
Theoretical Computer Science 321 (2004) 283–290
www.elsevier.com/locate/tcs

Average complexity of exact and approximate
multiple string matching�

Gonzalo Navarroa ;∗ , Kimmo Fredrikssonb;1
aDepartment of Computer Science, University of Chile, Santiago, Chile

bDepartment of Computer Science, University of Joensuu, Finland

Abstract

We show that the average number of characters examined to search for r random patterns
of length m in a text of length n over a uniformly distributed alphabet of size � cannot be
less than 3(n log�(rm)=m). When we permit up to k insertions, deletions, and/or substitutions of
characters in the occurrences of the patterns, the lower bound becomes 3(n(k + log�(rm))=m).
This generalizes previous single-pattern lower bounds of Yao (for exact matching) and of Chang
and Marr (for approximate matching), and proves the optimality of several existing multipattern
search algorithms.

Keywords: Lower bounds; Yao’s bound; String matching allowing di<erences; Multipattern matching

1. Introduction

String matching is one of the main problems in computer science, with applications in
virtually every area. Given a pattern P=p1 : : : pm and a text T = t1 : : : tn, both sequences
over a ?nite alphabet  of size �, the problem is to determine all the positions where
P occurs in T , that is, {|x|; T = xPy}. The worst-case complexity of the problem,

� Partially supported by Fondecyt grant 1-020831.
∗ Corresponding author. Depto. de Ciencias de la Computacion, Universidad de Chile, Blanco Encalada

2120, Santiago, Chile.
E-mail addresses: gnavarro@dcc.uchile.cl (G. Navarro), kfredrik@cs.joensuu.? (K. Fredriksson).
1 Work developed while the author was working in the Department of Computer Science, University of

Helsinki. Supported by the Academy of Finland.

mailto:gnavarro@dcc.uchile.cl
mailto:kfredrik@cs.joensuu.fi


284 G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290

measured in number of accesses to T , is clearly 3(n), and it was achieved by the
famous KMP algorithm [8]. If we assume that the text and the pattern characters are
uniformly and independently chosen from , then the classical paper of Yao [9] shows
that the average complexity of the problem is 3(n log�(m)=m). This bound is tight, for
example it is achieved by BDM algorithm [3]. Other algorithms, like TurboBDM and
TurboRF [3], are at the same time worst-case optimal.
Approximate string matching is a variant of the problem where we do not require

exact coincidence between P and its occurrences in T . Rather, a distance function
d between strings is de?ned, and an error threshold k is given as an additional
problem parameter. Then, the problem becomes ?nding all the approximate occur-
rences of P in T , that is, the substrings of T that are at distance at most k from P,
{|x|; T = xP′y; d(P; P′)6k}.
Some of the most commonly used distance functions are Hamming distance (number

of character substitutions necessary to convert one string into the other), indel distance
(number of character insertions and deletions necessary), and Levenshtein distance
(number of character insertions, deletions, and substitutions). The worst-case complex-
ity of this problem is 3(n), and it can be achieved by reducing the problem to automata
search, although preprocessing is exponential in k. The worst-case complexity when
the space has to be polynomial in k is unknown, the best known upper bound being
O(kn) [7]. Interestingly, the average case complexity is known. Chang and Marr [2]
proved that the average lower bound for this problem is 3(n(k+log�(m))=m) accesses
to T . They focused on Levenshtein distance, although their proof is valid for the other
two distances as well. Their bound is also tight, as they gave an algorithm with such
average complexity in the same paper [2] (for k=m¡ 1

3 ).
Multiple string matching is the problem of, given r patterns P1 : : : Pr , and T , report

all the occurrences of all the patterns in T . This problem arises naturally in many
applications, and several algorithms exist to solve it. Again, the worst-case complexity
is 3(n) and it was achieved by the algorithm of Aho and Corasick [1]. If the minimum
length of the patterns is m, then the best average complexity achieved by multipattern
search algorithms is O(n log�(rm)=m), for example by Dawg–Match [4] and MultiBDM
[5] algorithms.
Finally, we can de?ne multiple approximate string matching by giving a single

threshold k for all the r patterns. The best existing average complexity for this prob-
lem is O(n(k + log�(rm))=m), for k=m¡

1
3 [6].

