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Properties and limitations of sequential indicator simulation

Abstract The sequential indicator algorithm is a wide-
spread geostatistical simulation technique that relies on
indicator (co)kriging and is applicable to a wide range of
datasets. However, such algorithm comes up against
several limitations that are often misunderstood. This
work aims at highlighting these limitations, by examin-
ing what are the conditions for the realizations to
reproduce the input parameters (indicator means and
correlograms) and what happens with the other
parameters (other two-point or multiple-point statistics).
Several types of random functions are contemplated,
namely: the mosaic model, random sets, models defined
by multiple indicators and isofactorial models. In each
case, the conditions for the sequential algorithm to
honor the model parameters are sought after. Concur-
rently, the properties of the multivariate distributions
are identified and some conceptual impediments are
emphasized. In particular, the prior multiple-point sta-
tistics are shown to depend on external factors such as
the total number of simulated nodes and the number
and locations of the samples. As a consequence, com-
mon applications such as a flow simulation or a change
of support on the realizations may lead to hazardous
interpretations.

Keywords Nonparametric geostatistics Æ Indicator
kriging Æ Mosaic model Æ random sets Æ isofactorial
models Æ multiple-point statistics

1 Introduction

The sequential indicator algorithm

Stochastic simulations are increasingly used for uncer-
tainty modeling in geosciences. Among the vast toolbox

of available methods, the sequential algorithm is
undoubtedly one of the most widespread in geostatis-
tical applications, for its conceptual simplicity and
straightforwardness. In such algorithm, the values are
simulated in turn, conditionally to the original data
and the previously simulated values. In case of a
Gaussian random field, the conditional distributions
are Gaussian-shaped and their first moments are de-
rived from a simple kriging system. However, when a
nongaussian random function has to be simulated (for
instance, a categorical variable representing a litho-
logical facies, or a continuous variable with spatially
correlated extreme values, so that a Gaussian model is
ill-suited), the conditional distributions usually cannot
be expressed analytically, which raises a problem in the
sequential algorithm. A shortcut consists in estimating
these conditional distributions by a nonparametric
method, e.g. indicator kriging (Alabert, 1987). In the
following, let {x1; . . . xn} be the locations to simulate.
Here is the principle of the ‘‘sequential indicator
algorithm’’:

1 set i = 1
2 estimate the conditional cumulative distribution

function (in short, ccdf) at location xi by indicator
kriging from the previously simulated values
{Y(x1); . . . Y(xi-1)} and the original data

3 correct for order-relation deviations and draw a
random variable from the corrected ccdf;

4 set i = i +1 and go to 2) until all the locations are
simulated.

The advantages of this algorithm are the possibility to
handle directly conditional simulations, to account for
structural patterns such as a spatial correlation of the
extreme values, and to incorporate soft information
(Alabert, 1987; Deutsch and Journel, 1992, p 151). It can
be applied to simulate continuous or categorical vari-
ables, e.g. geologic facies types. In contrast, by using an
indicator kriging instead of a conditional expectation
(which defines the ‘‘true’’ conditional distributions), the
algorithm loses accuracy. However, so far, little is
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known about the consequences of this issue on the
properties of the realizations.

The following sections consider a stationary frame-
work and resort to simple (co)kriging. This is a very
favorable situation in practice: the means of the indicator
variables are known, hence so is the univariate distribu-
tion of the model. The moving neighborhood restriction
required for practical implementation of the sequential
paradigm will not be examined, but it must be kept in
mind since it deteriorates the reproduction of the model
parameters (Emery, 2005). The post-processing step
(interpolation between the thresholds used for indicator
kriging and correction of order-relation violations) is not
contemplated either. Instead, we will focus on the fol-
lowing concern: what are the properties of the images
obtained when running the sequential indicator algo-
rithm? Such question is crucial to define the use that can be
made of the realizations. It can be split into two problems:

1) what are the conditions to honor the input parame-
ters?

2) what happens with the parameters that are not
specified in input (in particular, the so-called multiple-
point statistics)?

These points will be examined in detail through the
study of several classes of stochastic models, namely:
mosaic model, random sets, multiple-indicator models
and isofactorial models.

2 Mosaic model

The mosaic model is the most favorable case to perform
indicator kriging, since all the simple and cross indicator
covariances are proportional to a single correlogram
q(h). In such model, two values Y(x) and Y(x + h)
are equal or independent, with probabilities q(h) and
1 ) q(h) respectively. The space is therefore divided into
random cells: the values are constant in each cell and
independent from one cell to another one (Rivoirard,
1994, p 23; Chilès and Delfiner, 1999, p 384).

In the following, the univariate distribution is as-
sumed to be continuous, so that two equal values nec-
essarily belong to the same cell. Let F(.) be the prior
cumulative distribution function (in short, cdf) and f(.)
the prior probability density function (pdf).

2.1 Conditions to honor the univariate
and bivariate distributions

The univariate distribution is characterized by the ex-
pected values of the indicator variables, whereas the
bivariate distributions only depend on the correlogram.

Proposition 1

The simulated values honor the univariate and bivariate
distributions if and only if the indicator kriging weights

are always positive and their sum is less than or equal to
one.

