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Abstract

We obtain inner estimations, around special eigenvalues, for the eigenvalue set of a properly
nonlinear closed convex process. We also consider a differential inclusion associated with a
general closed convex process and we construct smooth power series solutions of exponential
type for some initial states.
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1 Introduction

Set-valued analysis is a flexible framework which permits to treat in a unified manner a wide
variety of applications, ranging from equilibrium problems in theoretical economics to the control
of dynamical systems. Although multivalued maps share some properties with their singlevalued
analogues, the set-valued structure gives rise to important differences in many aspects of the theory.
A particularly interesting multivalued concept is that of convex process on a vector space, that is,
a set-valued map whose graph is a convex cone containing the origin. This natural generalization
of a linear transformation was first introduced by Rockafellar [8, 9], and since his pioneering work
many authors have investigated the properties of this notion.

This paper is concerned with eigenvalue as well as differential inclusion problems associated
with some closed convex process F : H ⇒ H, with H being either a finite dimensional Euclidean
space or a Hilbert space. Our goal is twofold. On the one hand, we expect to contribute to the
understanding of this important class of set-valued maps when some regularity and boundedness
conditions hold. On the other hand, we intend to stress similarities and differences between linear
and properly nonlinear convex processes.

This paper is organized as follows. In Section 2 we recall some definitions and basic properties
of set-valued maps. Section 3 is devoted to an inner estimation of the eigenvalue set σ(F ) = {λ ∈
IR | λx ∈ F (x) for some x 6= 0} of the type[

λ0 − λ̂, λ0 + λ̂
]
⊂ σ(F ),

when dim H < ∞, the convex process F is properly nonlinear and λ0 is a particular element of
σ(F ). To this end, we begin with a characterization of linear convex processes, that is, set-valued
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maps whose graph is a vector subspace, and we establish a useful property for properly nonlinear
convex processes. Then, using Brower’s fixed point theorem, we establish an inner estimation of
the set (F − λI)(BH) for each λ near λ0, where BH is the closed unit ball in H with dim H < ∞.
As a consequence of this result, we finish the section with the proof of the inner estimation of
σ(F ). In Section 5 we turn our attention to the differential inclusion problem

(P ; ξ)
{

ϕ̇(t) ∈ F (ϕ(t)), t ∈ [0, T ],
ϕ(0) = ξ.

Under a special condition on the initial state ξ we give an elementary construction of power series
solutions to (P ; ξ) of the exponential type:

ϕ(t) =
∞∑

k=0

tkxk

k!
, t ∈ [0, T ], x0 = ξ, xk+1 ∈ F (xk).

We give sufficient conditions on F in order to ensure that such solutions are well defined, and we
discuss some connections with exponential solutions associated with eigenvalues when the initial
state is a (generalized) eigenvector of F . Finally, when the domain of F is the whole space we give
a continuity property for the constructed solutions with respect to the initial state.

Let us mention that spectral theory of set-valued maps in Hilbert spaces has been studied by
several authors in the last years. For a clear introduction and a brief historical account on the
eigenvalue analysis of set-valued maps, the reader can consult Seeger [11, 12] and Lavilledieu and
Seeger [5]. The important case when the map is a convex process is studied by Leizarowitz [6] and,
by Aubin, Frankowska and Olech [3] where the eigenvalue problem is related to the controllability
of a differential inclusion. The book of Aubin and Frankowska [2] also deals with this subject.
Concerning estimations of the eigenvalue set, an outer estimation of the type σ(F ) ⊂ [λF , λF ] has
been given by Correa and Seeger in [4]. On the other hand, it is well known that the existence
of eigenvalues allows us to obtain solutions of differential inclusions where the right hand side
is a convex process, see for instance Lavilledieu and Seeger [5] and Smirnov [13]. Concerning
exponential behavior of solutions, we can cite the work of Wolenski [14].

