
ORIGINAL PAPER

X. Emery

On the consistency of the indirect lognormal correction

Abstract The indirect lognormal correction is a change-
of-support model commonly used in geostatistical
applications when dealing with additive variables, for
which the upscaling amounts to arithmetic averaging. It
was designed as a generalization of the lognormal cor-
rection that states the permanence of lognormality, but
so far its internal consistency has not been proven in the
general case. After a recall of the theoretical conditions
that change-of-support models must honor, the concept
of conventional income is introduced and used to
establish the mathematical consistency of the indirect
lognormal correction. However, the suitability of this
model is questionable in many situations, in particular
when the support effect is important or when the point-
support distribution presents a zero effect, is not con-
tinuous or not positively skewed.
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1 Introduction

The support effect modeling is a key problem in several
fields of applications, such as mining engineering, agri-
cultural land management, forest inventories, pollution
studies and image analysis: given a point-support distri-
bution (histogram of the sampled values), one seeks the
distribution of the values over a bigger support. Several
models have been proposed in such a way, all of them
based on a transformation of the sample distribution that
accounts for the support effect, e.g. the affine correction,
the mosaic correction and the discrete gaussian model
(Matheron 1978, 1984c; Journel and Huijbregts 1978,
p 471–475; Lantuéjoul 1990, p 54; Chilès and Delfiner

1999, p 431; Lajaunie 2000). This work aims at proving
the consistency of a fourth model that is frequently used
in geostatistical applications: the indirect lognormal
correction (Isaaks and Srivastava 1989, p 472), which
generalizes the so-called lognormal correction based on
the hypothesis of permanence of lognormality.

2 Conditions for a consistent change-of-support
modeling

Let us consider a stationary random field fZx; x 2 Rdg
with positive values and define its average over a block
support v with volume jvj:

Zv ¼
1

jvj

Z
v

Zxdx ð1Þ

Equation (1) only applies to additive variables, for which
the value of a block is defined as the arithmetic average
of the point-support values within the block. This ex-
cludes variables such as solubility ratios (mining appli-
cations), pH (agronomy and soil sciences) or
permeability (groundwater hydrology and petroleum
engineering).

The distributions of both random variables Zx and Zv
are linked together. Indeed, the mean is unchanged:

EðZvÞ ¼ EðZxÞ ð2Þ
whereas the variance of Zv is smaller than the one of Zx

(because of Schwarz’s inequality on the covariance
function):

varðZvÞ ¼
1

jvj2
Z

v

Z
v
covfZx; Zx0 gdxdx0 � varðZxÞ ð3Þ

Now, despite a widespread belief, conditions (2) and (3)
are not enough to guarantee the model consistency, as
illustrated in Fig. 1: the proportion of extreme-high val-
ues (say, the values greater than 0.8) of the block-support
distribution is not compatible with the point-support
distribution. In brief, the point-support distribution
induces additional constraints on the shape of the
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associated block distribution; for instance the extremal
values of the latter must lie inside the range of the former.

To ensure the consistency of the change-of-support
model, a third condition, known as Cartier’s relation,

must be honored (Matheron 1984b; Lantuéjoul 1990,
p 53; Chilès and Delfiner 1999, p 427): if x stands for
a random point uniformly distributed inside v, then

EðZxjZvÞ ¼ Zv ð4Þ

Despite its apparent simplicity, Eq. (4) is quite
restrictive, since it contains per se both relations (2) and
(3) (Lantuéjoul, 1990 p 44–46) and entails several con-
straints on the shape and the extension of the block-
support distribution with respect to the point-support
one. Indeed, Cartier’s relation states that, given a block
with a known value, the value of a sample randomly
selected in this block is expected to be equal to the block
value, hence the regression curve of the joint point-block
distribution coincides with the first bisector (Fig. 2A).
Now, the marginal distributions are deduced from the
joint distribution (Fig. 2B and 2C), so the constraint on
the latter induces constraints on the formers. Cartier’s
relation is the basis of several change-of-support models,
such as the discrete gaussian model (Matheron 1974,
p 39; Chilès and Delfiner 1999, p 432) or the discrete
isofactorial models based on nongaussian distributions
(Matheron 1984a; Demange et al. 1987; Hu 1988).