Proof: This result can be established by induction on
the number of simulated values. Consider a set of data
{Y1,. . . Yn} at locations {x1,. . . xn} such that, for any
integers i, j in {1,… n} and any real numbers y, y¢:

EfIðYi; yÞg ¼ ProbðYi < yÞ ¼ F ðyÞ
covfIðYi; yÞ; IðYj; y0Þg ¼ aðy; y0Þ qðxi � xjÞ

ð1Þ

In this formula, I(Yi ; y) is a binary function equal to
one if Yi < y, zero otherwise. The covariance between
I(Yi ; y) and I(Yj ; y¢) is proportional to the correlogram
q(h) (mosaic property); the proportionality factor is
a(y,y¢) = F(y � y¢) ) F(y) F(y¢). Let us estimate the ccdf
at a location xn+1 by simple indicator kriging:

½IðYnþ1; yÞ�SK ¼
Xn

i¼1
kiIðYi; yÞ þ kmFðyÞ

with km ¼ 1�
Xn

i¼1
ki ðweight of the meanÞ: ð2Þ

The kriging weights do not depend on the threshold y,
since all the indicators have the same correlogram. At
each data value Yi, the ccdf presents a jump with
amplitude equal to the kriging weight ki assigned to the
datum, while the weight of the mean km is given to the
prior cdf. To ensure the monotonicity of the ccdf, all
these weights must be nonnegative, hence the condition
in proposition 1 is necessary. Under such condition, the
simulated value Yn+1 is equal to Yi with probability ki or
independent of {Y1,. . . Yn} with probability km.
Accordingly, for any integer j in {1,… n} and any real
numbers y, y¢, one has:

ProbðYnþ1 < yÞ ¼
Xn

i¼1
ki ProbðYi < yÞ þ km F ðyÞ

¼ FðyÞ
covfIðYnþ1; yÞ; IðYj; y0Þg

¼
Xn

i¼1
ki covfIðYi; yÞ; IðYj; y0Þg

¼ aðy; y0Þ
Xn

i¼1
ki qðxi � xjÞ

¼ aðy; y0Þ qðxnþ1 � xjÞ

ð3Þ

The last identity stems from the simple kriging equa-
tions. All the simple and cross indicator covariances
remain proportional to q(h), hence the mosaic model is
reproduced.

Remark

If an ordinary kriging (with unknown mean) is used
instead of a simple kriging, the simulated values no
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longer honor a mosaic distribution: the algorithm can-
not generate a value different from the original data
because the weight of the mean is zero. Furthermore, the
simulated indicator correlogram will not match the
theoretical model.

Proposition 2

Except for the pure nugget effect, no stationary corre-
logram defined in Rd with d > 1 fulfills the conditions in
proposition 1. This result has been proved by Matheron
(1986, p 30) and shows that, even in the mosaic model,
the conditions to honor the input parameters (univariate
and bivariate distributions) are very restrictive.

In one dimension, the only known examples of sta-
tionary correlograms that satisfy the conditions of
proposition 1 are the exponential model and the com-
pletely monotone functions, i.e. functions such that the
sign of the successive derivatives alternates. Bernstein’s
theorem (Widder, 1941, p 161) states that a completely
monotone function is proportional to the Laplace
transform of a probability density, hence it is a mixture
of exponential correlograms.

2.2 Multivariate distribution of the simulated values

Proposition 3

The joint distribution of the values {Y1,. . . Yn} simulated
at locations {x1,. . . xn} depends on the visiting sequence.
By an iterated application of Bayes’ theorem, this dis-
tribution can be expressed as follows:

f r;nðy1; . . .ynÞ ¼
Yn

k¼1
½
X

‘<k

kðrÞ‘;k dyik¼yi‘
þð1�

X

‘<k

kðrÞ‘;k Þ f ðyik Þ�

ð4Þ
where

r ¼ fi1; . . . ing is a permutation of f1; . . . ng that
represents the visiting sequence;

fkðrÞ‘;k ; ‘ < kg are the weights assigned to the

locations fxi‘ ; ‘ < kg when kriging xik :

Equation 4 expresses that the kth simulated value is

equal to datum Yi‘ with probability kðrÞ‘;k , or independent
of all the previous values with the complementary
probability.

To examine the properties of such multivariate
distribution, we will present a simple example. Con-
sider a mosaic with an exponential correlogram on
four aligned and regularly spaced nodes {x1,x2,x3,x4}
and assume that the visiting sequence is {x2,x1,x4,x3}.
Using the screening effect property of the exponential
correlogram, the probabilities for three consecutive
values to be equal are easily expressed as a function of
the correlation coefficient q between two consecutive
nodes:

Prob ½Y1¼Y2¼Y3�¼q
q2�2q
1þq2

þð1�q2Þ�q
1þq2

� �
¼q2 ð5Þ

whereas

Prob½Y2 ¼ Y3 ¼ Y4� ¼ q2 2 q
1þ q2

ð6Þ

The trivariate probability is not shift-invariant. This
observation leads to the following proposition.

Proposition 4

In general, the multiple-point statistics are not station-
ary, i.e. they change when the multiple-point configu-
rations are shifted. The reason is that the multivariate
distribution given in Eq. 4 is closely related to the kri-
ging configurations, which are not shift-invariant. As an
exception, the bivariate distributions are stationary and
mosaic-type (proposition 1).

To avoid artifacts when a moving neighborhood is
used, it is often advised to randomize the visiting se-
quence, which does not alter the bivariate distributions
(independent of the ordering of the locations to simu-
late). If Sn stands for the set of permutations of {1,. . . n}
(set of equiprobable visiting sequences), the multivariate
distribution (Eq. 4) becomes:

fnðy1; . . . ynÞ ¼
1

n !

X

r2Sn

fr;nðy1; . . . ynÞ ð7Þ

Even in this case, the multiple-point statistics are not
necessarily stationary for the same reason as in propo-
sition 4 (the kriging configurations are not shift-
invariant, in particular when comparing the edge and the
center of the simulated domain). This result means that
the probability of occurrence of an event at a given
multiple-point configuration depends on whether this
configuration is located on the border of the simulated
image or at its center. To avoid such edge effect, the
simulation should be performed on a domain much
greater than the one that really interests.