2 Preliminaries

Let (H, 〈·, ·〉) be a real Hilbert space with associated norm | · |. Let us recall some definitions
of set-valued analysis. The graph of the set-valued map F : H ⇒ H is defined by GraphF :=
{(x, y) ∈ H × H | y ∈ F (x)}, the domain of F is given by Dom F := {x ∈ H | ∃y ∈ H, (x, y) ∈
GraphF} = {x ∈ H | F (x) 6= ∅}, and the image of F is defined to be Im F := {y ∈ H | ∃x ∈
H, (x, y) ∈ GraphF} = {y ∈ H | F−1(y) 6= ∅}, where x ∈ F−1(y) ⇔ y ∈ F (x).

The set-valued map F is said to be closed if GraphF is a closed subset of H × H, and it is
said to be a process if its graph is a cone, i.e., ∀α > 0, ∀x ∈ H, F (αx) = αF (x). We say that F
is linear (see [2]) if GraphF is a linear subspace of H × H; otherwise, we say that F is properly
nonlinear.

A set-valued map F is called convex process [8, 9] if GraphF is a convex cone containing the
origin. Equivalently, F is a convex process if and only if the three following properties hold:

(a) Normalization: 0 ∈ F (0).

(b) Positive homogeneity: ∀α > 0, ∀x ∈ H, F (αx) = αF (x).

(c) Super-additivity: ∀x, y ∈ H, F (x + y) ⊃ F (x) + F (y).
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Throughout this paper, F : H ⇒ H stands for a convex process. A convex process F is said to
be fully defined or strict when Dom F = H. Note that the domain and image of a closed convex
process are convex cones which are not necessarily closed.

We say that F is fully bounded if F (BH) is bounded, where BH = {x ∈ H | |x| ≤ 1} is the
closed unit ball in H. Thus, if F is fully bounded then it maps bounded sets to bounded sets.
Defining

‖F‖sup := sup
x∈BH∩Dom F

(
sup

y∈F (x)

|y|

)
, (2.1)

it is clear that F is fully bounded if and only if ‖F‖sup < +∞. Note that if F is fully bounded
then F (0) = {0}; in the finite dimensional context, we get the opposite implication. It is easy to
see that if F is a strict convex process satisfying F (0) = {0}, then F is linear, indeed F (x) = {Ax}
with A : H → H being a linear transformation. Hence, a strict closed convex process F is fully
bounded if and only if F is a continuous linear operator.

As in [7], we define now

‖F‖ := sup
x∈BH∩Dom F

(
inf

y∈F (x)
|y|
)

(2.2)

and we say that F is bounded, or normed, if ‖F‖ < +∞. By [7, Theorem 1], the following three
properties are equivalent for any convex process F :

(a) F is bounded;

(b) F is lower semicontinuous (lsc) at 0, that is, for each open set U in H with F (x) ∩ U 6= ∅
there exists a neighborhood V of x such F (x′) ∩ U 6= ∅ for all x′ ∈ V ∩Dom F ;

(c) F−1 is open at 0, that is, for each open neighborhood U of 0 in H, there exists a neighborhood
V of 0 in Im F such that V ⊂ F−1(U).

Recall the generalized closed graph theorem given in [7]: if F is a strict closed convex process then
F is bounded and ‖F‖-Lipschitz, that is,

∀x, y ∈ H, F (x) ⊂ F (y) + ‖F‖|x− y|BH . (2.3)

Thus, F is lsc and upper semicontinuous (usc) at every point of H. Recall that F is usc at x if
for each open set U in H with F (x) ⊂ U there exists a neighborhood V of x such that F (x′) ⊂ U ,
∀x′ ∈ V .

The kernel of F is defined by Ker F := {x ∈ H | 0 ∈ F (x)}. A real number λ is an eigenvalue
of F if λx ∈ F (x) for some x 6= 0. The element x 6= 0 such that λx ∈ F (x) is called eigenvector
associated with λ. We define Eλ(F ) := {x ∈ H | λx ∈ F (x)} the set consisting of all eigenvectors
associated with λ together with the origin, and σ(F ) the set of all the eigenvalues of F .

