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1. Introduction

We consider solutions of the semilinear elliptic partial diGerential equation

Hu+ f(u) = 0; x∈D ⊂ RN ;

which are nonnegative and vanishing at the boundary. In many cases, these solutions
are minimizers of an energy. This is why they are usually called ground states. The
equation, which is often called the nonlinear scalar ;eld equation, plays an important
role in various domains of Physics, Chemistry and Population Dynamics, and it is
fundamental from the mathematical point of view.
The purpose of this paper is to analyze the symmetry and the related monotonicity

question for nonlinearities that are continuous but not Lipschitz continuous. The basic
tools in the proof of our theorems are a local variant of the moving plane method and
the unique continuation principle.
The moving plane method goes back to Alexandrov for the study of manifolds with

constant mean curvature [1]. It was then applied to the study of the symmetry of
positive solutions of elliptic PDEs by Serrin in [20], by Gidas et al. in [12,13], in case
of a locally Lipschitz nonlinearity or at least a sum of Lipschitz and nondecreasing
functions, and then generalized: see [17] for more complete references. For instance in
[4,5,15], symmetry results are obtained without Lipschitz property at zero, by assuming,
in [5], that f is decreasing in a neighborhood of u = 0. Also see [9,10] for results
in this direction, when the nonlinearity is not even assumed to be continuous. The
monotonicity property of f has been used in a diGerent context by Li and Ni [17] to
overcome the lack of decay of the solutions when f′(0) = 0. We will use it here to
obtain a result of local radial symmetry which will be de4ned below.
Such a notion of symmetry has already been introduced by Brock in [2,3] using a

continuous Steiner symmetrization method. In the cases where Brock’s result applies,
our method is weaker, but on the other hand our description of how the global sym-
metry breaks is more detailed. It provides monotonicity results in unbounded domains
as well, and can handle some nonlinear elliptic equations which are not in divergence
form. For instance, the case of fully nonlinear elliptic operators with appropriate sym-
metries is covered. Moreover, we prove that monotonicity also holds in directions close
to the direction of symmetry, which allows us to prove that when monotonicity holds
up to “cores” these cores are radially symmetric, even for domains which are not balls.
As far as we know, such results are certainly out of reach of symmetrization methods.
As a 4rst step, we 4nd what we call a �-core, that is a subset of D on which the

function u is symmetric with respect to a hyperplane orthogonal to the direction �,
and has some monotonicity properties. Then by choosing appropriate directions �, we
4nd a radially symmetric core, i.e. a ball on which the solution is radially symmetric
and nonincreasing along any radius. All obstructions to monotonicity are shown to
be due to radially symmetric cores. Finally we show under some further regularity
assumptions on f that if D is a ball the function u is actually radially symmetric
nonincreasing, or has monotonicity properties in the other cases. Our proof relies on
some local unique continuation properties when the solution has a nonzero gradient.
The unique continuation principle in the context of symmetry results has already been



used by Lopes in [18], for vector valued minimizers of an energy. Here we use it
together with the generalization to PDEs of a trick which has been used in [19,11]
for studying the uniqueness of radially symmetric solutions. We believe that this is
a useful tool for symmetry methods, which has already proved its ePciency in the
two-dimensional case, see [7].
Let us state our main results. Consider the nonlinear elliptic problem

Hu+ f(u) = 0; u¿ 0 in D;

u= 0 on @D; (1)

and assume that f satis4es the assumptions:

(f 1) f :R+ → R is continuous,
(f 2) for any s∈ [0;+∞), there exists a positive constant � such that on ]s − �; s +

�[ ∩ R+, f is either (strictly) decreasing or it is the sum of a Lipschitz and of
a nondecreasing function (in the latter case, we shall say that f is Lipschitz +
increasing in a neighborhood of s in R+).

Also assume that D is a domain in RN with one of the two following properties (the
unit vector e1 ∈ SN−1 is given and we denote by x1 the coordinate along this direction):

(B) Bounded case: D is x1-convex, bounded, symmetric with respect to the hyperplane

Te1 := {x∈RN : x · e1 = 0}
and has the property

∀�¿ 0 ∃�¿ 0 such that ∀�¿�

�∈ SN−1; |� − e1|¡� ⇒ {x + 2(� − x · �)�: x∈D; x · �¿�} ⊂ D:

(C) Case with Cone property: there exists �¿ 0 such that for any �∈R and �∈ SN−1

such that |� − e1|¡�, the set {x∈D: x · �¿�} is bounded and

D =
⋃

�∈SN−1 ;|�−e1|¡�

{y − t�: y∈ @D; t ¿ 0 }:

Assumption (B) means that D is symmetric with respect to Te1 and that for directions
� which are close to e1, the image of the reQection by the hyperplane {x∈RN : x ·�=�}
of the domain {x∈D: x · �¿�} is contained in D provided �¿�. Ellipsoids are an
example of such a set. Assumption (C) essentially means that @D is the graph of a
uniformly Lipschitz function of x′=(x2; x3; : : : xN ) which goes to −∞ as |x′| → +∞. In
order to describe our results we introduce the following notion of local monotonicity.

De�nition. A nonnegative function u is said to be monotone up to cores on D̃ in the
direction e1, where D̃ ⊂ D is a bounded subdomain, if there are nonnegative functions



ũ; u1; : : : ; uk de4ned on D̃ such that:

(i) u|D̃ = ũ+
∑k

j=1 uj;
(ii) the functions uj have support in balls Bj intersecting D̃ and they are radially

symmetric nonincreasing, with respect to the center of Bj, j = 1; : : : ; k,
(iii) if Bi ∩Bj �= ∅, i �= j, then either Bi ⊂ Bj and uj is constant on Bi or Bj ⊂ Bi and

ui is constant on Bj,
(iv) ũ is monotone nonincreasing on D̃ in the direction e1, and it is constant on any

Bj, j = 1; : : : ; k.

Theorem 1. Assume that f satis;es (f1), (f2) and D satis;es (B) (resp. (C)). Let
u∈C2(D) ∩ C0( SD) be a solution of (1). Then u is monotone up to cores on D̃ =
{x∈D: x · e1¿ 0} in the direction e1 (resp. on D̃ = D). Moreover in case (B), with
the above notations, ũ is symmetric with respect to Te1 .