Proposition 5

The joint distribution of a set of values {Y1,. . . Yn} at
locations {x1,. . . xn} depends on whether other locations
have been simulated and, if so, how many. In other
words, the probability of occurrence of an event also
depends on the resolution of the realization (grid mesh)
and on the size of the simulated domain, both parame-
ters being arbitrarily defined by the user.

Proof: Let us come back to the example of the four
aligned nodes and calculate the probability to have Y1

= Y3 „ Y2, i.e. the probability that x2 splits a cell con-
taining x1 and x3. This kind of statistics has a growing
interest in geostatistical studies, since it is related to fa-
cies connectivity. For instance in a vein-type deposit,
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given two high-graded samples, the miner looks for the
probability to find high grades at intermediate locations.
Now, the previous probability depends on whether the
fourth value Y4 is simulated or not (Tables 1 and 2). The
discrepancy between both cases is not negligible, espe-
cially if q lies between 0.4 and 0.8 (Fig. 1). A similar
conclusion prevails if intermediate locations are con-
sidered, e.g. the midpoints of [x1,x2] and [x2,x3]: the
three-point statistics of {Y1,Y2,Y3} depend on the reso-
lution of the realization.

Consequence

Although the univariate and bivariate distributions of
the model are honored, the higher-order statistics cal-
culated over the realizations are meaningless. For in-
stance, the properties of the values simulated in a given
block depend on whether other blocks are simulated or
not (!). . . Therefore, in rigor, any use of the realizations

that involves the multiple-point statistics (change of
support, flow simulation, etc.) should be avoided. This
statement considerably restricts the use of the sequential
algorithm.

2.3 Conditioning to a set of original data

To compel the simulation to honor a set of hard data
{z1,. . . zp} at locations {u1,. . . up}, a common approach is
to consider these data as if they were previously simu-
lated values and use them in each subsequent indicator
kriging. Such procedure means that the visiting sequence
begins with the data locations.

Proposition 6

The prior distributions of the conditional simulations (i.e.
the expected distributions of {Y1,…Yn} when the data
locations are simulated first, without conditioning to the
data values) are no longer representative of those of the
non-conditional simulations. In particular, they depend
on the number of conditioning data and on their loca-
tions. Therefore, the set of models that can be reproduced
changes when a sample is added, removed or shifted.

Proof: Assuming that the data locations constitute the
beginning of the visiting sequence, the prior multivariate
distribution of the whole set {Z1,. . . Zp; Y1,. . . Yn} is

fp;nðz1; . . . zp; y1; . . . ynÞ

¼ 1

p ! n !

X

r2Sp�Sn

fr;p;nðz1; . . . zp; y1; . . . ynÞ ð8Þ

Table 1 Distribution of {Y1,Y2,Y3} when Y4 is not simulated

Visiting
sequence

Prob
[Y1 =Y3 „Y2]

Average
probability

x1 - x2 - x3

0
q2 ð1�qÞ2
3 ð1þq2Þ

x2 - x1 - x3
x2 - x3 - x1
x3 - x2 - x1

x1 - x3 - x2 q2 ð1�qÞ2
1þq2x3 - x1 - x2

Table 2 Distribution of {Y1,Y2,Y3} when Y4 is simulated

Visiting
sequence

Prob
[Y1 =Y3 „Y2]

Average
probability

x1 - x2 - x3 - x4

0

q2 ð1�qÞ2 ð2þq2þ2q3Þ
6 ð1þq2Þ ð1þq3Þ

x1 - x2 - x4 - x3
x2 - x1 - x3 - x4
x2 - x1 - x4 - x3
x2 - x3 - x1 - x4
x2 - x3 - x4 - x1
x2 - x4 - x1 - x3
x2 - x4 - x3 - x1
x3 - x2 - x1 - x4
x3 - x2 - x4 - x1
x3 - x4 - x2 - x1
x4 - x2 - x1 - x3
x4 - x2 - x3 - x1
x4 - x3 - x2 - x1

x1 - x3 - x2 - x4

q2 ð1�qÞ2
1þq2

x1 - x3 - x4 - x2
x3 - x1 - x2 - x4
x3 - x1 - x4 - x2
x3 - x4 - x1 - x2
x4 - x3 - x1 - x2

x1 - x4 - x2 - x3 q4 ð1�qÞ2 ð1þqÞ
ð1þq2Þ ð1þq3Þx4 - x1 - x2 - x3

x1 - x4 - x3 - x2 q2ð1�qÞ2
1þq3x4 - x1 - x3 - x2

Fig. 1 Trivariate probability in function of the correlation
coefficient between two consecutive nodes
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where fr;p;n is the distribution obtained following the
sequence r 2 Sp � Sn (Eq. 4). Hence, the prior distri-
bution of the values {Y1,. . . Yn} is

1

p! n!

X

r2Sp�Sn

Z
fr;p;nðz1; . . . zp; y1; . . . ynÞ dz1 . . . dzp ð9Þ

There is no reason why this expression should coincide
with Eq. 7. In general, it will depend on the number of
data and on their locations, via the sequence r in Sp � Sn

(see the example below).

Remark: prior and posterior distributions

In stochastic simulation, the posterior distributions are
altered when a sample is added, because they reflect the
knowledge one has about the spatial phenomenon: col-
lecting one or several data at specific locations reduces
the uncertainty on the unsampled neighboring values,
which are correlated with these data. However, the prior
distributions should remain unchanged since they de-
scribe the global properties of the phenomenon and are
not conditioned to the values of the nearby samples.
Now, the sequential algorithm transgresses this basic
rule, leading to the absurd conclusion that the phe-
nomenon under study changes when it is sampled! In
other words, the probability of occurrence of an event is
likely to change if one decides to make an extra sample,
even before knowing the value that will be measured in
that sample.