3 Inner estimation of the eigenvalue set

3.1 Linear and properly nonlinear convex processes

In this section we give a basic property of properly nonlinear convex processes that we will use in
the next section for obtaining an inner estimation of the eigenvalue set σ(F ). We begin with a
characterization of linear convex processes.

Proposition 3.1. If a closed convex process F is linear, then Dom F is a linear subspace of
H and there exists a linear operator A : Dom F → H and a linear subspace L of H such that
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F (x) = Ax + L for all x ∈ Dom F . In fact, Ax may be chosen to be the minimal norm element in
F (x) and L = F (0). Moreover, the linear operator A will be continuous if and only if Dom F is
closed.

Proof. If the convex process F is linear, then for every x ∈ Dom F and y ∈ F (x) we have
that −y ∈ F (−x). This implies that Dom F and F (0) are linear subspaces of H. Furthermore, we
obtain that

(i) F (αx) = αF (x) for all x ∈ Dom F and α ∈ IR \ {0};

(ii) F (x + y) = F (x) + F (y) for all x, y ∈ Dom F .

Then, F (x)− F (x) = F (0) for all x ∈ Dom F. From this we deduce that F (x) = ΠF (x)(0) + F (0)
for all x ∈ Dom F , where ΠC(0) is the minimal norm element in the closed convex set C. Let us
check now that x 7→ ΠF (x)(0) is a linear operator in Dom F . Let x ∈ Dom F . Then, by the charac-
terization of the unique minimal norm element of F (x) we have 〈ΠF (x)(0), z−ΠF (x)(0)〉 ≥ 0 for all
z ∈ F (x). On the other hand, we can write F (0) = F (x)−ΠF (x)(0) and then, since F (0) is a linear
subspace, the above characterization of ΠF (x)(0) can be written by the equality 〈ΠF (x)(0), p〉 = 0
for all p ∈ F (0). By (i) and (ii) we conclude that αΠF (x)(0) = ΠF (αx)(0) for all α ∈ IR and
ΠF (x)(0) + ΠF (y)(0) = ΠF (x+y)(0) for all x, y ∈ Dom F . Assume now that Dom F is a closed
linear subspace, from the generalized closed graph theorem [7], it follows that F is bounded and
then |Ax| = |ΠF (x)(0)| ≤ ‖F‖ |x| for all x ∈ Dom F , which implies the continuity of A. Finally, it
is clear that if the linear operator A is continuous, the linear subspace Dom F is closed.

Recalling that F (0) = {0} when F is fully bounded, Proposition 3.1 yields directly the following
result.

Corollary 3.1. If a linear convex process F is fully bounded, then it is a linear operator defined
over a linear subspace of H. It will be continuous if and only if Dom F is closed.

There is an important difference between linear and properly nonlinear convex processes. For
instance, it is well known that if A : H → H is a linear transformation such that I −A is compact
then KerA = {0} ⇔ Im A = H. Such a property does not hold for properly nonlinear convex
processes as the next result shows.

Proposition 3.2. If F : H ⇒ H is a properly nonlinear convex process with KerF = {0} then
Im F 6= H.

Proof. Since F is a properly nonlinear convex process, there exists x ∈ Dom F and y ∈ F (x)
such that −y /∈ F (−x). We claim that −y /∈ Im F . In fact, if −y belongs to Im F then there exists
z ∈ Dom F such that −y ∈ F (z), which implies 0 ∈ F (x + z). Since KerF = {0} then z = −x
which is a contradiction.

In the next section, we use this property of properly nonlinear convex processes to provide an
inner estimation of the spectrum under appropriate conditions.