2 In a recent work [10], the limit was
improved to k=m¡ 1

2 for single and multiple approximate pattern matching.
Somewhat surprisingly, despite the existence of several eOcient algorithms, no

average-case lower bounds have been given for multiple string matching, either exact
or approximate. Hence it is not known whether the multipattern algorithms mentioned
above are average-optimal.
In this paper, we answer this question aOrmatively. We show that the average com-

plexity of exact multipattern string matching is 3(n log�(rm)=m) accesses to T , for
r6�m=m, and that of approximate multipattern string matching is 3(n(k+log�(rm))=m).
For larger r, the lower bound becomes 3(n), the same as for the worst case. For

2 An incomplete optimality proof was sketched in that paper.



G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290 285

r=O(poly(m)), the bounds are equal to those for a single pattern. These are not
surprising, as there exist algorithms that achieve the single pattern complexity for
multipattern searching when r is that small. We assume for simplicity that all the
patterns are of length m.

2. A lower bound for exact multipattern matching

We extend the classical proof of Yao [9] to the case of searching for several patterns.
Let us assume that we search for r random patterns of length m in a random text of
length n. More precisely, each character of each pattern, as well as each text character,
is drawn with uniform probability from set , independently of all the other characters.
Note that the r patterns are not necessarily di<erent from each other. We prove that,
under this model, the average lower bound of the problem is 3(n log�(rm)=m) accesses
to T .
Following [9], let us divide the text into �n=(2m−1)� contiguous and non-overlapping

blocks Bi, i ∈ 1 : : : �n=(2m − 1)�, such that Bi=T(2m−1)(i−1)+1:::(2m−1)i. Furthermore,
assume that we only need to search for the presence of the patterns inside each block
Bi. This is an optimistic assumption, since we are disregarding any pattern occurrence
spanning two blocks. We also optimistically disregard the few last text characters that
do not complete a full block. Hence, any lower bound derived for this simpler problem
is a lower bound for the original search problem. We establish this fact in the following
lemma.

Lemma 1. The average lower bound to the problem of 1nding any occurrence of
patterns P1 : : : Pr inside blocks Bi=T(2m−1)(i−1)+1:::(2m−1)i, i ∈ 1 : : : �n=(2m − 1)�, is
also a lower bound to the problem of 1nding any occurrence of patterns P1 : : : Pr

inside T1:::n.

Proof. Any solution to the problem of searching T in time P(t) can be converted
into a solution to the problem of searching the Bi’s in time P(t), by removing from
the result any occurrence Tj:::j+m−1 that spans more than one block, that is, such that
(j − 1) mod (2m− 1)¿m. The extra discarding work is constant per occurrence, and
in time t no more than t occurrences can be reported, so the extra work is O(t).

From now on, due to Lemma 1, we will focus on a lower bound to the problem of
?nding all the occurrences that lie inside some block Bi, i ∈ 1 : : : �n=(2m − 1)�. Our
next goal is to show that we can actually focus on any single block and multiply the
result by 3(n=m).
Note that the blocks do not overlap each other. Since each text character is indepen-

dent of all others, no characters read inside one block can be used to gather information
on the others. Therefore, we can regard the search problem inside each block Bi in
isolation. Let ti be the search cost inside block Bi, without any extra information. We
remark that random variables ti are independent of each other, although we do not
actually need this for the proof. The following lemma easily follows.



286 G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290

Lemma 2. The total search time inside blocks Bi, i ∈ 1 : : : �n=(2m−1)�, is on average
equal to �n=(2m− 1)� times the average search time inside any such block.

Proof. The total search time inside the blocks is by de?nition t1 + t2 + : : : t�n=(2m−1)�.
Hence, the average of this search cost is

E


�n=(2m−1)�∑

i=1

ti


 =

�n=(2m−1)�∑
i=1

E(ti);

because the expectation commutes with the sum (for independent as well as dependent
random variables). Since all the blocks Bi are identically distributed, independently of
each other and uniformly over strings in the set 2m−1, it turns out that E(ti)=E(tj)
for any 16i, j6�n=(2m − 1)�. Let us call E(t) this value, which corresponds to the
average search time inside a block Bi, for any i. Therefore, the average search cost
inside all the blocks is

�n=(2m−1)�∑
i=1

E(ti) = �n=(2m− 1)�E(t) = 3((n=m)E(t)):

Up to this point we have established that the average search cost is 3((n=m)E(t)),
where t is the time necessary to search the occurrences of r patterns inside a text block
of length 2m− 1. In the following we establish that E(t)=3(log�(rm)) and this will
complete our proof. Note that this formulation of the problem is similar to the original,
for the particular case n=2m− 1.
Inside a given block B= b1 : : : b2m−1, each of the r patterns can match at m di<erent

positions (starting at block position 1 to m). Each possible match position of each
pattern will be called a candidate and identi?ed by the pair (s; i), where s ∈ 1 : : : r is
the pattern number and i ∈ 1 : : : m is the starting position inside the block. Hence there
are rm candidates.