An example should clarify the situation. Let us con-
sider the previous configuration with four aligned nodes
{x1,x2,x3,x4}. If no sample is taken, the probability that
x2 splits a cell containing x1 and x3 is equal to (Table 2):

Prob½Y1 ¼ Y3 6¼ Y2� ¼
q2 ð1� qÞ2 ð2þ q2 þ 2 q3Þ

6 ð1þ q2Þ ð1þ q3Þ ð10Þ

With one sample, the algorithm only considers the se-
quences starting with the associated location. Hence, the
former probability becomes:

� if x1 is sampled:

Prob½Y1 ¼ Y3 6¼ Y2jY1 ¼ y1� ¼
q2 ð1�qÞ2 ð3þ 2q2þ 3 q3Þ

6 ð1þq2Þ ð1þq3Þ

� if x2 is sampled: Prob ½Y1 ¼ Y3 6¼ Y2jY2 ¼ y2� ¼ 0
� if x3 is sampled:

Prob½Y1 ¼ Y3 6¼ Y2jY3 ¼ y3� ¼
q2 ð1� qÞ2

2 ð1þ q2Þ
� if x4 is sampled:

Prob½Y1 ¼ Y3 6¼ Y2jY4 ¼ y4� ¼
q2 ð1� qÞ2 ð1þ q2 þ q3Þ

3 ð1þ q2Þ ð1þ q3Þ
Since all these posterior probabilities do not depend on
the sampled values, they are also prior probabilities (i.e.
prior to the knowledge of the sampled values). Conse-
quently, the answer to the question ‘‘what is the

probability that x2 splits a cell containing x1 and x4?’’
depends on whether a sample is made or not and, if so,
where (Fig. 2), whatever the sampled value. . .

3 Random sets

A random set is a model whose realizations are subsets
of the space. It can be represented by an indicator var-
iable:

Y ðxÞ ¼ 1 if x belongs to the random set
0 otherwise

���� ð11Þ

3.1 Conditions to honor the mean and correlogram

Proposition 7

The simulated values honor the univariate and bivariate
distributions of the random set (mean and correlogram
of the indicator variable) if and only if the indicator
kriging estimate always lies between 0 and 1. This par-
ticular case of proposition 1 has been proved by Chilès
and Delfiner (1999, p 522).

Conditions on the kriging weights

Let m be the mean value of the indicator and {x1,. . . xn}
a set of locations. The simple kriging at xi from the other
locations can be written as follows:

½Y ðxiÞ�SK ¼
Xn

j¼1
j 6¼i

kj Y ðxjÞ þ ð1�
Xn

j¼1
j 6¼i

kjÞ m ð12Þ

Let
Pþ and

P� be the sum of positive and negative
weights respectively. The bounds of the estimate
[Y(xi)]

SK are ½Pþ þ ð1�Pþ �P�Þm� for the maximum
and ½P� þ ð1�Pþ �P�Þm� for the minimum. These
bounds lie between 0 and 1 if and only if

Fig. 2 Effect of the sampling on the prior trivariate probability
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0 � Rþ � 1þ m
1�m R�

ðRþ � 1Þ m
1�m � R� � 0

�
ð13Þ

In the plane parametrized by Rþ and R�, the allowable
area is a triangle (Fig. 3) located between the coordinate
axes and the line with equation

Rþ ¼ 1þ max
m

1� m
;
1� m

m

� �
R� ð14Þ

The loosest condition occurs when m = 1/2, in which
case it becomes Rþ � R� � 1. Such inequality means
that the sum of the absolute values of the kriging weights
must be less than or equal to 1:

Xn

j¼1
j 6¼i

jkjj � 1 ð15Þ

This relation can be expressed in a matrix form. Let C=
[C(xi – xj)]i,j=1. . .n be the covariance matrix of {Y1,. . .
Yn} and B = [bij]i,j=1. . .n the inverse of C. The weights
assigned to {xj, j „ i} when kriging xi are {)bij/bii, j „ i},
whereas 1/bii is the corresponding kriging variance
(Dubrule, 1983). Thus, Eq. 15 amounts to writing that B
is a diagonal dominant matrix:

8i 2 f1; . . . ng; bii �
Xn

j¼1
j6¼i

jbijj ð16Þ

According to Gerschgorin’s theorem (Bell, 1965), the
eigenvalues of B lie in the segment ½0; 2 max

i2f1...ng
ðbiiÞ�, thus

the eigenvalues of C are greater than

1

2
min

i2f1...ng

1

bii

� �
ð17Þ

which is half the minimum kriging variance of one loca-
tion from all the other ones. These properties have to be
checked for any choice of the locations {xi, i= 1. . . n}.

Conjecture

Although no complete characterization of the correlo-
grams that ensure Eq. 15 has been found, it is conjectured
that they are only the pure nugget effect and the com-
pletelymonotone functions onR+. If true, this conjecture

means that the apparent looser condition with respect to
the continuous mosaic (proposition 2) is not effective.

To corroborate the conjecture, numerical tests have
been made with other usual correlogram models (spheri-
cal, triangular, quadratic, Gaussian. . .): for each of these
models, it is easy to exhibit a configuration that contra-
dicts Eq. 15, even in one dimension and in presence of a
nugget effect. For instance, a correlogram composed by a
nugget effect with sill 0.95 plus a spherical model with sill
0.05 and range 1, leads to a sum of absolute weights equal
to 1.03 when kriging the origin from one thousand data
regularly spaced along the segment [-1,1].

