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Abstract

The partition function of a dilute Bose gas with repulsive interaction, fixed number of particles and in the presence of a
condensate is computed up to first order in the interactions. An equilibrium condition appears for the fraction of particles in
the condensate and the chemical potential of the particles. We show that for a dilute gas the Bose—Einstein transition is not of
second order. Moreover, the thermodynamical quantities obtained may look different from those in the literature, because the
chemical potential enters in a nontrivial way in the quasi particle spectauitethisarticle: S. Rica, C. R. Physique 5 (2004).

Résumé

Thermodynamique d'un gaz de Bose dilué en présence d’'un condensat. La fonction de partition d’'un gaz de Bose
dilué avec des interactions répulsives a nombre de particules fixé en présence d’'un condensat est calculée au premier ordre
du parameétre d'interactions. Une condition d’équilibre apparait pour la fraction de particules condensées et pour le potentiel
chimique des particules. On montre que pour un gaz dilué la transition de Bose—Einstein n’est pas de second ordre. De plus,
les quantités thermodynamiques qui apparaissent dans cette approche sont différentes de celles présentes dans la littérature
sur le sujet du fait d'une dépendance non triviale du potentiel chimique avec le spectre des quasipditiculeiser cet
article: S. Rica, C. R. Physique 5 (2004).
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According to Landau quasiparticle theory [1], the momentum density of the normal fluid, moving with avspgdative to
the superfluid part, is
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This relation could be expanded aroune: O (if [v] < min @), leading toj, = mppV 4+ O(v2). mp, is called the normal
matter density. After (1) one has that the number density o?the normal component in a superfluid at tenipésgheecafter
we shall use the word density for a number density, that is, the number of particles per unit volume)
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In (2) e(p) is the excitation spectrum (that is, the energy of a quasiparticle as a function of its monyEntush o be the total
fluid density. As usual, one defines the superfluid densitysby p — pp,. In the case of helium, the normal density vanishes at
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T =0 K (ps = p) and grows ag’ increases. Actually, the formula fay, (2) has sense only i, < p (os > 0). Using the roton

shape part, Landau estimated the critical temperature where the normal density becomes the total fluid density. As he noted,

this critical temperature is not exact in real liquid helium because the interactions between the quasiparticles were omitted.
Atomic vapours that undergo a Bose—Einstein transition are described in the framework of the Bogoliubov theory for a

weakly interacting Bose gas [2]. For such a dilute system one finds an analytic expression for the spectrum:

1
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wherem is the particle massf the scattering length72: the Planck constant ang is the number density of particles in the
condensate (see later for a precise definition). In this case the normal density depends on the energy spectrum, that depends
itself on the density of the condensate. Although there is no simple relation between the normal density and the condensate
one, we shall set the superfluid density equal to the condensate®aey — p,, to illustrate the solutions of Eq. (2). A rapid

evaluation says thaig =0 at7T = Tgg = {(33% %pz/:”, and suggests that there is no change in the critical temperature
as soon as we turn-on interactions. However, as was shown by Huang, Lee, Luttinger and Yang in a series of papers [3-6] the
condensate densifyy posses a subcritical behavior aroufigk, indicating that transition is not of second order.

Naturally, in our reasoning we have added the relatige= p — p, mixing two quantities that have no direct connection;
on defined by Landau is a hydrodynamical variable agds a thermodynamical variable with a very precise definition in the
framework of the Bogoliubov theory [2]. Therefore, we shall leave out Landau’s definition (2) and consider the Bogoliubov
theory for a weakly interacting gas as a starting point. Although subcriticality does not disappear, the Bose distribution changes
dramatically.

Let us consider a system wifti interacting non-relativistic bosons in a volurfze Letal (ay) be the creation (annihilation)

operators for the state of momentym. Naturally they obey the commutation rute,'a; — a;aa = dap. The Hamiltonian is
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wheres2 is the total volume and th&function is Kronecker discrete function, equal to zero if its argument is not zero and to 1
otherwise.

Following the principles outlined by Bogoliubov, at zero temperature the interaction part of the energy is split into a part
involving the condensate and a part not involving this condensate If there is condensation in the state of zero momentum,
the operators of index zero becomewumbers:ag = w2172, a = Pp2Y/2, whereyy is the ground state wavefunction,
practically a complex constant hergg being its complex conjugate. The condensate number density appearsoto=he
|%ol% = laol?/£2.

