
Reusing Groupware Applications

Sergio F. Ochoa1, Luis A. Guerrero1, José A. Pino1, and César A. Collazos2

1 Department of Computer Science
Universidad de Chile

Blanco Encalada 2120, Santiago, Chile
{nbaloian,pgaldame,luguerre}@dcc.uchile.cl

2 Department of Systems
Universidad del Cauca

FIET-Sector Tulcan, Popayán, Colombia
{ccollazo}@unicauca.edu.co

Abstract. Many groupware applications have been developed and continue be-
ing developed over white-box groupware platforms. These platforms have
brought important contributions to the development of groupware systems.
However, the lack of compatibility among these platforms is limiting the port-
ability of such solutions. This paper presents a middleware, which allows to
improve the portability of new and legacy groupware applications supported by
white-box platforms. The middleware translates a set of functionalities provided
by the groupware platforms to a set of common groupware services used by the
applications. These services provide groupware support and allow to improve
the portability of groupware systems. A prototype of the proposed middleware
has been tested and the interim results are encouraging.

1 Introduction

Concepts like portability and reuse of components and designs have already been
accepted and promoted by the software industry [1, 6]. The main advantage is the
reduction in the development time and cost. In addition, an improvement in quality of
the final product can be expected because of the reuse of mature designs and software
components. These results have motivated the software industry to move towards the
reuse of adaptable solutions that use standard interfaces, since they are easy to scale,
update, and replace. Although reuse of solutions brings important advantages for the
software industry, it also requires a high level of product standardization. Portability
is poor in the case of groupware systems, specifically, applications supported by
white-box groupware platforms. White-box groupware platforms, such as Coast [12],
Groupkit [7] and TWiki [5], provide through the server, a set of classes or services
implementing typical concepts of the groupware area, such as floor control, shared
repository and session management. These services are not compatible among differ-
ent platforms, because of the lack of standards in the groupware area. Therefore, ap-
plications using these services are not easy to reuse.

Many organizations have spent important efforts on developing and inserting
groupware applications to support vital parts of their functionality (e.g. workflows,
discussion forums or messaging systems). Lack of portability of their groupware
applications forces organizations to avoid or delay the change of such supporting

Reusing Groupware Applications 263

platforms. This would mean the re-development of the current applications, the re-
training of the employees and the migration of the information.

This paper presents a middleware component, called GPC (Groupware Platform
Compatibility), which acts as an intermediary between groupware applications and
white-box groupware server platforms. GPC homogenizes the main groupware ser-
vices required by applications and hides the differences among white-box groupware
platforms.

Next section describes the groupware concepts that could be used by groupware
applications in order to provide collaborative functionalities. Section 3 presents re-
lated work about portability of groupware solutions. Section 4 presents the main com-
ponents of the GPC middleware. This section also shows how to work GPC and the
restrictions required for using it. Sections 5 and 6 present the interim results, the con-
clusions and future work.

2 Groupware Services

Guerrero et al. have defined nine basic concepts (or patterns) which are eventually
present in a groupware system to be supported by server platforms [8]. These con-
cepts are: sessions, users, roles, messages, objects, repositories, views, environments
and floor control. The sessions (also called work sessions, groups, or conferences)
maintain information about the users who interact in an asynchronous or synchronous
way through a groupware application. The users (or collaborators) are the members of
the work group. Every user can have specific access rights according to his/her role.
Users send Messages (notifications or events) to communicate. Application modules
also send messages for the same purpose. Objects (meta-objects or information ob-
jects) are information about object instances produced by the users during group
work. Most of the time, it is needed to store object attributes, which is information
about the work object (or meta-information), such as the owner of the object, the
creation date and time, and previous versions. The objects are stored in repositories
and it is possible to see a portion of a repository by using various views. The envi-
ronments organize and coordinate multiple working sessions, or multiple user groups
working on the same groupware applications. They also allow sharing groupware
applications among many user groups. The floor control policies define the strategies
used to manage the shared resources.

Table 1. Common features in white-box groupware platforms.

Features Coast GroupKit Habanero JSDT MetaWeb TOP TWiki
Sessions X X X X X X X

Users X X X X X X X
Roles X X

Messages X X X X X X X
Objects X X X X X X

Repositories X X X X X
Views X X X

Floor Control X X X X X X X
Environments X X X X X

264 Sergio F. Ochoa et al.

White-box groupware platforms, such as: Coast [12], GroupKit [7], Habanero [4],
JSDT [3], MetaWeb [14], TOP [8], and TWiki [5], provide services to support most of
these concepts (see Table 1). However, the services are not compatible among the
different platforms. This generates the main problems of portability for groupware
applications.