Fig. 1 An example of inconsistent change-of-support model

Fig. 2 A, Joint point-block
distribution and B, C, mar-
ginal distributions at both
supports
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3 The direct and indirect lognormal corrections

3.1 The lognormal correction

This model is based on an empirical observation that
states the permanence of lognormality when the support
increases (Matheron 1978, p 5; Journel and Huijbregts
1978, p 468). It consists in modeling the point-support
histogram thanks to a lognormal distribution with mean
m and variance r2

x, then in assuming that the block-
support variable has a lognormal distribution with the
same mean but a smaller variance, so as to honor Eq. (2)
and (3). Now, such a model is also consistent with
Cartier’s relation, since it matches the discrete gaussian
model when the anamorphosis is an exponential func-
tion (Chilès and Delfiner 1999, p 433).

The lognormal correction can be summarized via the
following relationship, which is an equality of the dis-
tributions (Isaaks and Srivastava 1989, p 473):

Zv�
D

aZb
x ð5Þ

with

b ¼ lnð1þ r2
v=m2Þ= ln ð1þ r2

x=m2Þ
� �1=2

a ¼ m1�b 1þ r2
v=m2

� ��1=2
1þ r2

x=m2
� �b=2

:

The parameter b lies between 0 and 1 and is called
change-of-support coefficient. The lower b, the stronger
the support effect.

3.2 The indirect lognormal correction

The indirect lognormal correction generalizes the previ-
ous model by applying Eq. (5) even if the point-support
distribution is not lognormal. In general, such a proce-
dure is likely to alter the mean of the distribution, so that
the corrected block-support distribution is rescaled to the
point-support mean (Isaaks and Srivastava 1989, p 474):

Zv�
D

aZb
x ð6Þ

with b ¼ ½lnð1þ r2
v=m2Þ= lnð1þ r2

x=m2Þ�1=2
a calculated so that both distributions share the same
mean ðmÞ.

Equation (6) provides an identity between the
cumulative distribution functions Fx and Fv of the
variables at both supports:

FvðzÞ ¼ ProbfZv < zg ¼ Prob fZx < ðz=aÞ1=bg
¼ Fxððz=aÞ1=bÞ ð7Þ

3.3 Choice of the parameters

The parameters a and b in Eq. (5) give the correct block-
support variance ðr2

vÞ only if the point-support distri-
bution is perfectly lognormal. In the general case

[Eq. (6)], although the mean is unchanged by the sup-
port correction, the block-support distribution has a
variance that differs from r2

v (Isaaks and Srivastava
1989, p 487).

Henceforth, let us define the noncentered moments of
the point-support and block-support distributions:

8 a > 0; lðaÞx ¼ EðZa
xÞ and lðaÞv ¼ EðZa

v Þ ð8Þ
These moments are linked together [Eq. (7)]:

lðaÞv ¼
Z þ1
0

zaFvðdzÞ ¼
Z þ1
0

ðaubÞaFxðduÞ ¼ aalðbaÞ
x

with u ¼ ðz=aÞ1=b ð9Þ
In particular:

lð1Þv ¼ m ¼ alðbÞx

lð2Þv ¼ m2 þ r2
v ¼ a2lð2bÞ

x

(
ð10Þ

This allows determining the value of the parameter b so
as to honor a prescribed mean m and a block-support
variance r2

v :

1þ r2
v

m2
¼ lð2bÞ

x

ðlx
ðbÞÞ2

¼ uðbÞ ð11Þ

For absolutely continuous distributions, Eq. (11) has at
least one solution in [0,1], since one has:

uð0Þ ¼ 1 � 1þ r2
v

m2
� 1þ r2

x

m2
¼ uð1Þ ð12Þ

Actually, as will be seen in the next section, the solution
of Eq. (11) is unique, which proves that the mapping
b! uðbÞ is increasing.