3.2 Autoduality

Proposition 8

When m = 1/2, the random set generated by the
sequential algorithm is autodual, i.e. the 0’s and 1’s of its
indicator can be swapped without modifying the multi-
variate distribution.

Proof: If the visiting sequence is described by a per-
mutation r = {i1,. . . in} of {1,. . . n}, then the multivar-
iate distribution of {Y(x1),. . . Y(xn)} is (Eq. 4):

fr;nðy1;...ynÞ¼
Yn

k¼1
½
X

‘<k

kðrÞ‘;k dyik¼yi‘
þð1�

X

‘<k

kðrÞ‘;k Þ=2� ð18Þ

where {y1,. . . yn} are values in {0,1}. The autoduality
stems from the fact that this distribution is unchanged
when substituting {1)y1,. . . 1)yn} for {y1, . . . yn}.

Consequence

When m = 1/2, the sequential indicator algorithm fails
to simulate non-autodual random sets, for instance the
Boolean models in which the ‘‘pores’’ do not play the
same role as the ‘‘grains’’ (Lantuéjoul, 2002, p 153). This
means that the algorithm is not general and only
reproduces a restrictive class of random sets.

4 Multiple indicator models

The sequential indicator algorithm is often used to
simulate models in which each indicator has its own
covariance (Deutsch and Journel, 1992, p 146-152).
Hereafter, we will distinguish the cases of continuous
and categorical variables.

4.1 Continuous variables

The study of the mosaic model has shown several
coherence problems with the multivariate distributions

Fig. 3 Allowable area for the indicator kriging weights
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of the simulated values. Such problems also arise in this
more general model and will not be stated again. In-
stead, the following results focus on the bivariate dis-
tributions: these are, this time, only partially defined by
the indicator covariances.

Proposition 9

The simulation honors the indicator means and covari-
ances if and only if all the ccdf’s estimated by indicator
kriging are non-decreasing.

The proof of this assertion is similar to the one of
proposition 1. Note that the reproduction of the indi-
cator means and covariances is no longer true when
order-relation violations occur and have to be corrected.

Consequence

Under the conditions of proposition 9, the sequential
simulation also honors the madogram of the model,
since it is the sum of all the indicator variograms
(Matheron, 1989, p 30).

Let us now examine the other parameters of the
bivariate distributions, specifically the indicator cross-
covariances and the covariance of the continuous vari-
able itself.

Proposition 10

In general, the simulated indicator cross-covariances
depend on the visiting sequence and are not stationary
(an exception is the above-mentioned mosaic model).

Proof: Let us consider a set of initial values {Y1,. . .Yn}
at locations {x1, . . .xn} and assume that

a) 8y 2 R; 8i 2 f1; . . . ng;
EfIðYi; yÞg ¼ Prob ðYi < yÞ ¼ F ðyÞ

b) for any pair of values {y,y¢}, there exists a function
Cyy¢(h) such that:

8i;j2f1; . . . ng;covfIðYi;yÞ;IðYj;y0Þg¼Cyy0 ðxi�xjÞ
ð19Þ

So far, the indicator cross-covariances are stationary, as
they only depend on the vector separating the pairs of
indicator values. The question is: does this situation hold
when an extra value is simulated at xn+1? The ccdf at
that location is estimated by simple indicator kriging:

E ½ I ðYnþ1;yÞjdata �¼
Xn

i¼1
kiðyÞ I ðYi;yÞþkmðyÞF ðyÞ

with kmðyÞ ¼ 1�
Xn

i¼1
kiðyÞ: ð20Þ

With respect to the mosaic model (Eq. 2), the indi-
cator covariances and the kriging weights depend on the
thresholds. The previous formulae entail:

E½IðYnþ1; yÞ I ðYj; y0Þ�

¼ EfIðYj; y0ÞE½IðYnþ1; yÞjdata�g

¼ EfIðYj; y0Þ½
Xn

i¼1
kiðyÞIðYi; yÞ þ kmðyÞFðyÞ�g

¼
Xn

i¼1
kiðyÞCyy0 ðxi � xjÞ þ FðyÞFðy0Þ ð21Þ

so that

covfIðYnþ1;yÞ;IðYj;y0Þg¼
Xn

i¼1
kiðyÞCyy0 ðxi�xjÞ ð22Þ

This expression depends on the kriging configurations
(hence, on the visiting sequence) and has no reason to be
equal to the value of function Cyy0 at lag h = xn+1 ) xj:

covfIðYnþ1; yÞ; IðYj; y0Þg 6¼ Cyy0 ðxnþ1 � xjÞ ð23Þ
To corroborate the above inequality, the reader can
make the following exercise: consider five aligned and
regularly spaced locations (x1 to x5) and perform a
simulation with exponential indicator covariance mod-
els, so as to produce a screening effect and simplify the
calculations. The covariance between I(Y2;y) and
I(Y4;y¢) is found to differ from the one between I(Y1;y)
and I(Y3;y¢), unless the simulation sequence is regular
or all the indicator covariances are equal (mosaic
model).

First consequence (non-stationarity)

As was mentioned in the mosaic model for the multiple-
point statistics, edge effects are likely to occur on the
borders of the simulated image, but this time, they also
concern the two-point statistics. In other words, the
behavior of a pair of values depends on whether this pair
is located on the border of the simulated image or at its
center.

Second consequence (dependence on the sequence)

Except the indicator variograms and the madogram, the
other two-point statistics depend on the visiting se-
quence. In particular, this occurs with the covariance of
the variable itself, which is a mixture of all the simple
and cross indicator covariances (Chilès and Delfiner,
1999, p 103). Now, the visiting sequence is renewed for
each realization (chosen at random among all the pos-
sible sequences). Therefore, the regional variogram is
likely to differ from one realization to another beyond
the range of the expectable ‘‘ergodic fluctuations’’,
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which may explain the poor ergodic properties often
observed with sequential indicator simulation (Deutsch
and Journel, 1992, p 127–129).

