000 years ago, whereas strains in the CA clade

diverged from each other ,300,000 to 900,000 years ago,

corroborating the idea that HA clade strains in the available

collection stem from a relatively recent ancestor. The sSNP

Figure 2. UPGMA phylogenetic tree of the concatenated 100 gene sequence (106,818 bp). The results are based on a pair-wise analysis of
the concatenated 100 gene nucleotide sequence for each of the 21 E. faecium strains using the Poisson correction method in MEGA4.0.2 software. An
UPGMA tree was constructed depicting the evolutionary distance between these sequences. The tree is drawn to scale with the branch lengths
representing the evolutionary distances, the scale can be seen at the bottom of the tree.
doi:10.1371/journal.pone.0030187.g002
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analysis estimates, as well as the 16S rRNA analysis, the split

between the two clades as somewhere around 1–3 million years

ago. Even using the higher mutational rate used for B. anthracis, the

estimated divergence time was 300,000 years ago. This highlights

the fundamental core genomic differences between the two clades

that could (in addition to the accessory genomic differences) be a

reason why some strains adapt to the hospital environment and

become opportunistic pathogens, while other strains do not.

The estimates of the time of divergence above presume that the

rate of evolution of the HA and CA strains has remained constant

over time. However, the transition to the pathogenic role may be

associated with an increase in the mutation rate through selection

of mutator strains. Thus, an alternative hypothesis to a gradual

evolution of these clades from a common ancestor is that a well-

adapted strain entered a new niche and then accumulated

spontaneous mutations in genes, for example, mismatch repair

genes, that then allowed the strain to go through one or more

periods of rapid evolution. Of interest, the mutS gene was one of

the 100 genes analyzed and it also showed prominent differences

between the two clades, with 9 amino acid differences although

their effect on function is not known. Nonetheless, although the

estimate for the time of divergence is a very crude one (as it is hard

to determine the divergence of a species without a fossil record), it

suggests, even using mutation rates up to 1000 fold higher than

estimated for B. anthracis, that the CA clade and HA clade isolates

diverged long before the modern antibiotic era and tertiary care

environment.

In summary, a number of studies have previously shown that E.

faecium hospital-associated strains differ from many community/

commensal strains [1,3,5,6,7,8,9,10,11,19] and it has been

postulated that the driving force behind the recent success of this

opportunistic pathogen in hospitals was the gain of mobile genetic

elements carrying antibiotic resistance determinants, virulence

and/or fitness factors [6,18]. In this paper, we have shown, using

100 core genes, that E. faecium strains belong to one of two

subpopulations, or clades, that differ by ,3.5–4.2% at the DNA

level and that the estimated time of divergence between these two

clades is at least 300,000 years ago, based on estimates for B.

anthracis and/or E. coli rates of mutation and generation times in

nature. Furthermore, the HA clade strains are more closely related

to each other and diverged from each other more recently

compared to the CA clade strains. These data further clarify the

evolutionary history of hospital-associated E. faecium and show the

extent of the differences between the two clades at the core

genomic, protein, and synonymous SNP, providing evidence that

acquired elements are not the only factors behind the recent

success of this opportunistic organism and suggest that divergence

between and within the clades took place many years ago.

Materials and Methods

Selection of 100 orthologs
Genome sequences of 21 E. faecium available from NCBI were

studied (Table 1); TC6, also available, was not included here

because it is a transconjugant of one of the other 21 genomes. To

investigate whether there is a clear separation at the genome level

into distinct groups, we selected 100 orthologs. These 100

orthologs were selected based on position (spread over different

regions of the chromosome (manuscript in preparation)) and their

presence in all strains as housekeeping genes or putative non-

antigenic genes, including ribosomal proteins. Ortholog groups of

E. faecium genomes were identified using OrthoMCL program

using BLASTP E value of 1e-5 and default MCL inflation

Table 3. Analysis of 92 individual genes.

Community Clade Hospital Clade Hybrid Clade

1141733 (92+0)a C68 (0+92) 1231408 (26+66) 66)

Com12 (91+1) D344SRF (0+92)

TX1330 (91+1) E1162 (0+92)

Com15 (90+2) TX82 (0+92)

E980 (84+8) TX0133 (0+92)

TX16 (1+91)

1230933 (1+91)

1231410 (1+91)

E1071 (2+90)

E1636 (2+90)

E1679 (4+88)

U0317 (4+88)

1231502 (4+88)

E1039 (5+87)

1231501 (5+87)

aNumbers in parentheses are given as number of genes which grouped with
the community-associated clade plus the number of genes that grouped with
the hospital-associated clade.

doi:10.1371/journal.pone.0030187.t003

Table 4. Molecular clock/time of divergence estimates based on sSNP analysis within and between clades.