3.2 Inner estimation of σ(F ) for a properly nonlinear convex process F

The main result of this section is an inner estimation of the spectrum σ(F ) of a properly nonlinear
convex process, around an eigenvalue λ0 verifying Im (F − λ0I) = H. Remark that the existence
of λ0 such that Im (F − λ0I) = H is not equivalent to Im F = H except in the simple case when
‖(F − λ0I)−1‖ = 0 as in the next proposition.
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Proposition 3.3. Let F be a closed convex process such that Im F = H, Dom F 6= {0}, and
‖F−1‖ = 0. Then σ(F ) = IR and the equality Eλ(F ) = Dom F holds for all λ ∈ IR.

Proof. Since ‖F−1‖ = 0, from (2.3) we obtain that there exists a closed convex cone K such
that F−1(y) = K for all y ∈ H. Therefore 0 ∈ F−1(y) for all y ∈ H and then F (0) = H. Fix any
x in Dom F . Since F is a convex process, we obtain F (x)+F (0) ⊂ F (x), that is, F (x) = H for all
x ∈ Dom F . Now, it is clear that for any λ ∈ IR and for each x ∈ Dom F \{0} we have λx ∈ F (x).

Now, we assume that dim H < ∞ and we focus on the case ‖(F − λ0I)−1‖ > 0.

Lemma 3.1. Let F : H ⇒ H be a closed convex process and let us suppose that dim H < ∞. If
there exists λ0 such that Im (F − λ0I) = H and ‖(F − λ0I)−1‖ > 0, then for all real number α

such that 0 < α ≤ 1/‖(F −λ0I)−1‖ and for all λ ∈ IR such that |λ−λ0| ≤ 1−α‖(F−λ0I)−1‖
‖(F−λ0I)−1‖ one has

αBH ⊂ (F − λI)(BH).

Proof. With no loss of generality we may assume that λ0 = 0. Note that ‖F−1‖ is finite
because the closed convex process F−1 is strict. Let α ∈]0, 1/‖F−1‖] and λ ∈ IR be such that
|λ| ≤ 1−α‖F−1‖

‖F−1‖ . Fix y ∈ αBH . We define the mapping φ : H ⇒ H given by

φ(x) = {z ∈ H | y + λx ∈ F (z)} = F−1(y + λx).

Since F−1 is a strict closed convex process, then φ(x) is a nonempty convex closed set and the
mapping φ is lsc and usc. From [1, Theorem 1, pp. 70] we have that the function m : H −→ H
defined by m(x) = Πφ(x)(0) is continuous, where ΠC(0) is the minimal norm element in the closed
convex set C. From definition of ‖F−1‖ we can write

|m(x)| = |ΠF−1(y + λx)(0)| ≤ ‖F−1‖ |y + λx| ≤ ‖F−1‖(α + |λ|) ≤ 1,

for all x ∈ BH , that is, m(BH) ⊂ BH and from the Brower fixed point theorem (see [15]) there
exists x̄ ∈ BH such that m(x̄) = x̄. Hence y ∈ (F − λI)(x̄).

Theorem 3.1. Let F : H ⇒ H be a closed convex process and let us suppose that dim H < ∞. If
F is properly nonlinear and if there exists λ0 such that Im (F −λ0I) = H with ‖(F −λ0I)−1‖ > 0,
then we have the inner estimation [

λ0 − λ̂, λ0 + λ̂
]
⊂ σ(F ), (3.1)

where λ̂ = 1/‖(F − λ0I)−1‖.

Proof. As in the proof of Lemma 3.1, for simplicity we assume that λ0 = 0; otherwise, we
conclude by redefining λ 7→ λ + λ0. Let α ∈]0, 1/‖F−1‖] and λ ∈ IR be such that |λ| ≤ 1−α‖F−1‖

‖F−1‖ .
By Lemma 3.1 one has αBH ⊂ (F − λI)(BH) and then, Im (F − λI) = H. Since the closed
convex process F is properly nonlinear, then it will be the same for the closed convex process
F − λI. By Proposition 3.2 we obtain that Ker (F − λI) 6= {0}, that is, λ is an eigenvalue of
F . Therefore, for all α ∈]0, 1/‖F−1‖] and for all λ ∈ IR such that |λ| ≤ 1−α‖F−1‖