However, this conclusion does no longer hold if the
point-support distribution is not continuous. For in-
stance, consider a distribution with a proportion q of
zeroes (‘‘zero effect’’); then

lim
b!0
b>0

uðbÞ ¼ 1

1� q
> 1 ð13Þ

so that Eq. (11) has no solution if

q >
r2

v

m2 þ r2
v

ð14Þ

Application to the lognormal model

A point-support lognormal value Zx with mean m and
variance r2

x can be written as follows:

Zx ¼ m expðsYx � s2=2Þ ð15Þ
where s2 ¼ ln 1þ r2

x

m2

� �
is the logarithmic variance

(Journel and Huijbregts 1978, p 480).
Yx is a standard gaussian random variable (zero mean

and unit variance).
Hence, for any positive scalar x, the moment of order

x of Zx is

lðxÞx ¼ mx expð�xs2=2ÞEfexpðxsYxÞg
with EfexpðxsYxÞg ¼ expðx2s2=2Þ ð16Þ
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so that one finally obtains

lðxÞx ¼ mx 1þ r2
x

m2

� �xðx�1Þ
2

ð17Þ

Solving Eq. (11) provides the coefficient b given in
Eq. (5):

1þ r2
v

m2
¼ 1þ r2

x

m2

� �b2

; i.e. b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ r2

v=m2Þ
lnð1þ r2

x=m2Þ

s
ð18Þ

4 Consistency of the indirect lognormal correction

4.1 Mathematical point of view

The indirect lognormal correction accounts for the
equality between the mean values [Eq. (2)] and
the reduction of variance [Eq. (3)]. However, so far, the
consistency of such a model has not been fully proven.
More specifically, the question is: does the indirect log-
normal correction honor Cartier’s relation [Eq. (4)]?

A convenient way to answer this question is to use the
concept of conventional income, which has been intro-
duced in mining geostatistics to quantify the notion of
selectivity. The conventional income at a threshold z is
defined as the sum of the ore tonnage from z to infinity
(Matheron 1984b, p 422; Lantuéjoul 1990, p 33; Chilès
and Delfiner 1999, p 422):

BxðzÞ ¼
Z þ1

z
TxðuÞ du with TxðuÞ

¼ ProbfZx � ug ¼ 1� FxðuÞ ð19Þ
The conventional income BxðzÞ is a convex and nonin-
creasing function on Rþ that tends to zero at infinity and

completely characterizes the distribution of Zx. Simi-
larly, for the block support, one can define:

BvðzÞ ¼
Z þ1

z
TvðuÞdu with TvðuÞ

¼ ProbfZv � ug ¼ 1� FvðuÞ ð20Þ
Since Zx and Zv have positive values, their common
average is equal to the conventional incomes at thresh-
old z ¼ 0:

m ¼ Bxð0Þ ¼ Bvð0Þ ð21Þ
Now, Cartier’s relation [Eq. (4)] is equivalent to the
double condition:

i) Zx and Zv have the same mean value;
ii) the distribution of Zv is less selective than the distri-

bution of Zx, which amounts to honor the following
inequality between their conventional incomes
(Matheron 1984b, p 424; Lantuéjoul 1990, p 44;
Chilès and Delfiner 1999, p 425):

8z 2 Rþ; BvðzÞ � BxðzÞ ð22Þ
The parameter a in Eq. (6) is defined in order to ensure
condition i). Then the indirect lognormal correction will
constitute a consistent change-of-support model if and
only if condition ii) is met. To check inequality (22), let
us define the difference between the conventional in-
comes at both supports:

8 z 2 Rþ; DðzÞ ¼ BvðzÞ � BxðzÞ ð23Þ
By differentiating this quantity, it comes:

8 z 2 Rþ; D0ðzÞ ¼ FvðzÞ � FxðzÞ ¼ Fxððz=aÞ1=bÞ � FxðzÞ
ð24Þ

Suppose now that Fx is a strictly increasing function.
Then the derivative has the same sign as ðz=aÞ1=b � z.