Based on the mutation rate of Escherichia coli (1.4610210)

Generations/yr Hospital Clade Community Clade Two clades

100 380,535 929,036 3,617,453

200 190,267 464,518 1,808,726

300 126,845 309,679 1,205,818

Based on the mutation rate of Bacillus anthracis (5.2610210)

Generations/yr Hospital Clade Community Clade Two clades

100 102,452 250,125 973,930

200 51,226 125,063 486,965

300 34,151 83,375 324,643

doi:10.1371/journal.pone.0030187.t004
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parameter of 1.5 with 80% sequence identity and 60% match

length cutoffs. However, only those genes with the same size in

base pairs were chosen.

Comparative DNA sequence analysis
The 100 chosen orthologs nucleotide sequences were concat-

enated into one continuous sequence for each of the 21 E. faecium

strains and a pair wise analysis using the Poisson correction

method [28] on MEGA 4.0.2 software was performed [29,30].

UPGMA phylogenetic trees [31] were constructed using the

ClustalW alignment of the concatenated sequence [32,33,34]. The

divergence score was calculated by taking the distance of the

branch lengths between two strains, divided by the total distance

(or sum of all the branch lengths) and multiplying by 100 [29]. In

addition, each individual gene for the 21 genomes was also

analyzed separately using ClustalW and UPGMA trees were

generated using MEGA 4.0.2. software and analyzed to see which

branch it segregated to (community or hospital clade)

[29,30,32,34]. If there were not two distinct branches, the gene

was excluded from this analysis (8 of the 100 were excluded,

leaving 92 genes).

SNP analysis
To further investigate the differences among E. faecium strains, all

SNP differences were extracted from the aligned 21 concatenated

sequences and were concatenated into one continuous DNA

sequence for each strain, compared to each other for nucleotide

identity and divergence, and an UPGMA tree was constructed using

the same methodology stated previously. We also calculated the

number of SNPs that were strain specific (defined as found in only

one strain) versus those found in two or more strains.

The number of non-synonymous changes were analyzed and it

was determined in which genes they existed. Strain specific amino

acid changes were excluded. We then identified clade-specific non-

synonymous changes, defined as those changes that were present

in at least two community-associated E. faecium strains but not in E.

faecium strains within the HA clade, or present in 14 of the HA

strains but not in the community strains.

Molecular clock estimation
The molecular clock estimation requires four components, the

number of synonymous SNPs, the number of potential SNP sites,

the mutation rate, and the number of generations per year

[20,21,23]. In order to estimate the rate of evolution of the two

subpopulations, the number of synonymous SNPs (sSNPs) from

the 100 gene analysis determined above was used. The potential

sSNP sites were calculated by finding all three-base codons that

could be used within the 100 genes and adding together all the

sSNP sites from each codon. The median number of sSNPs

between the strains within a clade was used to calculate the

molecular clock for strains within a clade. Similarly, the median

number of sSNPs for each clade was used to compare between the

two clades. Since the synonymous mutation rate for E. faecium is

unknown, a synonymous mutation rate of 1.4610210 mutations

per base pair per generation based on mutation rates from

Escherichia coli was used [20,21]. The number of generations per

year of Enterococcus species in the host or in the environment is also

unknown, so a range of possible generation times 100, 200, and

300 was used, also based on E. coli [20,21]. Estimates for a closer

relative Bacillus anthracis are approximately 43 generations per year

and its mutation rate is 5.2610210, and this higher mutation rate

was also used [20,21,23]. The following equation was used to

determine the time of divergence for each comparison: the

number of sSNP/(the number of possible sSNP sites6mutation

rate6the number of generations per year62). The ‘‘2’’ in the

denominator of the equation is used to account for the time of

divergence of the two genomes, or the two groups compared

[20,23,24].

Analysis of the 16S rRNA and estimation of the time of
divergence

The 16S rRNA gene was sequenced using the universal 16S

rRNA primers B27F, 785F, 805R, and primers designed for

outside the 16S rRNA gene for E. faecium, 16SEfmOS F1 59-

ATCGCAAGATTGTTCGAAC -39, and 16S EfmOSR2 59-

CTTAGAAAGGAGGTGATCCAG -39. The entire 16S rRNA

of TX16 (DO) and TX1330 (manuscript in preparation), as

representatives of the two clades, were resequenced. Sequences

were extracted from all other strains using the NCBI sequence.

Strains that had an incomplete 16S rRNA sequence (E1636,

1231502, Com12, Com15, 1230933, TX0133A, E1039, and

TX82) were also resequenced. The sequences were aligned and

compared using MEGA 4.0.2 software. The SNPs and percent

nucleotide difference between the strains were determined, and

the determination of time for divergence was based on a 1%

change per 25 million years ago for 16S rRNA [26].