4.2 Categorical variables

Categorical variables encode mutually exclusive lithofa-
cies. Let us assume that the whole space is partitioned
into N facies and define the variable:

Y ðxÞ ¼ y if x belongs to the y th facies ð24Þ
Since the codification does not correspond to any real
ordering of the facies, it is convenient to work on
standardized indicators i(Y(x) ; y) (function equal to 1 if
Y(x) = y, 0 otherwise) rather than cumulative indicators
(Deutsch and Journel, 1992, p 147). However, the
sequential algorithm leads to a coherence problem, as
detailed in the next proposition.

Proposition 11

Unless all the indicators have the same correlogram
(mosaic model), the estimated indicators do not neces-
sarily add to 1 and, therefore, cannot be interpreted as a
probability system.

Proof: Let us estimate one location x from a single
datum located at x + h. For any y in {1,… N}, one
has:

½iðY ðxÞ;yÞ�SK¼qyðhÞ i ðY ðxþhÞ;yÞþ½1�qyðhÞ� f ðyÞ ð25Þ
where f(y) and qy(h) stand for the mean and correlogram
of the indicator i(Y(x) ; y). Let y0 be the index of the
facies that prevails at x + h. A summation over all the
indices gives:

XN

y¼1
½iðY ðxÞ; yÞ�SK ¼ qy0ðhÞ þ

XN

y¼1
½1� qyðhÞ� fðyÞ

¼ qy0ðhÞ þ 1�
XN

y¼1
qyðhÞfðyÞ ð26Þ

This sum is always equal to one if and only if it does not
depend on y0, i.e. if all the indicators have the same
correlogram, Q.E.D.

Assume that the estimated indicators do not add to
one. A first solution for correcting this situation is to
rescale the kriging weights (e.g. divide them by their
sum), but such procedure introduces biases and deteri-
orates the reproduction of the indicator correlograms. A
second possibility is to use a full indicator cokriging, or a
disjunctive kriging, instead of a kriging of each indica-
tor. This variant of the sequential indicator algorithm
(Emery, 2002) can be implemented to simulate isofac-
torial models.

5 Isofactorial models

5.1 What is an isofactorial model?

A stationary random function {Y(x), x ˛ Rd} with a cdf
F(.) and a pdf f(.) have bivariate isofactorial distribu-
tions if there exists a family of functions called ‘‘factors’’
fvp; p 2 Ng such that (Chilès and Delfiner, 1999, p 394):

1. any function u[Y(x)] with finite variance can be ex-
panded into the factors:

u½Y ðxÞ� ¼
X

p�0
upvp½Y ðxÞ�

with 8p 2 N;up ¼
Z

uðyÞvpðyÞ fðyÞdy ð27Þ
2. the first factor is constant and equal to one; the other

factors have a zero mean and a unit variance:

8p 2 N�; 8x 2 Rd ;
E fvp½Y ðxÞ�g ¼ 0
var fvp½Y ðxÞ�g ¼ 1

���� ð28Þ

3. two different factors have no spatial cross-correlation:
8p; q 2 N�; 8x; xþ h 2 Rd ;

cov fvp½Y ðxþhÞ�;vq½Y ðxÞ�g¼
0 if p 6¼ q

TpðhÞ otherwise

���� ð29Þ

These properties characterize the distribution of all the
pairs {Y(x + h),Y(x)}. The bivariate density for a lag
separation h can be expressed as:

fhðy; y0Þ ¼ fðyÞfðy0Þ½1þ
X

p�1
TpðhÞvpðyÞvpðy0Þ� ð30Þ

A fundamental property is the exchange relation between
factors (Chilès and Delfiner, 1999, p 396), which is an
alternative definition of the isofactorial property:

8p 2 N�; E fvp½Y ðxþ hÞ�jY ðxÞg ¼ TpðhÞvp½Y ðxÞ� ð31Þ

5.2 Why isofactorial models?

The isofactorial models are interesting for two reasons.

1) They constitute a wide class of models that can adapt
to the description of diverse structural patterns, such
as an asymmetry in the spatial continuity between
high and low values, a destructuring or, on the con-
trary, a significant spatial correlation of the extreme
values (Hu, 1988; Chilès and Delfiner, 1999, p
398-405; Emery, 2002). However, isofactorial models
may not be able to describe complex spatial patterns,
insofar as they remain bivariate distribution models
and do not allow to control the multiple-point dis-
tributions (Guardiano and Srivastava, 1993).

2) They enable the estimation of the posterior distribu-
tions by disjunctive kriging, which relies on the full
bivariate distributions of the random function and
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not only on some of its indicator correlograms
(Matheron, 1976; Chilès and Delfiner, 1999, p 389).
Disjunctive kriging is nothing but a simple indicator
cokriging: by using the isofactorial property, it re-
duces the cokriging system to a simple kriging of each
factor separately. In brief, isofactorial models con-
ciliate two conflicting aspects: the internal consistency
of the model (the full bivariate distributions are taken
into account in a coherent way) and the ability to
incorporate the structural patterns of the underlying
phenomenon. A well-known example is the bigaussian
model, in which the univariate distribution is normal
and the factors are Hermite polynomials (Rivoirard,
1994, p 37). A more general example is the Hermitian
model, which can be seen as a mixture of bigaussian
distributions with a random correlation coefficient
(Matheron, 1976, p 229; Chilès and Delfiner, 1999, p
404). Another case is the mosaic model seen in the
second section of this work.