3 Related Work

Although there are no specific solutions to address the problem of portability in appli-
cations supported by white-box groupware platforms, some options designed with
other goals could be used to address it. Software components [13, 6], such as: EJB,
DCOM and .Net, could be used as intermediary to increase the portability of such
groupware applications. These technologies have demonstrated being useful to reduce
the dependencies among client and server applications. However, they involve the use
of heavy-weight server platforms, and some of them are tied to a specific family of
operating systems. In contrast, groupware applications and white-box platforms tend
to be light-weight and independent of the operating system; therefore, the use of these
component technologies could be a high cost to pay in order to improve the portabil-
ity of such groupware solutions.

An alternative would be to use Web services [2], which propose an architecture
based on XML messages allowing applications to talk to each other. Although the
Web services paradigm is the ideal for developing portable applications, it uses con-
nection-less interactions between client and server applications. Awareness, replica-
tion of operations, and users and sessions management are some of the groupware
services that require connection-oriented interactions. In other scenarios, such as
databases, operating systems and communication protocols, interesting solutions have
been created to solve similar problems. The most related works are the ODBC and
JDBC frameworks [10]. They reduce the dependency that an application has respect
to the database it is using. This solution has demonstrated to be useful to reduce the
incompatibilities among the services that databases provide to client applications. In
addition, it is light-weight and independent of the operating system of both, the client
and the server application. By reusing this idea, GPC middleware was created to help
overcome the limitations of portability of such groupware solutions. Because most of
white-box server platforms use event-based client-server architectures [9], GPC acts
as an intermediary homogenizing the interaction between groupware applications and
white-box server platforms. This homogenization gives portability to the applications.

4 Groupware Platform Compatibility (GPC)

The GPC middleware was implemented using the J2EE platform. The access to the
functionality of the middleware was implemented through a DLL (Dynamic Link
Library) that runs on the client side, similarly to an ODBC driver. Even though the
rest of components of the GPC also run on the client side, they are not available to be
used by external applications.

The main components of the GPC middleware are three processes and three con-
figuration files (see Fig. 1). The processes are Service Deliverer, Service Manager

Reusing Groupware Applications 265

and Auxiliary Service Provider; and the configuration files are Communication Status
File and a Groupware Platform Specification File and Current Client-Server Settings.
The integrated work of these elements allows GPC to provide groupware services to
the server and client applications.

Service Deliverer Service Manager

SAX

APPLICATIONS

SERVER

Communication
Status File

Groupware Platform
Specification File

XML

DOM
objects

Current Client-Server
Settings

XML

Auxiliary
Service Provider

Service Deliverer Service Manager

SAX

APPLICATIONS

SERVER

Communication
Status File

Communication
Status File

Groupware Platform
Specification File

Groupware Platform
Specification File

XML

DOM
objects

DOM
objects

Current Client-Server
Settings

Current Client-Server
Settings

XML

Auxiliary
Service Provider

Fig. 1. Architecture of GPC.

Service Deliverer is a software agent which acts as intermediary among clients and
servers, managing the communications and maintaining their status. Typically it uses
the Communication Status File to store and retrieve information about the current
communication which is being managed by GPC. This information concerns IP num-
bers and identifiers of client and server applications, communication protocols and
ports, status of request between a server and a client, and related data. On the other
hand, Service Manager is also a software agent, which translates the requests and
responses from the original format to one understandable by the receiver. Also, it is
responsible to emulate the message interchange protocol that is available in each
supported white-box groupware platform. This emulation capability is needed when
the granularity of the service requested by a client is different to the offered by the
server. In this case, the Service Manager also acts as temporal buffer emulating the
server or client behavior, and keeping track of the interactions among them.

The Service Manager carries out these tasks supported by the Communication
Status File (CSF), Groupware Platform Specification File (GPSF), Auxiliary Service
Provider (ASP) and Current Client-Server Settings (CCSS). CSF provides updated
information to generate the communication instances (commands) between the Ser-
vice Deliverer and the receivers, in order to carry out the interactions required by
collaboration processes. GPSF provides general information to understand such com-
munication instances (request or results) and assigns them a right meaning for each
white-box platform. GPSF is an XML document, which also stores data about how to
translate native requests or responses from one supported platform to one or more
groupware services provided by GPC middleware. In addition, this configuration file
provides the inverse function; this means to translate each GPC groupware service to
one or more native services provided by a specific white-box server platform.

Because most of white-box server platforms do not provide the nine basic concepts
which could be required by groupware applications, an Auxiliary Service Provider
(ASP) is included in the middleware. This helps Service Manager to carry out the
proposed service translation. ASP is a small server process based on the TOP white-
box platform [8]. This process provides some TOP services not offered by the server
platform but possibly requested from a groupware application.

266 Sergio F. Ochoa et al.

Finally, the CCSS is an XML file - similar to the GPSF - storing information about
the relationship between each client application and its corresponding server platform.
This file is modified every time a client application changes from a server platform to
another one. Using this file, the GPC middleware can manage multiple interactions
among clients and servers. However, the GPC middleware may become itself a bot-
tleneck, reducing the performance of groupware applications.