Actually, the result is a little bit stronger, and the monotonicity up to cores is true
in any of the entering directions in case (C), or in any of the directions � such that
|�−e1|¡�, on the domain {x∈D: x·�¿ �}, in case (B). Under the following additional
assumption:

(f3) For any u¿ 0 such that f(u) = 0, lim inf v→u; v¿u f(v)=(v − u)¿ − ∞,

we obtain global monotonicity and symmetry results:

Theorem 2. Assume that f satis;es (f1), (f2), (f3) and D satis;es either (B) or (C).
Let u∈C2(D) ∩ C0( SD) be a solution of (1). Then u is decreasing in any direction
� given by Conditions (B) or (C), on D̃ de;ned as in Theorem 1. In case (B), u is
symmetric with respect to Te1 .

The paper is organized as follows. In Section 2, we give some de4nitions, develop
a framework for a local moving plane method and prove a crucial lemma that allows
us to obtain the cores. In Section 3, we present the main proofs and give monotonicity
and symmetry results using the unique continuation principle. Section 4 is devoted to
some extensions (weaker conditions on f, whole space results, fully nonlinear case).
Some of the results of this paper were announced in [6].

2. A technical lemma for local moving planes

In this section we set up the basic notation and give some de4nitions. Then we state
and prove a crucial technical lemma.
Consider a solution u∈C2(�) ∩ C0( S�) of

Hu+ f(u) = 0; u¿ u0 in �;

u= u0 on @�;

where � is a bounded domain in RN .



De�nition. Given �∈ SN−1, � is said to be a �-core of u if and only if

(i) there exists a real number �� such that � and u are symmetric with respect to
the hyperplane T�� := {x∈RN : x · � = ��}. In other words, for any x∈�, we
have: x�� := x − 2(x · � − ��)�∈� and u(x��) := u(x),

(ii) � is convex in the �-direction (or �-convex), which means that for any x∈�,
the set {t ∈R: (x + t�)∈�} is an interval,

(iii) ∇u(x) · �6 0 for any x∈� such that x · �¿��.

The domain � is said to be a radially symmetric core of u, or simply a core of u, if
it is a �-core of u for any direction �∈ SN−1. We may observe that such a core of u
is a ball on which u is radially symmetric with respect to the center of the ball and
nonincreasing along any radius.

Remark 1. In order to prove that a given set � is a ball, it is suPcient to prove
that it is symmetric with respect to N independent hyperplanes corresponding to N
independent orthogonal directions �i ∈ SN−1, i = 1; 2; : : : ; N such that the angle (�i; �j)
is 2�-irrational for any (i; j) with i �= j.
In dimension N =2, if two lines make a 2�-irrational angle �0, then the composition

of two orthogonal reQections with respect to each of these two lines gives a rotation
of angle ±2�0 which is 2�-irrational too. The set {n�0}n∈Z is dense in S1 so that �
is a disk.
In dimension N¿ 3, let x0 ∈�: x0 =

∑N
i=1 x0i �i, since the {�i}i=1;2; :::;N are linearly

independent. Here we take the origin to be the unique point in the intersection of
the hyperplanes T�i associated to the directions �i. Next we consider the aPne plane
!1;N (x0)= {x∈RN : x= x0 +y; y∈ span(�1; �N )}. By using the two-dimensional argu-
ment given above we see that we can rotate x0 in !1;N (x0) to obtain x1=

∑N−1
i=1 x1i �i. Of

course |x0|= |x1|. We can repeat this argument N −1 times until getting xN−1=xN−1
1 �1,

where xN−1
1 = |x0|. Since x0 is arbitrary, � is a ball.

If � is a �i-core of u for {�i}i=1;2; :::;N as above, then u(x0) = u(|x0|�1). Thus u is
radially symmetric and we shall say that � is a radially symmetric core of u.

Now we set up some notational conventions. Whenever possible, given �∈ SN−1 we
will choose a system of coordinates so that �= e1. In that case we write x1-core for a
�-core. Following the usual notations we consider

T� := {x = (x1; x′)∈R× RN−1: x1 = �};

"� := {x = (x1; x′)∈ (R× RN−1): x1 ¿�}:

If x = (x1; x′)∈R× RN−1, then we write

x� := (2� − x1; x′) and u�(x) := u(x�)

for any x∈RN such that x� ∈�.



Let � be a nonempty bounded domain in RN . We say that � satis4es property P
if and only if the following conditions are satis4ed:

(i) � is symmetric with respect to the hyperplane T�� ={x=(x1; x′)∈R×RN−1: x1=
��} for some �� ∈R, that is, x�� ∈� for any x∈R× RN−1 ∩ �,

(ii) � is x1-convex,
(iii) there is a constant u0 such that u|@� ≡ u0 and u¿u0 on �,
(iv) there exists an �¿ 0 such that f is decreasing on [u0; u0 + �).

Remark 2. If � satis4es property P, then it is an x1-core of u if and only if u��(x)=
u(x) for any x∈�, and (@u=@x1)(x)6 0, for any x∈ S"�� ∩ �.

We are now in a position to state a technical lemma which is the key tool of our
approach.

Lemma 3. Under assumptions (f1) and (f2), if � is a nonempty subdomain of D
satisfying property P, then there exists S�¿ �� such that

@u
@x1

6 0 on � ∩ " S�;

and either S�= ��, or S�¿�� and there exists Sx∈ S" S� ∩ � such that

u S�( Sx) = u( Sx) if Sx∈" S�;
@u
@x1

( Sx) = 0 if Sx∈T S�:

If S� = ��, the same properties hold if we replace the direction x1 by the direction
−x1, so that, up to this change of coordinates, there are two possibilities:
Case a: either S�= �� and u S�(x) = u(x) for any x∈�,
Case b: or there exist u1 ¿u0 and u2 ¿u1, with u( Sx)∈ (u1; u2), such that f is

locally Lipschitz + increasing on (u1; u2).
Assume that Case b holds and let (u1; u2) be the maximal interval containing u( Sx)

in (u0;+∞), on which f is locally Lipschitz + increasing. Then the two following
properties hold.

(i) Let C be the connected component of {x∈�: u1 ¡u(x)¡u2} containing Sx.
Then we have u S�(x) = u(x) for any x∈C,

(ii) Let C̃ be the x1-convexi4ed of C, i.e. the set

C̃ := {x∈�: ∃(y; z)∈C × C such that z − y is parallel to x1

and ∃t ∈ ]0; 1[ such that x = ty + (1 − t)z}
and �̃ := {x∈ C̃: u(x)¿u2}. Then either �̃ = ∅ or �̃ satis;es property P.