5.3 Conditions to honor the univariate
and bivariate distributions

Proposition 12

The simulated values honor the univariate and
bivariate distributions of the model if and only if all
the ccdf’s estimated by disjunctive kriging are non-
decreasing.

Proof: As in proposition 1, the proof is established by
induction. Consider a set of values {Y1, . . . Yn} located
at {x1,. . . xn} whose bivariate distributions are isofac-
torial (Eq. 31): 8p;2 N�; 8 i; j 2 f1; . . . ng;

E ½vpðYiÞjYj� ¼ Tpðxi � xjÞvpðYjÞ ð32Þ
Let us estimate the ccdf at a location xn+1 by disjunctive
kriging (in short, DK) and assume this is a non-
decreasing function. Then, a value Yn+1 can be drawn
according to this ccdf, so that:

Fxnþ1ðyj data Þ¼ ProbðYnþ1< yj data Þ¼ ½ I ðYnþ1;yÞ�DK

ð33Þ

Because disjunctive kriging is unbiased, the univariate
distribution is honored:

ProbðYnþ1 < yÞ ¼ E f½IðYnþ1; yÞ�DKg ¼ F ðyÞ ð34Þ
Concerning the bivariate distributions, we will need

to expand the disjunctive kriging of the indicator as
follows (Eq. 27):

F xnþ1ðyj data Þ¼
X

q�0
½
Z y

�1
vqðuÞ f ðuÞdu�½vqðYnþ1Þ�SK ð35Þ

where the superscript SK refers to a simple kriging.
Because of the orthogonality of the factors (Eq. 29), this
entails, for any p > 0:

E½vpðYnþ1Þj data �

¼
Z

vpðyÞ Fxnþ1ðdyj data Þ

¼
X

q�0

Z
vqðyÞvpðyÞ f ðyÞdy½vqðYnþ1Þ�SK

¼ ½vpðYnþ1Þ�SK ¼
Xn

i¼1
kp

i vpðYiÞ ð36Þ

where fkp
i ; i ¼ 1 . . . ng are the weights assigned to

fvpðYiÞ; i ¼ 1 . . . ng when kriging vpðYnþ1Þ: Now, for any
integers p 2 N� and j 2 f1; . . . ng; one has:

E ½vpðYnþ1ÞjYj� ¼ E ½vpðYnþ1ÞjY1; . . . YnjYj� ð37Þ
To use this formula, it is necessary to calculate
E ½vpðYnþ1ÞjY1; . . . Yn�, which has been done in Eq. 36.
Therefore, we obtain:

E ½vpðYnþ1ÞjYj� ¼
Xn

i¼1
kp

i E ½vpðYiÞjYj�

¼
Xn

i¼1
kp

i Tpðxi � xjÞvpðYjÞ

¼ Tpðxnþ1 � xjÞvpðYjÞ ð38Þ

The second equality corresponds to the induction
hypothesis (Eq. 32), whereas the last equality stems from
the simple kriging system. Equation (38) shows that, if the
estimated ccdf at xn+1 is non-decreasing, all the bivariate
distributions of the set {Y1, . . . Yn, Yn+1} are still isofac-
torial, with the factors fvp; p 2 Ng and covariances
{Tp(h), p ˛ N*}. Reciprocally, if the estimated ccdf is non-
monotone andhas to be corrected, the previous properties
(Eq. 33 to 38) are no longer fulfilled, hence the univari-
ate and bivariate distributions may not be reproduced.
Now, the condition of monotonicity of the estimated
ccdf’s is quite restrictive, as illustrated hereafter.

Proposition 13 (bigaussian distribution)

In the isotropic case, the bigaussian distribution is never
reproduced exactly except for

1) a pure nugget effect model;
2) a one-dimensional markovian model, when the visit-

ing sequence is regular.

The proof is given in Appendix A. Such proposition can
be extended to other diffusive isofactorial models, such as
the bigamma, negative binomial and Poisson distribu-
tions (Hu, 1988; Chilès and Delfiner, 1999, p 401–404):
only the markovian models can be reproduced exactly. A
diffusive model is defined by the fact that the correlogram
of the pth factor is equal to the correlogram of the first
factor raised to power p (Chilès andDelfiner, 1999, p 409).
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Consequence

Aside from the markovian case, the sequential isofac-
torial algorithm cannot simulate a multigaussian ran-
dom field and, more generally, a diffusion-type process.
A fortiori, neither can the sequential indicator algorithm,
since an indicator kriging is always less accurate than a
disjunctive kriging.

6 Conclusions

In addition to the difficulties linked to the sequential
paradigm, in particular concerning the moving neigh-
borhood restriction required for its practical imple-
mentation, several conceptual problems arise from the
indicator formalism.

1) The conditions to honor exactly the input parameters
are extremely restrictive: they are often limited to the
one-dimensional space and to some specific indicator
correlograms. In all the other cases, the reproduction
of the model parameters is only approximate.

2) The probability of occurrence of an event at a given
multiple-point configuration depends on a) whether
this configuration is located on the edge of the sim-
ulated image or at its center, b) the total number of
simulated nodes (which includes the grid mesh of the
simulation and the size of the simulated domain), and
c) the number and configuration of the available
samples, prior to the knowledge of their values.
Therefore, the multiple-point statistics are baseless
and should be considered as ‘‘undefined’’. This rule
also applies in the general case of multiple-indicator
models for all the two-point statistics that are not
fully characterized by the indicator correlograms (e.g.
the variogram of the variable itself).