‖F−1‖ we have
that λ ∈ σ(F ) which proves the result with the open interval in the left hand side. We finish by
noting that in the finite dimensional setting, if F is a closed convex process, then σ(F ) is closed.
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4 Exponential series solutions of differential inclusions

In this section we are concerned with the construction of a smooth solution for the differential
inclusion

(P ; ξ)
{

ϕ̇(t) ∈ F (ϕ(t)), t ∈ [0, T ],
ϕ(0) = ξ.

when F is a closed convex process.
One may find in [5] and [13] some existence results of solutions for (P ; ξ) when the initial

state ξ is either an eigenvector or a generalized eigenvector of F , that is, ξ ∈ (F − λI)−m(0) for
some λ ∈ IR and m ≥ 1. Notice that in virtue of the inner estimation (3.1) of σ(F ), that is,
(F −λI)−1(0) 6= {0} for any λ ∈ [λ0− λ̂, λ0 + λ̂] and since {(F −λI)−m(0)}m∈N is a nondecreasing
family of convex cones, applying the result given by Smirnov in [13] which we recall in Proposition
4.1, we can see that solutions of the type ϕ(t) = eλt

∑m−1
j=0

tjyj

j! with y0 = ξ and yj ∈ (F−λI)(yj−1)

for j = 1, . . . ,m− 1 exist for all λ ∈ [λ0 − λ̂, λ0 + λ̂].

Proposition 4.1 ([13]). Let F : H ⇒ H be a convex process. If λ ∈ IR, ξ ∈ H and m ≥ 1 are
such that 0 ∈ (F − λI)m(ξ), then x(t) = eλt

∑m−1
j=0

tjyj

j! with y0 = ξ and yj ∈ (F − λI)(yj−1) for
j = 1, . . . ,m− 1 is a solution of (P ; ξ).

The main result of this section is established in Theorem 4.1, where we give another sufficient
condition on the initial state ξ for the existence of an exponential series solution to (P ; ξ). This
existence result does not assume that ξ is an eigenvector or a generalized eigenvector. Indeed, we
will show that for some bounded convex processes F , this sufficient condition is verified for all
ξ ∈ Dom F , and in particular for all ξ ∈ H when F is a strict closed convex process.

From now on, let HN stand for the vector space of sequences in H and for any T ∈ [0,∞), we
define the vector subspaces of HN

`1T (H) =
{
~x ∈ HN |

∑
k≥0

T k|xk|
k! < ∞

}
and `1∞(H) =

⋂
T≥0

`1T (H).

It is clear that if T2 ≥ T1 ≥ 0 then `1∞(H) ⊂ `1T2
(H) ⊂ `1T1

(H) ⊂ `10(H) = HN.
For any T ∈ [0,∞) and ~x ∈ `1T (H), we define the exponential series function ϕ~x : [0, T ] → H

given by

ϕ~x(t) =
∞∑

k=0

tkxk

k!
, t ∈ [0, T ]. (4.1)

Of course, for each t ∈ [0, T ], ϕ~x(t) is well defined when ~x ∈ `1T (H) and ϕ~x ∈ C∞(0, T ;H)

with ϕ̇~x(t) =
∑∞

k=0
tkxk+1

k! . Finally, we define the set of sequences generated by the iteration
xk+1 ∈ F (xk) with initial state ξ ∈ H by

S(F ; ξ) := {~x ∈ HN | x0 = ξ, xk+1 ∈ F (xk), ∀k ≥ 0}.