Remark 3. In Case a, the set � is an x1-core of u. In Case b, if �̃ = ∅, then C = C̃
is an x1-core of u. And if �̃ �= ∅, let �̂ := {x∈�: u(x)¿ũ 0} ⊃ �̃, where ũ 0 :=
inf{u∈ [u1; u2]: f is strictly decreasing on [u; u2]}. If Su := maxx∈�̂ u(x) is such that
f is decreasing on [ũ 0; Su], then �̂ is an x1-core of u. The proof is direct: on @�̂ ⊂ C,



u S� ≡ u, u S�¿ u in �̂ according to Lemma 3 and since f is decreasing, −H(u S�−u)6 0,
which means u S�6 u.

Proof of Lemma 3. The proof relies on the moving plane technique. We say that �
satis4es property !� if

w�(x) := u�(x) − u(x)¿ 0 ∀x∈� ∩ "�:

Let

�∗ := sup{�∈R: ∃x′ ∈RN−1 such that (�; x′)∈�};

S� := inf{�∈ [��; �∗]: ∀-∈ (�; �∗) !- is true}:
We will 4rst see that S�¡�∗. Assume by contradiction that S� = �∗. Then there exists
an increasing sequence (�k)k∈N converging to �∗ such that

∀k ∈N ∃xk ∈"�k ∩ � w�k (xk)¡ 0:

On @("�k ∩�), w�k ¿ 0, so that w�k reaches its minimum value at some point of "�k ∩�
and we may assume that xk realizes this minimum. Then we have

0¿− Hw�k (xk) = f(u�k (xk)) − f(u(xk)) = f(u(xk) + w�k (xk)) − f(u(xk))¿ 0

for k large enough, since u0 ¡u(xk)¡u0 + �, a contradiction. Thus S�¡�∗.
Assume now that S�¿��, where �� is de4ned in part (i) of property P. We recall

that � is symmetric with respect to T�� . Again we may 4nd an increasing sequence
(�k)k∈N converging to S� (with �� ¡�k ¡ S�), and a sequence of points (xk)k∈N such
that

xk ∈"�k ∩ �; w�k (xk) = min
x∈"�k

∩�
w�k (x)¡ 0:

As above, xk �∈ u−1(U) where U is a neighborhood of u(x) in [u0;+∞) on which f
is decreasing, because −Hw�k (xk)6 0. Up to the extraction of a subsequence, we may
assume

lim
k→+∞

xk = Sx∈� ∩ �c
0 ∩ " S�:

On the one hand we have 0¿ u S�( Sx)− u( Sx)= limk→+∞ w�k (xk), and on the other hand
u S�( Sx)¿ u( Sx) because of ! S�. Note indeed that ! S� is true since !� is true for any
� − S�¿ 0, small enough. Also note that either Sx∈" S�, or Sx∈T S�. In the latter case,
(@u=@x1)( Sx) = − 1

2 limk→+∞ (@w�k =@x1)(xk) = 0.
Since f is decreasing in [u0; u0 + �) for some �¿ 0 (and since u|@� = u0), again Sx

cannot belong to @�. Then Sx∈� \�0 and f is therefore Lipschitz + increasing in a
neighborhood of u( Sx), which proves the properties of Case b.
If S�= ��, we may exchange the direction x1 and −x1. We observe that property P

is invariant under the transformation (x1; x′) �→ (2�� − x1; x′). Then either we 4nd a
S� �= �� and we are back to the previous case, or we get S� = ��, which proves that
u��(x) = u(x) for any x∈�.



Since ! S� is true, the monotonicity of u with respect to x1 on � ∩ " S� follows. In
fact, for any �∈ [ S�; �∗), for any x = (�; x′)∈ (T� ∩ �) ⊂ (" S� ∩ �),

06
1
�

· w�(�+ �; x′) → −2
@u
@x1

(�; x′) as � ↘ 0:

Assertion (i) is obtained, in case Sx∈" S� as a consequence of the maximum principle
applied to w S�. Note that w S�¿ 0 and w S�( Sx)=0 with Sx∈C. When Sx∈T S�, assertion (i) is
a consequence of Hopf’s Lemma, since in this case, (@w S�=@x1)( Sx)=−2(@u=@x1)( Sx)=0.

To 4nish with the proof of Lemma 3, one has to check that in Case b, �̃ satis4es
property P if it is not empty. The symmetry and the x1-convexity follow from the
de4nition of �̃, and f is decreasing on a neighborhood of u2 in [u2;+∞) again
because of assumption (f2).

3. Unique continuation and proofs of the main results

Before proving Theorem 1 and a slightly more general result in Theorem 5, let us
state an important property of the radially symmetric cores, which is based on a unique
continuation argument. Consider

Hu+ f(u) = 0; u¿ 0 in D;

u= 0 on @D: (2)

Lemma 4. Under Assumption (f1), let u be a nonnegative solution of (2) which is
monotone on " S� for some S�∈R. Assume that either condition (B) or condition (C)
is satis;ed. If � ⊂ D is a radially symmetric core of u such that � ∩ " S� �= ∅, then
either � = D or u is constant on @�, f(u|@�) = 0 and ∇u|@� = 0.

As we shall see below, the only property needed to prove that the solutions corre-
sponding to a continuous nonlinearity f are locally symmetric is

{u(x): x∈D; ∇u(x) = 0} ⊂ f−1(0):

This has been exploited in [7] in the case of the dimension N = 2 but still needs to
be proved in higher dimensions.

Proof. For simplicity, we assume that the center of the core is x = 0. This is easily
achieved by means of a translation. Let us de4ne

. := max{r ¿ 0: B(0; r) ⊂ D and u is radially symmetric;

nonincreasing in B(0; r)}:
By nonincreasing, we mean, with an evident abuse of notations,

du
dr

=
x
|x| · ∇u6 0:



We will prove that either B(0; .) = D or (du=dr)(.) = 0. In this last case, for any
Sx∈ @B(0; .) ∩ " S�,

∇u( Sx) =
du
dr

(.)
Sx
.
= 0:

By de4nition of the cores, we know that du=dr6 0 for any r ∈ (0; .), so that (d2u=dr2)
(.)¿ 0. If (d2u=dr2)(.)¿ 0, we immediately get a contradiction with the monotonicity
property of u in " S�. Thus

Hu( Sx) =
(
d2u
dr2

+
N − 1

r
du
dr

)
|r=.