The sum}", ., may be decomposed in five terms, depending on the way the condensate wavefunction enters into

2
those terms: first, the one with four zero wavenumb@?;‘,h—|ao|4 The terms with three zero wavenumbers do not exist
because of thé-function. The terms such that two wavenumbers are zero contnbuteg%%ﬁ Zp(aoapaip + aoapa_p +

4|a0\ apap), herezp excludes they = 0 term. This term is precisely the one kept by Bogoliubov, allowing him to describe a
perfect gas of quasi-particles with a well defined energy spectrifn=a0 K. The cubic terms on the,, are always negligible
compared to the other interaction terms except near the transition. This is because it has the lowestgradthimespect

to any other term involvingg, and so becomes the most important term invohagas the superfluid density tends to zero.
However, outside this neighborhood of the transition, this term may be neglected. In a regular perturbation scheme, the effect
of the third term would require us to go to the second ordef4n(because any combination cubic in creation annihilation
operators brings no first order contribution), although we shall deal with terms of at most first oytifimally, we have the

terms such that all four wavenumbers.. ., differ from zero. One could expect that those are of higher order, but, after a rapid
inspection, one sees that the particular terms whegre= py, pg = pw and py = pe With pg = p, contributes up to a first

order. Other terms introduce quantum correlations which we neglect. The final sum can be written

47tfh (Z" aa)(zaﬂ ﬁ> 4nfh N .

whereng is by definition the total number of particles with zero momentum, ig= |ag|? = [¥o|22 = poS2.
Finally, the Hamilton operator that we are going to use can be written as:

2nh? 27th
H= Z—apap e f[Z(N—no)z fZ 24 T T +lI/0apa_p + 4| apap) 5)
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We shall compute the partition functicty = Tr(e=#/*s1)) for a given total number of particle¥ in a box of volume
£2. Following now the same general method as outlined in Huang’s book [7] we decompose the trace into a sum over states
with ng particles in the condensate (depending only:ghand sums over states with non-zero momentum. Therefore one has

N
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no=0
where
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The trace Tite=#'/*57)) is sum over states whepé — ng= N’ = > apap is fixed. This trace could be performed directly

adding a Lagrange multiplien (N’ — Zp apap). In a sense, this trace represents the partition function of a fictitious non-

interacting gas in equilibrium. Let us call this partition functiﬁrﬁ,(no, ). Therefore the full partition function could be
written as

N N
Zy = Z Zy(ng, 1) = Z ef((27rh2f)/(mk3T.Q))[Z(N—no)2+n%]Z;V(no’ .
no=0 no=0

Huang’s method uses the following inequality fof;:
Max[Zy (no, )] < Zn < (N + DMax[Zy (ng, )],

where MaxZ y (ng, )] is the global maximum of y (ng, 1) =€~ — (k2 )/ (mkpT 2)I2AN=no)*+n5] 7/
andu € N. Letng and it be the maximal values. The preceding inequality says that

n (0, ) inng €0, N]

% InZy (g, i) < % INZy < % InZy (ig, i) + % IN(N + 1),
therefore asv — oo one has the following limit for the partition function

i InZy — i InZy (ng, t).

N N

Let us now comput@j\, (no, n). As we said, we use the grand canonical ensemble with a Lagrange multiph&r—
Z;, a;ap). Therefore we should compute the trace

Z(ng, ) = e HIN=10)/(ksT) Trexp _—12' i +4 2f|w0|2—u aba
N ’ kBT > 2m pYpP
27 h2 .
+ nm f (lI/Za;r,aT + lllozapa,p):D.

The trace computation is made possible by transforming the operator in the exponential into its diagonal form using the
Bogoliubov transformation:

ap=upbp + vpbip,
a; = ﬁpb; =+ 17pb7p, (6)
=lup|? — vy,

where the third relation follows from the commutation relatim,a;r,] = 1. Imposing the condition that the resulting
Hamiltonian is diagonal im;bp one has that

Up _Tpi\/ T3—482\‘1’0\4
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whereg = 2742 f /m andT, = p?/(2m) + 4g|¥o|® — 1. Finally, the operator in the exponential in its diagonal form is

> (12— ag? w014 2bhb,.
p



52 S Rica/ C. R. Physique 5 (2004) 49-54

Therefore, if
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one has in the end that
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We need now to find the maxima of
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through the conditions
dZy(no. ) _ AZy(no. 1) _