Theorem 4.1. Given a closed convex process F : H ⇒ H, for any T ∈ [0,∞) and ξ ∈ H such
that `1T (H)∩S(F ; ξ) 6= ∅, we have that for all ~x ∈ `1T (H)∩S(F ; ξ), the exponential series function
ϕ~x defined in (4.1) is a solution of the differential inclusion (P ; ξ).
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Proof. Given ~x ∈ `1T (H) ∩ S(F ; ξ), we obtain ϕ~x(0) = ξ and since F is a convex process, we

have that xk+1 ∈ F (xk) implies tkxk+1
k! ∈ F

(
tkxk

k!

)
, hence

∑N
k=0

tkxk+1
k! ∈ F

(∑N
k=0

tkxk

k!

)
, for all

N ∈ N. From the closedness of F , it follows that

ϕ̇~x(t) =
∞∑

k=0

tkxk+1

k!
∈ F

( ∞∑
k=0

tkxk

k!

)
= F (ϕ~x(t)).

This result has a direct extension to higher order dynamics:

Corollary 4.1. Given a closed convex process F : H ⇒ H, elements ξ0, ξ1, . . . , ξn−1, and
sequences ~xj = (xj

k)k≥0 ∈ `1T (H)∩S(F ; ξj) for j = 0, . . . , n−1, we define the sequence ~x = (xk)k≥0

by xnk+j = xj
k for all k ≥ 0 and j = 0, . . . , n − 1. Then, the corresponding exponential series

function ϕ~x is a solution of the differential inclusion{
ϕ(n)(t) ∈ F (ϕ(t)), t ∈ [0, T ],
ϕ(j)(0) = ξj j = 0, . . . , n− 1.

In the following lemma, whose proof is straightforward, we give a very simple but useful suffi-
cient condition in order to have ~x ∈ `1∞(H).

Lemma 4.1. Given ~x = (xk)k≥0, if there exist α, ρ > 0 such that |xk| ≤ αρk for all k large
enough, then ~x ∈ `1∞(H).

Proposition 4.2. Let F be a closed convex process.
(i) If F is bounded and Im F ⊂ Dom F , then ∀ξ ∈ Dom F , S(F ; ξ) ∩ `1∞(H) 6= ∅.
(ii) If F is fully bounded then ∀ξ ∈ Dom F , S(F ; ξ) ⊂ `1∞(H).

Proof. (i) Let ξ ∈ Dom F . Since F is bounded, the minimal norm element η = ΠF (ξ)(0) ∈ F (ξ)
of the closed convex set F (ξ) satisfies |η| ≤ ‖F‖|ξ|. Setting x0 = ξ, we can generate a sequence
~x = (xk)k≥0 by xk+1 = ΠF (xk)(0) ∈ F (xk) for all k ≥ 0 and clearly, ~x ∈ S(F ; ξ). Moreover,
|xk| ≤ ‖F‖k|ξ| and from Lemma 4.1, we have ~x ∈ `1∞(H).

(ii) Since F is fully bounded, ‖F‖sup < ∞ (see (2.1)). Therefore, for all y ∈ F (x) we have
|y| ≤ ‖F‖sup|x|. Hence, if ~x ∈ S(F ; ξ) with ξ ∈ Dom F then |xk| ≤ ‖F‖k

sup|ξ|, and from Lemma
4.1, we have ~x ∈ `1∞(H).

As a direct consequence of Proposition 4.2 we obtain:

Corollary 4.2. Let F be a closed convex process. Assume
(i) F is strict
or
(ii) F is fully bounded and for all x ∈ Dom F , F (x) ∩Dom F 6= ∅.
Then S(F ; ξ) ∩ `1∞(H) 6= ∅ for all ξ ∈ Dom F .

In the following result we give a continuity property with respect to the initial state of the
exponential series solutions of (P ; ξ) when F is a strict closed convex process.