= 0

and then f(u( Sx))=0. From now on, assume that (du=dr)(.) �= 0, which actually means
(du=dr)(.)¡ 0.
If D ∩ @B(0; .) �= ∅, then B(0; .) = D. Otherwise, (du=dr)(.)¡ 0 would contradict

the condition u¿ 0 in D. In fact, since u is radially symmetric in B(0; .), u|@B(0;.) =0.
If @D ∩ @B(0; .) = ∅, then there exists a sequence of points (xk)k∈N of D such that

(|xk |)k∈N is decreasing and converges to . and such that u(xk) �= u(Rkxk), where Rk

is the reQection with respect to some hyperplane containing the origin and de4ned by
a direction �k close to e1. Without loss of generality, we may assume that xk → Sx
for some Sx∈ @B(0; .), and �k → � for some �∈ SN−1. Thus Rk → SR, where SR is the
reQection with respect to the hyperplane de4ned by �.
For notational convenience, we can perform a rotation such that Sx = . · e1. The

monotonicity with respect to e1 is true at least locally because ∇u( Sx) �= 0: since the
rest of the argument is local, we do not have to take care of the geometrical restrictions
corresponding to assumptions (B) or (C). For some 0¿ 0 small enough, we have then
(@u=@x1)(x)¡ 0 for any x∈B( Sx; 0). If we denote Su(x)=u( SRx), we have that Su provides
another solution of

Hu+ f(u) = 0; ∀x∈B(0; .) ∪ B( Sx; 0)

such that u �≡ Su in B( Sx; 0). We observe that, taking 0 smaller if necessary, (@ Su=@x1)(x)
¡ 0 for any x∈B( Sx; 0).
Here we shall use a local argument which involves a local change of coordinates.

This transformation is the extension to N¿ 2 of the one used in [7] in the case N =2.
By the Implicit Function Theorem, there exists a neighborhood V of (u( Sx); 0)∈R ×
RN−1 and two functions v and Sv of class C2 such that

t = u(v(t; x′); x′) and t = Su( Sv(t; x′); x′) ∀ (t; x′)∈V;

with @v=@t �= 0 and @ Sv=@t �= 0 in V. After some computations, we 4nd that the function
v satis4es in V the quasilinear equation[

1 +
N∑
i=2

(
@v
@xi

)2] @2v
@t2

− 2
@v
@t

N∑
i=2

@v
@xi

@2v
@xi@t

+
(
@v
@t

)2 N∑
i=2

@2v
@x2i

=
(
@v
@t

)3
f(t):



A similar equation is satis4ed by the function Sv. It is easy to see that these equations
are elliptic in V.
We may now consider the function z(t; x′) = v(t; x′)− Sv(t; x′) that satis4es in V the

equation

a
@2z
@t2

− 2
@v
@t

N∑
i=2

@v
@xi

@2z
@xi@t

+
(
@v
@t

)2 N∑
i=2

@2z
@x2i

b1
@z
@t

+
N∑
i=2

bi
@z
@xi

= 0;

where the coePcients a and bi are given by

a(t; x′) = 1 +
N∑
i=2

(
@v
@xi

)2
;

b1(t; x′) =−2
N∑
i=2

(
@v
@xi

@2 Sv
@xi@t

)
+
(
@v
@t

+
@ Sv
@t

)( N∑
i=2

@2 Sv
@x2i

)

−f(t)

{(
@v
@t

)2
+
(
@v
@t

· @ Sv
@t

)
+
(
@ Sv
@t

)2}
;

bi(t; x′) =
@2 Sv
@t2

(
@v
@xi

+
@ Sv
@xi

)
− 2

@2 Sv
@xi@t

· @ Sv
@t

; i = 2; 3; : : : ; N:

We observe that the coePcients of the second-order term are all of class C1, while
the bi’s are of class C0. Thus the equation satis4ed by z has the unique continuation
property, see [14] for instance.
We conclude that since u and Su coincide on the open set B(0; .) ∩ B( Sx; 0), the

functions v and Sv coincide in the corresponding open set. Therefore u ≡ Su in B( Sx; 0),
a contradiction.

Now we can state a more re4ned version of Theorem 1, under a weaker assumption:
we do not assume the strict positivity of u anymore.

Theorem 5. Assume that f satis;es (f 1) and (f 2). Let u∈C2(D) ∩ C0( SD) be a
solution of (2). If condition (B) is satis;ed, there exists a ;nite number N of balls
Bi, i∈I = {1; 2; : : : ;N}, contained in D such that there exists at least one i0 ∈I
satisfying

(i) for any j∈I \ {i0}, if Bj ∩ Bi0 �= ∅, then Bi0 ⊂ Bj,
(ii) u|Bi0

is radially symmetric and decreasing along any radius of Bi0 ,
(iii) if N¿ 1, the C2 function de;ned on D by

ũ= u in D \Bi0 ;

ũ= u|@Bi0
= Const on @Bi0

is still a solution of (2).

In case (iii), we can then iterate and apply again the above result to ũ with the set
of N − 1 balls Bi, i∈I \ {i0}.



In case of assumption (C), the same result is true except that N might be in;nite.
However, for any �∈R, I(�) := {j∈N: Bj ∩ "� �= ∅} is ;nite and the same result
as above applies to u|D(�) where D(�) = (D ∩ "�) ∪ (

⋃
j∈I(�) Bj).

On D \ (⋃j∈I Bj ∩ "0) in case (B), on D(�) \ (⋃j∈I(�) Bj ∩ "�) for any �∈R in
case (C), u is monotone nonincreasing.