Supporting Information

Figure S1 UPGMA phylogenetic tree of the concatenated
amino acid sequence (35,606 bp). The results are based on a

pair-wise analysis of the concatenated 100 protein amino acid

sequence for each of the 21 E. faecium strains using the Poisson

correction method in MEGA4.0.2 software. An UPGMA tree was

constructed depicting the evolutionary distance between these

sequences. The tree is drawn to scale with the branch lengths

representing the evolutionary distances, the scale can be seen at

the bottom of the tree.

(TIF)

Figure S2 UPGMA phylogenetic tree of the concatenated
SNP sequence (5,392 bp). The results are based on a pair-wise

analysis of the concatenated SNP nucleotide sequence for each of

the 21 E. faecium strains using the Poisson correction method in

MEGA4.0.2 software. An UPGMA tree was constructed depicting

the evolutionary distance between these sequences. The tree is

drawn to scale with the branch lengths representing the

evolutionary distances, the scale can be seen at the bottom of

the tree.

(TIF)

Figure S3 The UPGMA phylogenetic trees representing
the evolutionary relationship between the 16S rRNA and
ribosomal protein L32 (rpmF) of 21 E. faecium strains.
For all phylogenetic trees, the evolutionary distances were

calculated using the Poisson correction method and UPMGA

trees constructed using MEGA4.0.2 software. The trees are drawn

to scale with the branch lengths representing the evolutionary

distances, the scale of each tree can be seen at the bottom of each

respective tree. A) An UPGMA tree representing the evolutionary

relationship of the strains using the 16S rRNA nucleotide sequence

for each of the 21 E. faecium strains. The table next to the tree

indicates the changes in the 16S rRNA gene sequence at each

nucleotide position for each branch of the tree. B) An UPGMA

tree representing the evolutionary relationship of the strains using

the rpmF nucleotide sequence for each of the 21 E. faecium strains.

The table next to the tree indicates the changes in the rpmF

sequence at each nucleotide position for each branch of the tree.

(TIF)
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Table S1 100 genes chosen for analysis in this study.
Listed are the 100 genes chosen for analysis in this study. These

100 orthologs in the 21 genomes were selected based on position

and their presence in all strains as housekeeping genes or putative

non-antigenic genes, including ribosomal proteins. Ortholog

groups of E. faecium genomes were identified using OrthoMCL

program using BLASTP E value of 1e-5 and default MCL

inflation parameter of 1.5 with 80% sequence identity and 60%

match length cutoffs. Only those genes with the same size in base

pairs were chosen. In the table is the open reading frame number

as is listed in the genome file on NCBI, the start and stop site

represented by the nucleotide numbers, the size of the open

reading frame in base pairs, the name of the gene if annotated, and

the description of the annotated function of that gene. a Genes left

out of the individual gene analysis (i.e. genes that did not show

clade distinctions). b Genes that do not have non-synonomous

changes in their encoded protein. c Genes that have non-

synonomous changes in their encoded protein, but are not clade

specific. d Refers to the nucleotide start and end sites on the DO

chromosome (manuscript in preparation). e An empty cell

indicates a KEGG number was not identified.

(DOCX)

Table S2 Percent identity and divergence score matrix
of the concatenated amino acid sequence. Listed are the

percent identity and divergence scores of the community clade,

hospital clade, and hybrid strains using the amino acid sequence

for the 100 concatenated genes. The 100 chosen orthologs amino

acid sequences were concatenated into one continuous sequence

for each of the 21 E. faecium strains and a pair wise analysis using

the Poisson correction method on MEGA 4.0.2 software was

performed. UPGMA phylogenetic trees were constructed using

the ClustalW alignment of the concatenated sequence. The

divergence score was calculated by taking the distance of the

branch lengths between two strains, divided by the total distance

(or sum of all the branch lengths) and multiplying by 100. a The

numbers in italics (upper left) are the percent identity and

divergence scores of the CA strains. b The numbers in bold are the

percent identity and divergence scores of the hybrid strain. c The

numbers in regular text (down right) are the percent identity and

divergence scores of the HA strains.

(DOC)

Table S3 Percent identity and divergence score matrix
of the concatenated SNP sequence. Listed are the percent

identity and divergence scores of the community clade, hospital

clade, and hybrid strains using the concatenated SNP sequence of

the 100 concatenated genes. All SNPs were extracted from the

aligned 21 concatenated sequences and were concatenated into

one continuous DNA sequence for each strain, compared to each

other for nucleotide identity and divergence using the same

methodology previously stated (see Table S2). a The numbers in

italics (upper left) are the percent identity and divergence scores of

the CA strains. b The numbers in bold are the percent identity and

divergence scores of the hybrid strain. c The numbers in regular

text (down right) are the percent identity and divergence scores of

the HA strains.

(DOC)
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