Fig. 3 Definition of the conventional income from the com-
plementary cumulative distribution function

Fig. 4 Evolution of the conventional income with the support
effect
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Since b belongs to the interval [0,1] [Eq. (12)], one
obtains:

8 z 2 Rþ;
D0ðzÞ ¼ 0 if z ¼ 0 or z ¼ a1=ð1�bÞ

D0ðzÞ < 0 if z 2 ½0; a1=ð1�bÞ�
D0ðzÞ > 0 if z 2 ½a1=ð1�bÞ;þ1�

������ ð25Þ

Hence, the maximal values of DðzÞ are Dð0Þ ¼ 0 and
Dðþ1Þ ¼ 0. This statement implies that D (z) is negative
over the whole range of threshold values. The conclusion
holds even if Fx is not a strictly increasing function,
because it can always be written as the limit of a set
of strictly increasing functions, so that inequality (22)
remains asymptotically true.

In conclusion, the indirect lognormal correction
honors Cartier’s relation and constitutes a mathemati-
cally consistent change-of-support model for positive
variables.

Incidentally, the concept of conventional income en-
ables to prove that the solution of Eq. (11) is unique.
Indeed, let us assume that two pairs of parameters fa; bg
and fa0; b0g, with b0 < b, are such that Z1 ¼ aZb

x and
Z2 ¼ a0Zb0

x have the same mean m and variance r2
v . Since

b0 < b, Z2 is itself deduced from Z1 by an indirect log-
normal correction, with a reduction factor equal to b0=b.
Therefore, the conventional income of Z2 is smaller than
the one of Z1 [Eq. (22)], so their variances are different,
which contradicts the initial assumption (the variance is
twice the area located below the conventional income
curve and above the line BðzÞ ¼ m� z) (Chilès and
Delfiner 1999, p 421).

4.2 Practical issues

Despite its theoretical consistency, the indirect lognor-
mal correction suffers from several practical limitations
that are detailed hereafter.

1) The application of the support correction should be
limited to small supports. Indeed, when b tends to
zero (very large support), Eq. (6) becomes

Zv�
D

a½1þ b lnðZxÞ� ð26Þ

Except for the case where Zx has a lognormal distri-
bution, the asymptotic distribution is not gaussian, as
expected by the central limit theorem under strong
mixing conditions for the random field fZx; x 2 Rdg
(Gordin, 1969). This limitation is not proper to the
indirect lognormal correction, since it is shared by the
affine and mosaic corrections, but not by the discrete
gaussian model (Chilès and Delfiner 1999, p 432–
434).

2) The model cannot handle a ‘‘zero effect’’ in a suitable
way. Indeed, let us assume that a proportion q of the
point-support values is equal to zero:

Fxð0Þ ¼ 0 and lim
z!0
z>0

FxðzÞ ¼ q ð27Þ

Then, according to Eq. (7), the block-support distri-
bution has the same proportion of zeroes:

Fvð0Þ ¼ 0 and lim
z!0
z>0

FvðzÞ ¼ q ð28Þ

Such a situation is unrealistic: one would expect the
zero effect to decrease when the support increases. To
overcome this difficulty, other change-of-support
corrections should be preferred, like the mosaic or the
nongaussian isofactorial models (Matheron 1984c;
Demange et al. 1987; Chilès and Delfiner 1999,
p 434).

3) The block-support distribution can be more skewed
than the point-support distribution. To illustrate this
statement, let us assume that the latter is a beta dis-
tribution and compare the skewness coefficients of
both the point-support and the block corrected dis-
tributions (the choice of a beta distribution is moti-
vated by the fact that it takes varied shapes according
to the input parameters). The point-support skewness
coefficient is defined by

cðxÞ1 ¼
E½ðZx � mÞ3�

fE½ðZx � mÞ2�g3=2
¼ lð3Þx � 3lð2Þx lð1Þx þ 2½lð1Þx �3

flð2Þx � ½lð1Þx �2g3=2

ð29Þ
UsingEq. (9), the block-support skewness coefficient is

cðvÞ1 ¼
lð3Þv � 3lð2Þv lð1Þv þ 2½lð1Þv �3

flð2Þv � ½lð1Þv �2g3=2

¼ lð3bÞ
x � 3lð2bÞ

x lðbÞx þ 2½lðbÞx �3

flð2bÞ
x � ½lðbÞx �2g3=2

ð30Þ

For a beta distribution with parameters fa; bg, the
noncentered moment of order x is given by the
following formula (Papoulis 1984, p 147):