0,
oun ang
giving
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Although this equation means that we obtain a perfect gas of quasi-particles in thermodynamical equilibrium with a well defined

number of excitations, the total number of quasi-particles is not the usual Bose—Einstein factor. The second condition (note that

e (p, i, [Wol2) depends explicitely ong becauserg = |¥|252) implies:

2 o dPp 1 dep
rh)D e8(p.1.00)/ksT) — 1 dng ~

From (7) dep/du = —Tp/ep and dep/dng = (4gTy —8g2p0)/83, and putting those derivatives into (10) and (11) one
transforms (10), (11) into:

2mh
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Egs. (12) and (13) solve, in principle, the problem. These equations differ from the ones in [8] by changing
1+ 22 h? f /m) po.

One may study numerically the solutions of (12) and (13), after a correct reduction to dimensionless quantities. This
reduction depends on the thermodynamical process. In [8] we have considered an isothermal process and we explored the
P — V diagram arriving to the conclusion that the transition is not of second order. In that case it was useful to use the thermal
de Broglie wavelength. = /2742/(mkgT) as unit length. Densities are made dimensionlesg bypA?, 5o = por? and
§' = p — po=p'AP, and the interaction parameter= 220,

Here we shall consider a constant dengityn this case it is useful to define a characteristic temperature depending on the
particle density: the transition temperature of an ideal Bose gas in 3D is a good candidate

P T
Top= —2 1" 23
BT L @22 mkp”

Let us define the dimensionless interaction parameter ¢ (3/2)2/3 fp1/3, y = (u/(kpTae) — 20p0/p), t = T/Tae and
& = po/p, then Egs. (12) and (13) become
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0
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Fig. 1. Condensate fractiopp/p and superfluid fractionps/p, as functions of the dimensionless temperatuteT / Tgg.

whereé(x, y.1,&) =/(x2 — y/1 + 20 /1) — 4a2£2/12.
We have solved numerically (see Fig. 1 o= 0.1) these coupled equations in terms of the functipf§ and: (&) instead
of y(¢) and&(¢) because condensate density is a multivalued function of temperature. Solutions are found by iterating the map:

x2dx

o0
1/2 4 /‘ 1
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that converges easily to a fixed point.

Coming from high temperature region we observe that the condensate density jumps from zero value to a finite one at a
temperaturd’c > Tgg depending only ow. This is because the curyg/p versus possesses a turning point characteristic of
a subcritical behavior.

Finally, let us go back to the Landau’s expression for the normal density. The momentum of the quasiparticle gas of
excitations moving with a speadwith respect to the condensate is

+
- Z, + o (H=X,'v-papay)/(kgT) 9InZy
= a,d ’
In - Papap Zn v
where the second equality holds because energy and momentum commuteByansl the trace Zy(ng, u,V) =

Tr(e_(H_Zp/"'p“;“!’)/(kBT)). This trace and the thermodynamical stability are considered by Pomeau in this volume [9]; the
leading result is that the partition function (9) remains as stated but changing the Bogoliubov specteyx(7j, |¥p[2) —

ep(p, i, [Wol2) — v - p. Moreover, Landau’s formulas for the flux of mass and the normal density (2) remain unchanged, but
takeeg (p, 1, |¥ol?) as the energy spectrum. The superfluid density= p — p,, differs quantitatively from the condensate

density and does not enter the equations of state (12) and (13). It depends explicitly on the temperature, condensate density and
chemical potential in a passive way. In terms of the normalization used in (14) and (15) one obtains:

o5 832 T Agyrd)
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In Fig. 1 it the superfluid fractioms/p is added as a function of temperature. Although the condensate density jumps from

zero to a finite value at the returning poifit, the superfluid density posses a negative fictitious valdg.aks said previously

Landau’s formula makes sense onlypif > 0 and this happens only below a temperat@iyesuch thatTgg < Ty < T¢. In

conclusion, the appearence of a Bose—Einstein thermodynamical phase does not means that a superfluid state, in the sense tha
the fluid could realize a flow without dissipation, appears at the same temperature. Going back to Landau’s seminal work [1],
perhaps, superfluidity is not directly related to Bose—Einstein condensation, at least in the limit of a di]ﬁ;&é@a& 0.
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