De�nition 1. A candidate is a pair (s; i), where s ∈ 1 : : : r is a pattern index and
i ∈ 1 : : : m is the initial block position where an occurrence of pattern s may start.
The pattern matching problem is equivalent to that of determining which of the rm
candidates occur in B, that is, of computing the set

R = {(s; i); Bi:::i+m−1 = Ps}:

We have to examine enough characters of B to fully determine set R. We will
perform a sequence of accesses (character reads) inside the block, at di<erent positions
i1; i2; : : :, 16ij62m−1, until the information we have gathered is enough to determine
R.
Given the de?nition of R, it is clear that the only way to prove that (s; i) �∈ R, is to

perform an access at a position ij, i6ij6i + m − 1, such that Bij �= Psij−i+1. On the
other hand, if after accessing all positions ij ∈ i : : : i + m − 1 (in any order inside the



G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290 287

access sequence), it turns out that Bij =P
s
ij−i+1, then we have that (s; i) ∈ R. Observe

that it is not possible to determine (s; i) ∈ R with less than m accesses.
As our proof refers to the number of accesses to the text, the cost model we use

is that we pay O(t) to perform t accesses, i1; i2 : : : it , so that with those t accesses
we gather enough information to determine R. That is, for every candidate (s; i), we
determine either (s; i) ∈ R or (s; i) �∈ R.
At this point we make another optimistic assumption. If, after m − 1 accesses, we

have not determined R, then the rest is for free. Since with m − 1 access we cannot
prove (s; i) ∈ R for any (s; i), the only way to determine R with m − 1 access is to
?nd out that R= ∅. This assumption permits us focusing in how many accesses are
necessary to determine (s; i) �∈ R for all 16s6r and 16i6m.

Lemma 3. Any lower bound to the problem of determining whether R= ∅, where only
the 1rst m− 1 accesses are counted, is a lower bound to the problem of determining
R.

Proof. Consider any algorithm that determines R. We modify it so that, at the end,
we only answer whether R= ∅ or not. Furthermore, only the ?rst m − 1 accesses of
the modi?ed algorithm are counted. The modi?ed algorithm necessarily costs the same
or less than the original algorithm for every possible block, and therefore any lower
bound to the simpler problem is a lower bound to the original problem.

Therefore, we can focus only on the ?rst m− 1 accesses to the block. More impor-
tantly, we can focus only on discarding elements from R. The question is, therefore,
how many accesses we need on average to prove R= ∅. If we need m or more, we
assume we need just m− 1.

Lemma 4. Given an accesses ij to block B, the probability to discard a candidate
(s; i) with that access is at most 1 − 1=�. This bound is independent on what has
happened with previous accesses.

Proof. Since we access di<erent block positions as we progress, it turns out that block
character ij has never been examined before. Hence, the event Bij =P

s
ij−i+1 has prob-

ability 1=� because characters are drawn independently and with uniform probability
from the alphabet. Since with probability 1=� it might happen that Bij =P

s
ij−i+1, in

which case candidate (s; i) cannot be discarded, then the probability of discarding (s; i)
cannot exceed 1− 1=�.

Note that the probability of discarding candidate (s; i) with the current access ij could
be less than 1=� (actually, it would be zero) because of two reasons: (1) position ij
could be outside the area i : : : i + m − 1 covered by candidate (s; i); (2) candidate
(s; i) could have already been discarded by a previous access. In particular, reason (2)
shows that the probability of discarding candidates with accesses depend on each other
access. However, as stated in Lemma 4, the upper bound holds in any case and we
can consider accesses in isolation.



288 G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290

Lemma 4 establishes that the probability that a given access does not rule out a given
candidate is at least 1=�. Consequently, since we can consider these upper bounds in
isolation, the probability of not discarding a given candidate after t accesses is at least
1=�t .

De�nition 2. Let ct be the probability that there is at least one candidate left after t
accesses. In particular, c0 = 1¿c1¿c2 : : :.

Then we will perform the ?rst access with probability c0 = 1. We will perform a
second access with probability c1, a third access with probability c2, and so on. The
following lemma establishes the expected number of accesses to determine R= ∅ with
the limit of m− 1 accesses.

Lemma 5. The average number of accesses until we establish R= ∅ or we perform
m− 1 accesses is

∑m−1
t = 0 ct .

Proof. Let us consider that we, iteratively, perform one access and determine whether
we need more accesses to establish R= ∅. Then the expected number of accesses can
be written as

m−1∑
t=0

1× Pr (we need to perform more than t accesses)

=
m−1∑
t=0

1× Pr (t accesses are not enough to establish R = ∅) =
m−1∑
t=0

ct :

The next lemma establishes the ?nal result we need.