lðxÞx ¼ Cðaþ bÞCðaþ xÞ
CðaÞCðaþ bþ xÞ ð31Þ

Equations (29) to (31) enable to express the ratio cv
1/c

x
1

as a function of a; b and b. A ratio greater than one
indicates that the block-support distribution is more
skewed than the point-support one, whereas a nega-
tive ratio indicates an inversion of the skewness sign.
Now, these unintuitive situations are quite frequent,
as shown in Fig. 5. With negatively skewed point-
support distributions, the block-support skewness is
more negative (cases a ¼ 10, b ¼ 2 and a ¼ 1,
b ¼ 0:5), whereas positively skewed point-support
distributions tend to give negatively skewed block-
support distributions when the support correction is
important (cases a ¼ 2, b ¼ 10 and a ¼ 0:5, b ¼ 1).
In all cases, the indirect lognormal correction de-
creases the skewness of the point-support distribu-
tion. In particular, when nonpositive, the skewness
coefficient increases in absolute value: for instance, a
perfectly symmetric distribution, like a uniform dis-
tribution in [0, 1], would be transformed into a neg-
atively skewed distribution.
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A consequence of these statements is that the indirect
lognormal correction should not be applied in a local
framework, for instance in association with indicator
kriging. Indeed, the local distributions (i.e. the dis-
tributions conditional to a set of neighboring data)
generally have extremely varied shapes and their
skewness can strongly differ from the one of the
global distribution, hence the risk of an unrealistic
support correction increases. Actually, performing a
change of support with indicator kriging is a complex
(and still unsolved) problem, because of the need of
an appropriate support correction for the local dis-
tributions. In general, the affine and mosaic correc-
tions are not realistic options either.

The last two statements are limitations of lesser
importance, so they will be mentioned without insisting
on them.

4) The shape of the corrected distribution is not invari-
ant when the point-support distribution is shifted.
Moreover, the minimal value is arbitrarily increased
by the correction [Eq. (6)], excepted when this mini-
mum is equal to zero. For instance, a shifted log-
normal distribution no longer provides a lognormal
distribution for the block-support values, and the
minimal values of both distributions are different (the
amplitude of the difference even depends on the shift
parameter that is applied). Consequently, in practice,
if the sample distribution clearly begins apart from
zero, it should be shifted before performing the
change of support.

5) The model is not suitable for discrete variables, unless
the number of classes is large and can be seen as a
discretization of a continuous distribution. For in-
stance, if Zx only takes a small number of values, so
does Zv [Eq. (6)], which is clearly improbable. In such
a situation, one may use a mixed change-of-support
model, where the point-support variable is discrete

while the regularized variable is continuous.
Examples are the negative binomial/gamma model
(Matheron 1984a, p 99) and the discrete Jacobi/beta
model (Matheron 1984d, p 58). An alternative model
is the uniform mixture introduced by Matheron
(1985, p 164).

To summarize, the indirect lognormal correction is
sound when the point-support distribution departs from
the lognormal one while keeping its main features, that
is: continuous and positively skewed variables with a
range of variation from zero to a maximum (and hence
no zero effect). And like the lognormal correction, its
validity is limited to a moderate change of support.

5 Conclusions

The indirect lognormal correction is a mathematically
consistent change-of-support model since it honors
Cartier’s relation. However, the user should beware of
the misuses of this model, in particular when dealing
with noncontinuous variables, zero effects or with neg-
atively skewed variables. In practice, to avoid an unre-
alistic correction, its application is restricted to small
supports and to variables whose histogram is ‘‘close’’ to
a lognormal distribution. In other cases, alternative
models should be preferred, such as the discrete gaussian
model that also generalizes the direct lognormal correc-
tion but has proved to be suitable in a wide variety of
situations (Maréchal 1975; Matheron 1985, p 153;
Kavourinos 1987; Chilès and Delfiner 1999, p 447;
Lajaunie 2000).
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