Proof of Theorem 5. We 4rst obtain an x1-core, and then a radially symmetric core,
which can be removed by the procedure described in the statement of Theorem 5. By
iteration and since the possible number of cores is 4nite in case (B), locally 4nite in
case (C), we prove the theorem using Lemma 4.
First step: Obtaining an x1-core
Let u be a solution of Eq. (2) and de4ne �(u) := sup{�¿ 0: on (u− �; u+ �), u is

either decreasing or Lipschitz + increasing}, S� := inf{�(v): v∈ [0;maxx∈D u(x)]}. If
f satis4es (f2), then S�¿ 0.
With the notations of Section 2, de4ne

S� := inf{�¿ 0: w�(x)¿ 0 ∀x∈D ∩ "�}:
For the same reasons as in Lemma 3 if f is decreasing on [0; �) for some �¿ 0, or
because of the standard moving plane method (see [12]) if f is Lipschitz + increasing
on [0; �) for some �¿ 0, D ∩ " S� is nonempty. If f is decreasing on [0; �), we take
�=D∩" S�. If not, let us consider �={x∈D∩" S�: u(x)¿u∗}, where u∗=inf{u¿ 0: f
is not Lipschitz + increasing on (u; u+ �) for any �¿ 0}. To prove that in both cases
� satis4es property P of Lemma 3, we have more or less to repeat the arguments of
the proof of Lemma 3.
Of course, if u∗ ¿maxD u(x), the usual methods apply and the conclusions of Theo-

rem 5 hold. The symmetry u� ≡ u at �=0 is proved if 0= S� := inf{�¿ 0: u�¿ u in D∩
"�} in case of assumption (B) and if the property also holds after changing the di-
rection x1 to −x1. The monotonicity property is also proved if S� = −∞ in case (C).
Assume that S�¿ 0 in case of assumption (B), up to a change in the coordinate di-
rection x1, and S�¿ − ∞ in case (C): there exists a sequence (�k)k∈N with �k ¡ S�,
limk→+∞ �k = S�, and a sequence (xk)k∈N such that

u�k (xk) − u(xk) = min
x∈"�k

∩D
(u�k (x) − u(x))¡ 0:

After the extraction of a subsequence, we can de4ne Sx := limk→+∞ xk . Then f has to
be Lipschitz + increasing on (u( Sx)− S�; u( Sx) + S�) for the same reason as in Lemma 3.
Exactly as in Lemma 3, u S� ≡ u on the connected component of {x∈D: u1 ¡u(x)

¡u2} where (u1; u2) is the maximal interval on which u is Lipschitz + increasing and
such that u( Sx)∈ (u1; u2). Moreover, by construction of S�, @u=@x16 0 on � ∩ " S�, we
have that � satis4es property P.
We may now apply Lemma 3 to �=�1 and iterate n times to 4nd an x1-core, n being

at most the integer part of ( S�)−1 ·maxx∈D∩" S�
u(x). Here " S� is the domain corresponding

to the S� obtained at the 4rst iteration. In the following, with the notations of Lemma
3, we note �k+1 = �̃k for 16 k6 n.
Second step: Obtaining a radially symmetric core



If �n is the last nonempty x1-core given by the iteration procedure of Step 1, we
may notice that u is constant on @�n and strictly bigger than u|@�n in �n: u reaches its
maximum in �n at some interior point Sx. According to assumption (f2), two cases are
possible: either there exists some u∈ (u|@�n ; u( Sx)] such that f is Lipschitz + increasing
on ]u − S�; u+ S�), or not.
In the 4rst case, by construction of �n, u|@�n ¡u − S�6 u( Sx) − S�. In the second

case, we may use the set �̂n de4ned as in Remark 3: u( Sx)¿u|@�̂n
+ S�. In both cases,

the method shows the existence of an x1-core ! such that u reaches its maximum
at some interior point Sx and u( Sx) = maxx∈! u(x)¿u|@! + S�. Let M = ‖∇u‖L∞(D).
Then B( Sx; Sr) ⊂ ! with Sr = S�=M . The number N of the connected components which
are x1-cores is therefore 4nite and bounded by N6C(M= S�)N for some constant C
which depends on the volume of D ∩ " S� (where S� was de4ned in the 4rst step of the
proof).
Let us take (N−1)N+1 directions �i ∈ SN−1, i=1; 2; : : : ; (N−1)N+1, satisfying the

conditions de4ned by assumptions (B) or (C), such that the angle (�i; �j) is 2�-irrational
for any (i; j) with i �= j, and such that any subfamily of N such unit vectors generates
RN . Then, applying the method of the 4rst two steps successively to each of these
directions (for each i, choose the direction x1 as the one of �i), we 4nd at least one
core ! which is symmetric with respect to at least N directions. According to Remark
1, ! is a radially symmetric core of u: u is radially symmetric with respect to the
center Sx of ! and (x − Sx) · ∇u(x)6 0 for any x∈!.
Note that in case (B), the maximum of the core obtained by iterating Lemma 3

can be arbitrarily close to the hyperplane Te1 . We have to choose a direction � close
enough to e1 so that it can be reached by moving hyperplanes along the direction �.
Third step: Removing a radially symmetric core.
According to Lemma 4, on the boundary of a radially symmetric core satisfying the

conditions of Lemma 4, ∇u has to be equal to 0 and the value of u is that of a zero of
f. Thus it is possible to apply the procedure described in the statement of the theorem.
The function ũ is also a solution of Hu+f(u)= 0. Since there are only 4nitely many
cores, Theorem 5 is proved by repeating the procedure as many times as the number
of cores.

Remark 4. The assumption u¿ 0 in Theorem 1 has been replaced by the weaker
assumption u¿ 0 in Theorem 5. In this case any connected component of the support
which is strictly included in D is a ball on which u is radially symmetric and decreasing
up to cores. Note that this is possible only if f is not Lipschitz + increasing on a
neighborhood of u=0+. Otherwise, we would get a contradiction with Hopf’s lemma.

With this remark, the proof of Theorem 1 is straightforward.

Proof of Theorem 2. We have to prove that the solution is radially symmetric under
assumption (f3): there exists a constant C¿ 0 such that for v−u( Sx)¿ 0 small enough,
f(v)=(v − u( Sx))¿ − C, and Hopf’s applied to −H(u − u( Sx)) + C(u − u( Sx))¿ 0 in
B((. − �) Sx=| Sx|; �) at Sx for �¿ 0, small enough, is in contradiction with: ∇u( Sx) =
( Sx=| Sx|)(du=dr)(.) = 0.



If B(0; .) is a radially symmetric core of u, the only possibility is therefore that
u|@B(0;.) = 0. Thus B(0; .) = D, which ends the proof of Theorem 2 if D is a ball.
Otherwise, we obtain a contradiction with the assumption u¿ 0 by considering
@B(0; .) ∩ D.