Lemma 6. If r¡�m=m, it holds
∑m−1

t=0 ct =3(log�(rm)).

Proof. As we have seen, the probability that a particular candidate is not discarded
after t accesses is lower bounded by 1=�t . The probability that at least one candidate
is left after t accesses is thus

ct ¿ 1−
(
1− 1

�t

)rm
¿ 1− e−rm=�

t
:

Let us now lower bound ct as follows. If t6t∗= log�(rm), then ct¿ct∗ =1−e−1. For
t¿t∗, we will simply use ct ¿ 0. (This argument is valid for t∗¡m, that is, r¡�m=m,
which is the precondition of the Lemma). Therefore,

m−1∑
t=0

ct¿
t∗∑
t=0

(1− e−1) +
m−1∑
t=t∗+1

0 = (1− e−1)(1 + log�(rm))

= 3(log�(rm)):



G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290 289

So we have shown that 3(log�(rm)) accesses per block are necessary on average
to determine R= ∅, even with the bene?t of stopping after m − 1 accesses. From
the previous Lemmas, it follows that the average lower bound of multipattern string
matching is 3(n log�(rm)=m). Note that our argument is valid for r¡�

m=m. At that
point, however, the average case bound meets the worst case bound 3(n). On the
other hand, the bound is tight because, as explained in the Introduction, there exist
algorithms that obtain average search time O(n log�(rm)=m).

3. A lower bound for approximate multipattern matching

We generalize the proof of Chang and Marr [2], which is rather simple. Let us
divide the text into consecutive blocks of length m and assume, again, that we are only
interested in the occurrences that are totally inside some block. Now, under Hamming
and Levenshtein distances, if we examine characters i1 : : : ik of the block B= b1 : : : bm,
even if none of them match a given pattern P, it could be that all the others match,
pj = bj for j ∈ {1 : : : m} − {i1 : : : ik}. In this case, P would appear in B with threshold
k. Hence, we need to examine at least k +1 characters in order to discard block B. In
the case of indel distance, since deleting the k characters that do not match costs 2k,
we need to examine at least �k=2�+ 1 characters of B before possibly discarding it.
This argument is valid for one or for r patterns, and shows that there is a lower

bound of 3(kn=m) in approximate multipattern matching. On the other hand, in any
approximate search we have to report in particular all the exact occurrences of the
patterns, and therefore the lower bound 3(n log�(rm)=m) applies here too. So we can
take the maximum (or equivalently the sum) of both lower bounds to obtain 3(n(k +
log�(rm))=m). Again, this bound is tight because there have appeared algorithms that
are O(n(k + log�(rm))=m) on average [6].

References

[1] A.V. Aho, M.J. Corasick, EOcient string matching: an aid to bibliographic search, Commun. ACM 18
(6) (1975) 333–340.

[2] W. Chang, T. Marr, Approximate string matching and local similarity, in: Proceedings of the Fifth
Combinatorial Pattern Matching (CPM’94), Lecture Notes in Computer Science, vol. 807, 1994, pp.
259–273.

[3] M. Crochemore, A. Czumaj, L. GQasieniec, S. Jarominek, T. Lecroq, W. Plandowski, W. Rytter, Speeding
up two string matching algorithms, Algorithmica 12 (4/5) (1994) 247–267.

[4] M. Crochemore, A. Czumaj, L. GQasieniec, T. Lecroq, W. Plandowski, W. Rytter, Fast practical
multi-pattern matching, Inform. Process. Lett. 71 (3–4) (1999) 107–113.

[5] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, Oxford, 1994.
[6] K. Fredriksson, G. Navarro, Average-optimal multiple approximate string matching, in: Proceedings of

the 14th Combinatorial Pattern Matching (CPM’03), Lecture Notes in Computer Science, vol. 2676,
2003, pp. 109–128.

[7] Z. Galil, K. Park, An improved algorithm for approximate string matching, SIAM J. Comput. 19 (6)
(1990) 989–999.

[8] D.E. Knuth, J.H. Morris Jr., V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1) (1977)
323–350.



290 G. Navarro, K. Fredriksson / Theoretical Computer Science 321 (2004) 283–290

[9] A.C. Yao, The complexity of pattern matching for a random string, SIAM J. Comput. 8 (3) (1979)
368–387.

[10] K. Fredriksson, G. Navarro, Improved Single and Multiple Approximate String Matching, in:
Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM 2004), LNCS,
2004, to appear.


	Average complexity of exact and approximate multiple string matching
	Introduction
	A lower bound for exact multipattern matching
	A lower bound for approximate multipattern matching
	References