Proposition 4.3. If F is a strict closed convex process, then for any initial states ξ, ξ′ ∈ H, and
~x ∈ S(F ; ξ)∩ `1T (H), there exists ~y ∈ S(F ; ξ′)∩ `1T (H) such that |ϕ~x(t)− ϕ~y(t)| ≤ |ξ − ξ′|et‖F‖ for
all t ∈ [0, T ].
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Proof. Given ξ, ξ′ ∈ H, and ~x = (xk)k≥0 ∈ S(F ; ξ) ∩ `1T (H) we will construct a sequence
~y = (yk)k≥0 ∈ S(F ; ξ′) ∩ `1T (H) verifying the desired inequality. Set y0 = ξ′. By (2.3), there
exists y1 ∈ F (ξ′) such that |y1 − x1| ≤ ‖F‖|ξ − ξ′|. In this way, for each k ≥ 1 we choose
yk+1 ∈ F (yk) such that |yk+1 − xk+1| ≤ ‖F‖|yk − xk|. Hence we get |yk − xk| ≤ ‖F‖k|ξ − ξ′|.
Clearly ~y = (yk)k≥0 ∈ S(F ; ξ′) and since |yk| ≤ |xk − yk| + |xk| ≤ ‖F‖k|ξ − ξ′| + |xk| we have∑∞

k=0
T k|yk|

k! ≤ |ξ − ξ′|eT‖F‖ +
∑∞

k=0
T k|xk|

k! < ∞ that is ~y ∈ `1T (H) and finally

|ϕ~x(t)− ϕ~y(t)| ≤
∞∑

k=0

tk|xk − yk|
k!

≤
∞∑

k=0

tk‖F‖k|ξ − ξ′|
k!

≤ |ξ − ξ′|et‖F‖,

for all t ∈ [0, T ].

A natural question is whether the exponential series solution ϕ~x of problem (P ; ξ) is a slow
solution, that is, it satisfies ϕ̇~x(t) = ΠF (ϕ~x(t))(0) for every t ∈ [0, T ]. As we show in the next
example, this is not always the case.

Example 4.1. Let F : H ⇒ H be defined by F (x) = Ax + K where A : H −→ H is a continuous
linear operator and K ⊂ H is the closed convex cone given by K = {y ∈ H | 〈y, p〉 ≥ 0} for some
fixed p 6= 0. A direct calculation gives

ΠF (x)(0) = Ax + ΠK(−Ax) =
{
〈Ax, p〉p if −Ax /∈ K
0 if −Ax ∈ K.

If ξ is such that −Aξ /∈ K then the slow solution u(·) of (P ; ξ) is given by

u(t) =

{
ξ + 〈Aξ,p〉

〈Ap,p〉 (e
t〈Ap,p〉 − 1)p if 〈Ap, p〉 6= 0

ξ + t〈Aξ, p〉p if 〈Ap, p〉 = 0.

On the other hand, the exponential series solution ϕ~y for the same initial state ξ with −Aξ /∈ K,
obtained from yk+1 = ΠF (yk)(0) and y0 = ξ is

ϕ~y(t) =

{
ξ + 〈Aξ,p〉

〈Ap,p〉 (e
t〈Ap,p〉 − 1)p if 〈Ap, p〉 > 0

ξ + t〈Aξ, p〉p if 〈Ap, p〉 ≤ 0.

If 〈Ap, p〉 < 0 we see that the slow solution and the exponential series solution are not the same.
Notice that for all t ≥ 0 one has −Au(t) /∈ K and −Aϕ~y(t) ∈ K for all t ≥ t∗ = −1/〈Ap, p〉. If ξ
is such that −Aξ ∈ K then, both solutions are the same: u(t) = ϕ~y(t) = ξ.

We finish this work by showing that the Smirnov solution for problem (P ; ξ) which we recalled
in Proposition 4.1 is included in the solution that we give in Theorem 4.1 when the eigenvalue
associated with the initial state ξ is nonnegative. We do not know whether this is also the case for
negative eigenvalues.

Proposition 4.4. Let F : H ⇒ H be a convex process. If λ ≥ 0, ξ ∈ H and m ≥ 1 are such that
0 ∈ (F − λI)m(ξ), then there exists ~x ∈ S(F ; ξ) ∩ `1T (H) such that the exponential series solution
ϕ~x, defined in (4.1), coincides with the solution of (P ; ξ) given in Proposition 4.1.