Remark 5. When D is a ball, the solution in Theorem 5 is locally radially symmetric,
with a 4nite number of cores: there exists a 4nite partition in balls and annuli on
which the solution is radially symmetric and decreasing, and complementary domains
on which the solution is constant. Because of Condition (f 2), the number of possible
cores is 4nite (Step 2 of the proof of Theorem 5).
If u¿ 0 is a solution of (2), which is not radially symmetric, there exists therefore

a .∈ (0; 1) such that u is radially symmetric in the annulus {x∈RN : .¡ |x|¡ 1} and
0 = (d2u=dr2)(.) = (du=dr)(.) = f(u(.)). We can now notice that if assumption (f3)
is replaced by

(f3′) For any u¿ 0 such that f(u) = 0, lim inf v→u; v¡u f(v)=v − u¿ − ∞,

there exists a constant C¿ 0 such that for u(.) − v¿ 0 small enough, f(v)=(u(.) −
v)¿−C. Then Hopf’s Lemma applied to −H(u(.)− u)−C(u(.)− u)¡ 0 in B((.+
�) Sx=| Sx|; �) at Sx, for any Sx∈B(0; 1) such that | Sx| = . and �¿ 0 small enough, is in
contradiction with ∇u( Sx) = ( Sx=| Sx|) · (du=dr)(.) = 0.
Under assumption (B) or (C), either (f 3) or (f 3′) are suPcient to prove that a

solution which is locally radially symmetric has a global radial symmetry or at least
a monotonicity property. This global radial symmetry/monotonicity property is also
probably true even without assumption (f2). See [7] for a proof in dimension N = 2.

4. Further results

We will not try to give the most general possible results, but just quote some remarks
and directions in which our results can be extended.

4.1. Cores can only “go up”

To start with, we may notice that our local symmetry results hold for nonnega-
tive solutions of (2) and the solutions may eventually be identically equal to 0 on a
nonempty subdomain of D. We may also notice that on a radially symmetric core, the
minimum of the function is reached on the boundary of the core. One may therefore
wonder why a nonnegative solution of (1) when D is, for instance, a ball cannot have
cores on which the solution reaches its minimum inside the core (if we forget the
nonnegativity condition, such solutions are easy to build). The answer is given by the
following result which has been announced in [6].

Proposition 6. Assume that f satis;es (f 1). Let u be a solution of (1) on the unit
ball B(0; 1) which is radially symmetric up to cores. Assume that N¿ 2. With the



same notations as in Theorem 5, if Bi ∩ Bj �= ∅ ⇒ Bi ⊂ Bj (u is radially symmetric
on Bi) and if u=minx∈Bi u(x)¡minx∈@Bi u(x), then u¡ 0.

Proof. Consider u+ and u− two solutions of d2u=dr2 + ((N − 1)=r) · (du=dr)′ +
f(u(r))=0 de4ned respectively on the intervals I− =]r−

1 ; r−
0 ) and I+ = ]r+0 ; r

+
1 ) (with

0¡r−
1 ¡r−

0 6 r+0 ¡r+1 ), such that u(r±
0 ) = a, (du±=dr)(r±

0 ) = 0, u±(r)¡a where
a¿ 0 is chosen in order that f(a) = 0. The functions u− and u+ are respectively
increasing on I− and decreasing on I+, at least as long as du±=dr does not vanish.
According to the method introduced by Peletier and Serrin in [19], it is possible to
extend these solutions uniquely if du±=dr �= 0. Eventually, decreasing r−

1 and increas-
ing r+1 , we may assume that I− and I+ are the maximal intervals in R+ on which
the property is satis4ed. Then for any r ∈ I−, (du−=dr)(r) = 0 is impossible unless
u−(r)¡ inf s∈I+u+(s). The functions r±(t) are indeed such that t = u±(r±(t)) are so-
lutions of (r±)′′=((r±)′)3 = f(t) + (N − 1)1=(r±(r±)′). Multiplying by (r±)′(t) and
integrating between u+(r) and a, we obtain for any r ∈ I+:

06
1
2

(
du+

dr
(r)
)2

=
∫ a

u+(r)
f(s) ds+ (N − 1)

∫ a

u+(r)

ds
r+(s)(r+)′(s)

¡
∫ a

u+(r)
f(s) ds+ (N − 1)

∫ a

u+(r)

ds
r−(s)(r−)′(s)

=
1
2

(
du−

dr
(r−(u+(r)))

)2
;

since (r+)′ ¡ 0¡ (r−)′. This computation is still valid if (du−=dr)(r−
0 )¿ 0, (du+=dr)

(r+0 ) = 0 and one can easily extend the argument to the case where du+=dr6 0 takes
the value 0 in I+ if we de4ne r+ by r+(t) = inf{s¿ r+0 : u

+(s) = t}.
Without loss of generality, we may assume that Bi is the unique core of u (if not,

apply the procedure de4ned in Theorem 5). Up to a translation, we can then identify
u+ and u− with ũ and u|Bi respectively and get 0 = u+(1)¿u−(0) = u.

In case N =1, the above proof shows that u−(r) = u+(r0 − r) for r0 = (r+0 + r−
0 )=2.

It is however possible to decompose u in such a way that all cores “go up”. Details
are left to the reader.

4.2. Without overlapping

In assumption (f 2), the condition that the range of u on which f is locally either
Lipschitz + increasing, or decreasing, is open means that there is always an overlapping
of these conditions. This is actually crucial to prove that the number of cores is 4nite,
in any bounded subdomain in D.
However, it is clear at least in the case of a ball (see [3,7]) that the right condition to

avoid the existence of cores is assumption (f3) on the regularity of f in a neighborhood
of Su whenever f( Su)=0, Su¿ 0. Thus the overlapping is unnecessary to obtain symmetry



results, as we shall see on the following example. For simplicity, assume that N = 2
and replace (f2) and (f3) by the assumption

(f2′) There exists an a¿ 0 such that f is decreasing in [0; a], f is locally Lipschitz
+ increasing on [a;∞) and f(a)¡ 0.

This condition could of course be extended to each point a such that f(a)¡ 0, f is
decreasing on a neighborhood of a− and Lipschitz + increasing on a neighborhood
of a+, and even also to each point b such that f(b)¿ 0, f is decreasing on a neigh-
borhood of b+ and Lipschitz + increasing on a neighborhood of b−, as soon as one
controls the number of possible cores. However a statement with such assumptions
would be unnecessarily technical. For simplicity again, we shall consider the case of a
ball B= B(0; 1). Note that controlling the number of cores is important in our method
but does not seem to be required in the continuous rearrangements approach, in the
case of a ball [3].