For many authors, one of the purposes of stochastic
simulation is to go beyond the model input parameters
(in this case, the indicator correlograms) and use the
realizations in operations that involve multiple-point
statistics, e.g. upscaling or flow simulation. Now, such
approach is debatable: because of the previous remark,
the multiple-point statistics are not only model-depen-
dent, but also implementation-dependent. Accordingly,
one may wish to limit the use of the realizations to
operations whose results are fully controlled by the
model parameters. This point of view considerably re-
stricts the scope of the algorithm, for instance it does not
allow to perform a change of support on the realiza-
tions. One way to solve the change-of-support problem
consists in simulating directly the block values without
resorting to a point-support simulation, but this solution
requires defining a joint distribution between point and
block values (Emery, 2002, p 96).

All these impediments appear as the counterpart of
the flexibility of the method, which intends to be all-
purpose. Actually, the sequential indicator algorithm
should be qualified as ‘‘stochastic imaging’’ rather than

‘‘stochastic simulation’’. The realizations (images) do
not refer to a fully specified random function model and
their properties depend on external factors such as the
total number of simulated nodes.
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Appendix A

In this appendix, we give the proof of Proposition 13.
Let us consider two data {Y1,Y2} at locations {x1,x2}
and simulate the value Y3 at location x3. The estimated
ccdf is (Rivoirard, 1994, p 57):

½IðY3; yÞ�DK ¼ FðyÞ þ
X

p�1

1
ffiffiffi
p
p vp�1ðyÞfðyÞ½vpðY3Þ�SK ðA1Þ

with ½vpðY3Þ�SK ¼ kp
1vpðY1Þ þ kp

2vpðY2Þ:
This function is required to be non-decreasing, hence its
derivative must be non-negative whatever the values of
Y1 and Y2:

fðyÞf1þ
X

p�1
vpðyÞ½k

p
1vpðY1Þ þ kp

2vpðY2Þ�g � 0 ðA2Þ

A necessary condition is found by assuming that both
data are equal to a same scalar y¢:

fðy; y0Þ ¼ fðyÞ f ðy0Þ½1þ
X

p�1
ðkp

1 þ kp
2ÞvpðyÞvpðy0Þ� � 0

ðA3Þ
The integral of f(y,y¢) over R2 is equal to 1 since all the
terms of order p ‡ 1 have a zero integral (Eq. 28). Thus,
what is sought after is a condition for f(y,y¢) to be a
probability density (positive function with a unit inte-
gral) with an isofactorial expression (Eq. 30). According
to Matheron (1976, p 233), this occurs if and only if the
coefficients {ap, p ˛ N} defined by

a0 ¼ 1 and 8p � 1; ap ¼ kp
1 þ kp

2 ðA4Þ

constitute the successive moments of a random variable
in [-1,1]. Now, in the bigaussian model, the covariance of
the pth factor is equal to the correlogram of the Gaussian
random function raised to power p:

8p 2 N�; TpðhÞ ¼ qpðhÞ ðA5Þ
Hence, the coefficients {ap, p ˛ N} are found to be

8p � 1; ap ¼ kp
1 þ kp

2 ¼
qp
13 þ qp

23

1þ qp
12

ðA6Þ

in which qij stands for q(xi ) xj), " i, j ˛ {1,2,3}.
A theorem known as ‘‘classical moment problem’’

(Hausdorff, 1921; Widder, 1941, p 100) states that a
series of real numbers {ap, p ˛ N} are the moments of a
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random variable in R if and only if for every finite set
{a0,. . . ap} of scalars, the following inequality is true:

Sða0; . . . apÞ ¼
Xp

i;j¼0
aiajaiþj � 0 ðA7Þ

In particular, for p = 1:

Sða0; a1Þ ¼ a20a0 þ 2a0a1a1 þ a21a2 ðA8Þ
This is a polynomial of degree 2 with respect to a0 and
a1; it is always positive if its discriminant is negative or
zero:

D ¼ 2 ðq13 � q23 q12Þ ðq23 � q13 q12Þ
ð1þ q12Þ2 ð1þ q2

12Þ
� 0 ðA9Þ

Let us examine the case when {x1,x2,x3} are the vertices
of an isosceles triangle.

� If x3 is equidistant from x1 and x2 (Fig. 4a), then:

D ¼ 2 q2ð‘Þ ½1� qðLÞ�2

½1þ qðLÞ�2 ½1þ q2ðLÞ�
ðA10Þ

The condition D £ 0 is never met, unless the correlo-
gram is a pure nugget effect (q(l) = 0 for all l „ 0).
� If x2 is equidistant from x1 and x3 (Fig. 4b), the con-
dition becomes:

D ¼ 2 qð‘Þ ½qðLÞ � q2ð‘Þ� ½1� qðLÞ�
½1þ qð‘Þ�2 ½1þ q2ð‘Þ�

� 0 ðA11Þ

Now, a similar reasoning when both data {Y1,Y2} are
equal to y¢ and -y¢ respectively leads to another nec-
essary condition:

D0 ¼ � 2 qð‘Þ ½qðLÞ � q2ð‘Þ� ½1� qðLÞ�
½1� qð‘Þ�2 ½1þ q2ð‘Þ�

� 0 ðA12Þ

The only possible correlograms are the pure nugget
effect and the exponential model in a one-dimensional

space (L = 2‘), for which q(2‘) =q2(‘) for all ‘.
Both cases are also sufficient conditions:

1) The nugget effect simulates mutually independent
random values (white noise process).

2) The exponential correlogram in one dimension cor-
responds to a Markov process: each factor also has
an exponential correlogram, so that the last simulated
value screens all the previous ones in the disjunctive
kriging system. Hence, the distribution of the value to
simulate given the last simulated value is directly
derived from the bivariate distribution (Eq. 30), and
the monotonicity of the estimated ccdf is guaranteed.
However, the simulation must be performed accord-
ing to a regular sequence.
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