Proof. Denoting as usual by
(

k
j

)
the binomial coefficient, we will prove that if we define the

sequence ~x = (xk)k≥0 by

xk =
k∑

j=0

(
k
j

)
λk−jyj (4.2)
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where y0 = ξ, yj ∈ (F − λI)(yj−1) for j = 1, . . . ,m − 1 and yj = 0 for j ≥ m we have that

~x ∈ S(F ; ξ) ∩ `1T (H) and ϕ~x(t) =
∑

k≥0
tkxk

k! = eλt
(∑m−1

j=0
tjyj

j!

)
. Let us first verify the latter

assuming that ϕ~x(t) is well defined. In fact,

ϕ~x(t) =
∑
k≥0

tkxk

k!
=
∑
k≥0

k∑
j=0

tkx

k!

(
k
j

)
λk−jyj =

∑
j≥0

∑
k≥j

tkλk−jyj

(k − j)! j!
.

But ∑
j≥0

∑
k≥0

tk+jλkyj

k! j!
=
∑
k≥0

tkλk

k!

∑
j≥0

tjyj

j!
= eλt

m−1∑
j=0

tjyj

j!


as we claimed. Let us prove now, by induction, that the sequence given in (4.2) is in S(F ; ξ). We
see that x0 = y0 = ξ and x1 = λξ + y1 ∈ F (ξ) = F (x0). Suppose now that xk ∈ F (xk−1), we must
prove that xk+1 ∈ F (xk). For this, we verify the following equality

xk+1 = λxk +
k∑

j=1

(
k − 1
j − 1

)
(yj+1 + λyj)λk−j . (4.3)

In fact, by direct computations,

λxk +
k∑

j=1

(
k − 1
j − 1

)
(yj+1 + λyj)λk−j =

k∑
j=0

(
k
j

)
λk+1−jyj+

k−1∑
j=1

(
k − 1
j − 1

)
λk−jyj+1 + yk+1 +

k∑
j=1

(
k − 1
j − 1

)
λk+1−jyj .

On the other hand, we have that

xk+1 =
k+1∑
j=0

(
k + 1

j

)
λk+1−jyj = λk+1ξ + yk+1+

k∑
j=1

[(
k
j

)
+
(

k − 1
j − 1

)]
λk+1−jyj +

k∑
j=2

(
k − 1
j − 2

)
λk+1−jyj ,

from which (4.3) follows easily. We also have

xk = λxk−1 +
k∑

j=1

(
k − 1
j − 1

)
λk−jyj . (4.4)

Since xk ∈ F (xk−1) and λ ≥ 0, then

λxk ∈ F (λxk−1). (4.5)

Furthermore, since yj+1 + λyj ∈ F (yj) for all j ≥ 0, then

k∑
j=1

(
k − 1
j − 1

)
(yj+1 + λyj)λk−j ∈ F

 k∑
j=1

(
k − 1
j − 1

)
λk−jyj

 . (4.6)
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If we add (4.5) and (4.6), from the equalities (4.3) and (4.4), we obtain the desired inclusion
xk+1 ∈ F (xk), thus ~x = (xk)k≥0 ∈ S(F ; ξ). To finish the proof, we verify that ~x ∈ `1∞(H). Indeed,

for k ≥ m we have that xk =
m−1∑
j=0

(
k
j

)
λk−jyj , then

|xk| ≤ max
i
|yi|

m−1∑
j=0

(
k
j

)
|λ|k−j ≤ max

i
|yi|

k∑
j=0

(
k
j

)
|λ|k−j = max

i
|yi|(1 + |λ|)k

and by Lemma 4.1 we have ~x ∈ `1∞(H).

Acknowledgements. The authors are very grateful to Alberto Seeger for useful discus-
sions on the subject.
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