Proposition 7. Let N = 2. Assume that f satis;es (f1) and (f2′) and consider a
solution u∈C2(B)∩C0( SB) of (1) on the unit ball D=B. Then u is radially symmetric
and du=dr(r)¡ 0 for any r ∈ (0; 1).

Proof. We proceed exactly as in the proof of Lemma 3 with � = B. Assume that
limk→∞ �k =: S�¿�� and consider Sx∈B such that u( Sx)¿ a, Sx is the limit of xk ∈"�k
such that w�k (xk)¡ 0, ∇w�k (xk) = 0: w S�( Sx) = 0 and ∇w S�( Sx) = 0. If u( Sx)¿a, the
proof goes as before. The only case one has to consider is the case u( Sx) = a, Sx∈ @!,
! := u−1(a;+∞) ∩ " S� �= ∅. Note that the number of possible cores is 4nite because
at a maximum, −Hu = f(u)¿ 0, so that we can give an estimate of N using the
Lipschitz norm of u.
We may 4rst notice that on ! either w S� ≡ 0 or w S� ¿ 0 by the maximum principle.

Assume that w S� is positive and let us look for a contradiction. We will distinguish two
cases, depending whether Sx∈" S� (Case 1) or Sx∈T S� (Case 2).
Case 1: We have to prove that ! satis4es an interior sphere condition at Sx.
(a) If ∇u( Sx) �= 0, @! is locally of class C2 in a neighborhood of Sx∈! ∩ @B(x̃; �)

for some ball B(x̃; �) ⊂ !, and u(x)¿a for any x∈B(x̃; �). According for instance
to [12], Hopf’s lemma applied to w S� ¿ 0 in ! at Sx provides: ∇w S�( Sx) · (x̃ − Sx)¡ 0, a
contradiction with ∇w S�( Sx) = 0.
(b) Assume that ∇u( Sx) = 0. The monotonicity of x1 �→ u(x1; x′) gives

@2u
@x1@x2

( Sx) =
@2u
@x21

( Sx) = 0

because of the following Taylor development:

u(x) − a=
∑
i; j=1;2

(i; j)
=(1;1)

@2u
@xi@xj

( Sx) · (x − Sx)i(x − Sx)j + o(|x − Sx|2):

Since −(@2u=@x22)( Sx)=−Hu( Sx)=f(a)¡ 0, ! again satis4es an interior sphere condition
at Sx. For the same reason as in case (a), we get a contradiction.



Case 2: Assume now that Sx∈T S�. Because of the de4nition of Sx,

@u
@x1

( Sx) = −1
2

lim
k→+∞

e1 · ∇w�k (xk) = 0:

If @u=@x2 �= 0, we may apply Serrin’s lemma, see [12,20].

Lemma 8. Let O be a domain in RN and assume that near Sx∈O, the boundary of
O consists of two transversally intersecting hypersurfaces . = 0 and 0 = 0. Suppose
that .; 0¿ 0 in O. Let w¿ 0 be a function in C2(O) with w¿ 0 in O, w( Sx) = 0,
satisfying the diFerential inequality −Hw−c(x) w¿ 0 for some function c in L∞(O).
Assume that

∑N
i=1 @.=@xi( Sx) ·@0=@xi( Sx)=0 and D(

∑N
i=1 @.=@xi ·@0=@xi)( Sx)=0 for any

derivative tangent at Sx to the submanifold {.=0}∩{0=0}. Then for any direction s
which enters O at Sx transversally to both hypersurfaces, @w=@s¿ 0 and @2w=@s2 ¿ 0.

This is clearly in contradiction with ∇w S�( Sx) = 0.
If @u=@x2 = 0, using again that −Hu( Sx) = f(a)¡ 0, we may still 4nd a cone O

of summit Sx such that on ! ∩ O, w S� ¿ 0, and as above we get a contradiction with
Serrin’s lemma.

4.3. Whole space results

In the case the domain D is the whole space RN , the method can still be adapted
as soon as the moving plane technique can be started from ∞ in any direction. One
of the main features of the local moving plane method we develop in this paper is
that we do not need to assume a strict positivity of w� as soon as f is decreasing
in a neighborhood of 0 and can therefore handle in a uni4ed framework the positive
solutions as well as the nonnegative solutions that are compactly supported.

Theorem 9. Assume f satis;es (f1)–(f2). Let u be a C2 nonnegative solution of
(1) satisfying lim|x|→+∞ u(x) = 0. Then u is radially symmetric up to cores. If it is
compactly supported, the support of u is a union of balls with disjoint interiors.

The assertion on the support is a consequence of Proposition 6. Of course, with a
further assumption on the positive critical levels of f, we may get a strict monotonicity
on each component of the support.

Corollary 10. Assume f satis;es (f1)–(f3). Let u be a C2 nonnegative solution of (1)
satisfying lim|x|→+∞ u(x) = 0. Then any connected component of {x∈RN : u(x)¿ 0}
is a ball (or RN ), and u restricted to each of these components is radially symmetric
and decreasing.

A further assumption on the regularity of f at 0 would provide the result that the
solution has to be radially symmetric, positive and decreasing with respect to some
point in RN .



4.4. Fully nonlinear case

It is possible to generalize the results given in Sections 1–3 for the Laplacian to
more general fully nonlinear elliptic equations of the type

F
(
u;

@u
@xi

;
@2u

@xi@xj

)
= 0 with i; j = 1; 2; : : : ; N; (3)

when F is only continuous with respect to u, even in the case where the highest order
part of the operator cannot be written in divergence form. Since quasilinear and fully
nonlinear elliptic equations are out of the general scope of this paper, we shall simply
refer to [8] for an up to date list of references and further comments on the connection
of the issue of the symmetry of the solutions with their assumed regularity.
Under the assumptions, which are directly inspired from [16,17], consider

F :R+ × RN × RN×N → R

(s; p; Q) �→ F(s; p; Q)

with the following properties:

(F1) F is continuous and C1 with respect to Q = (Qij)i; j=1;2; :::;N ,
(F2) F is either Lipschitz + increasing in s, or has the following strict decay property

F(u+ w;p; Q + R)¿F(u; p; Q)

for any N ×N nonnegative symmetric matrix R and any w¡ 0, provided (w; R) �=
(0; 0),

(F3) for any (s; p; Q) such that F(s; p; Q)= 0, there exists a neighborhood of (s; p; Q)
in R+ × RN × RN×N on which F is Lipschitz + increasing with respect to s,

(F4) for any 8∈RN , Fpipj (s; p; Q)8i8j¿ S�(s; p; Q)|8|2 for some S�(s; p; Q) which is
uniformly positive.

(F5) F has the following symmetry property with respect to e1:

F(s; (−p1; p2; : : : ; pN ); Q̃) = F(s; p; Q);

Q̃= (Q11;−Q12;−Q13; : : : ;−Q1N ;−Q21; Q22; Q23; : : : ; Q2N ; : : : ;

−QN1; QN2; : : : ; QNN );

as well as for any direction �∈ SN−1 such that |�− e1|¡� for some given �¿ 0.

Theorem 11. Assume that f and D, respectively, satisfy (F1)–(F5) and (B). Let
u∈C2(D)∩C0( SD) be a positive solution of (3) such that u|@D=0. Then u is monotone
nonincreasing up to cores on D̃ = {x∈D: x · e1¿ 0} in the direction e1.

Of course, a similar monotonicity result holds for unbounded domains. Note that
assumption (F5) as in [16] is quite restrictive (see [7] for an example). The proofs go
exactly as for the Laplacian, but present purely computational technicalities that are
unessential and will not be presented here. The main point is that one has to make



sure that the local inversion theorem (unique continuation argument in the proof of
Theorem 2) preserves the ellipticity of the operator.

4.5. The |x| dependent case

Imposing a dependence in |x| is easy and we can for instance state the following
result. Consider in Case (B)

Hu+ f(|x|; u) = 0; u¿ 0 in D; (4)

u= 0 on @D: (5)

Theorem 12. Under the same assumptions as in Theorem 1, provided these assump-
tions on f are uniform in x, if D satis;es condition (B) and if f is monotone non-
increasing in |x|, then the same results hold for any solution of (4)–(5). If moreover
f(|x|; u) is decreasing in |x|, then no cores may exist.

Actually, to obtain the nonexistence of cores, it is suPcient to ask that f(|x|; u) is
decreasing in |x| for any u such that f is not decreasing or constant in u. In that case,
by Lemma 3, u would be symmetric with respect to some hyperplane T S� in the range
u1 ¡u( Sx)¡u2, in contradiction with the fact that

0 = Hu S� + f(u S�; |x S�|) = Hu+ f(u; |x S�|)¿Hu+ f(u; |x|) = 0

except if S�= 0.
The only diPculty that may occur is the case � = �� in Lemma 3, which can be

solved by noticing 4rst that if � = D, then �� = 0 and then by applying the iteration
method of the proof of Theorem 5 with care. Details are left to the reader.

References

[1] A.D. Alexandrov, A characteristic property of the spheres, Ann. Mat. Pura Appl. 58 (1962) 303–354.
[2] F. Brock, Continuous Steiner symmetrization, Math. Nachr. 172 (1995) 25–48.
[3] F. Brock, Continuous rearrangements and symmetry of solutions of elliptic problems, Proc. Indian Acad.

Sci. Math. Sci. 110 (2000) 157–204.
[4] C. Cort@azar, M. Elgueta, P. Felmer, On a semilinear elliptic problem in RN with a non-Lipschitzian

non-linearity, Adv. DiGerential Equations 1 (2) (1996) 199–218.
[5] C. Cort@azar, M. Elgueta, P. Felmer, Symmetry in an elliptic problem and the blow-up set of a quasilinear

heat equation, Comm. Partial DiGerential Equations 21 (3–4) (1996) 507–520.
[6] J. Dolbeault, P. Felmer, Sym@etrie pour des @equations semi-lin@eaires elliptiques [Symmetry of the

solutions of semilinear elliptic equations], C. R. Acad. Sci. Paris S@er. I 329 (1999) 677–682.
[7] J. Dolbeault, P. Felmer, Symmetry and monotonicity properties for positive solutions of semilinear

elliptic PDE’s, Comm. Partial DiGerential Equations 25 (2000) 1153–1169.
[8] J. Dolbeault, P. Felmer, R. Monneau, Local symmetry and non uniformly elliptic operators Preprint

CEREMADE, Universit@e Paris Dauphine.
[9] A. Farina, Propri@et@es de monotonie et de sym@etrie unidimensionnelle pour les solutions de Hu+f(u)=0

avec des fonctions f @eventuellement discontinues, C. R. Acad. Sci. Paris S@er. I 330 (2000) 973–978.
[10] A. Farina, Monotonicity and one-dimensional symmetry for the solutions of Hu+f(u)= 0 in RN with

possibly discontinuous nonlinearity, Adv. Math. Sci. Appl. 11 (2) (2001) 811–834.



[11] B. Franchi, E. Lanconelli, J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear
equations in RN , Adv. Math. 118 (1996) 177–243.

[12] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm.
Math. Phys. 68 (1979) 209–243.

[13] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in
RN , Adv. Math. Studies 7A (1979) 209–243.

[14] L. HUormander, The Analysis of Linear Partial DiGerential Operators III, Pseudo-diGerential Operators,
Grundlehren der Mathematischen Wissenschaften 274, Springer, Berlin, Heidelberg, 1985.

[15] H.G. Kaper, M.K. Kwong, Y. Li, Symmetry results for reaction diGusion equations, DiGerential Integral
Equations 6 (5) (1993) 1045–1056.

[16] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded
domains, Comm. Partial DiGerential Equations 16 (1991) 585–615.

[17] Y. Li, W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in RN , Comm.
Partial DiGerential Equations 18 (5–6) (1993) 1043–1054.

[18] O. Lopes, Radial symmetry of minimizers for some translation and rotation invariant functionals,
J. DiGerential Equations 124 (1996) 378–388.

[19] L.A. Peletier, J. Serrin, Uniqueness of nonnegative solutions of semilinear equations in RN ,
J. DiGerential Equations 61 (1986) 380–397.

[20] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304–318.


	Monotonicity up to radially symmetric coresof positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case
	Introduction
	A technical lemma for local moving planes
	Unique continuation and proofs of the main results
	Further results
	Cores can only ``go up''
	Without overlapping
	Whole space results
	Fully nonlinear case
	The |x| dependent case

	References