4.1 Functionality of GPC

Typically, when a groupware application sends a request (in a native format) to a
server through GPC, the middleware Service Deliverer receives the message. Then, it
sends it to the Service Manager, which checks if client and server share the same
groupware platform. If they do, the Service Manager returns the original request to
the Service Deliverer, which sends it to the server. Otherwise, the Service Manager
translates the original request into a set of equivalent GPC service requests. The Ser-
vice Manager uses the CCSS file to identify the specific server platform that provides
support to each client application. Moreover, Service Manager uses GPSF to identify
which requests will be sent to the server through the Service Deliverer and which
ones will be sent to the Auxiliary Service Provider (ASP). Then, the response results
provided by the server will be received by the middleware Service Deliverer and
processed by the Service Manager. The results provided by the ASP are directly re-
ceived and processed by the Service Manager. This software agent also translates the
results into a native format for the client (understandable by the client) when it is
needed. Thus, the processed results are delivered to the clients in the same way the
native server would do it. The Service Manager uses SAX [11] to parse the GPSF and
CCSS files and then it generates a DOM tree. This tree stays in memory in order to
reduce the overhead produced by the translation process.

4.2 Implementing the Groupware Platform Specification File

One important challenge when implementing GPC middleware was to define an ap-
propriate structure for the Groupware Platform Specification File (GPSF). This struc-
ture must be general enough in order to exclude limitations to the translation proc-
esses. A map of the resulting GPSF structure is presented in Fig. 2. It is currently
implemented as an XML file.

GPSF has two entries, one through the native server platform and the other through
the standard service (common groupware service). By using some of these identifiers,
it is possible to retrieve the information about how to translate a service from the
native server platform to GS (Groupware Services) and vice versa. For example,
when the Service Manager needs to understand a service request from a client appli-
cation, it should specify the platform of the client and the requested service. Being a
request of service, the request section of GPSF provides information to validate the
format of the received command and to assign it the right meaning. Thereafter, such
request is translated to one or more GS provided by GPC middleware. Later, these GS
are translated to a set of one or more services provided by the current server platform
and/or the Auxiliary Service Provider. Such translation is done using the second entry
of GPSF, which uses a GS as primary key. Finally, the translated services are deliv-
ered to the corresponding server platform through the Service Deliverer.

Reusing Groupware Applications 267

Fig. 2. Structural Map of the Groupware Platform Specification File.

Similarly, Service Manager uses the information specified in the response section
of GPSF to translate the results from the server format to the format understood by the
client. It should also emulate the interaction protocol between the client and server, by
using the information specified in the communication section of GPSF, Communica-
tion Status File and Current Client-Server Settings.

4.3 Using the GPC Middleware

The first time GPC is included in a groupware solution, the connection to the server
should be changed in the source code of the client application. This change seeks to
address GPC as its new server, to indicate the white-box server platform the client
application believes to be addressing, and to assign a unique identifier for such appli-
cation. This allows GPC to identify each client, to assign the right semantics to re-
ceive requests and to translate the data to be delivered as result of such requests. In
other words, the client application will continue believing the original white-box
server platform is providing such services, and GPC is responsible to induce such
beliefs. The application must change its connection function call, including its own
identifier as an additional parameter in each server request. These modifications to the
source code are required the first time such application is configured to work with the
server using GPC as intermediary. Then, every time the server platform needs to be
changed, only a CCSS file is modified.

On the other hand, server platforms should recognize GPC as a client application
which is using the groupware services provided by them. It involves updating of the
same configuration file included in GPC, which allow client applications change the
server platform without the need to update their source code.

Initially, GPC works as a listener of the interactions between client server, and it
assumes more important roles when the server platform is changed. During these
interactions the middleware is in charge of encapsulating a set of typical groupware
services by providing interfaces allowing client applications to talk with a server
platform different than the one it was designed. Client applications can reach portabil-
ity by using only these groupware services. Otherwise, if a client application uses
extra groupware functions provided by a specific server platform, it must modify its
source code to fit this restriction.

268 Sergio F. Ochoa et al.

The groupware services provide support for collaborative work to groupware ap-
plications. These services are never accessed directly by client or server applications,
but by GPC components. Usually, each request from a client application or server
platform is translated to one o more groupware services. These services seek to estab-
lish a common intermediate language to translate the functionality provided by each
white-box server platform.

5 Results

The current implementation of the GPC middleware supports TOP and TOP II white-
box platforms. These platforms are partially compatible because many functions
available in TOP were redefined in TOP II.

Three groupware applications supported by TOP were used to test the GPC mid-
dleware. The applications were: an asynchronous discussion forum, a shared drawing
environment, and a notification system. The migrated applications were selected
keeping in mind the incompatibilities among the services provided by these platforms.

The migration of the first application, the asynchronous discussion forum, was
slow and problematic because of incomplete implementations of the Groupware Plat-
form Specification File (GPSF) and the Service Manager. The implementation and
appropriate use of these two components were challenging tasks. Once the first appli-
cation was translated, the rest of the applications were easy to migrate. The effort
spent to adjust the source code of the client application was within the estimated lim-
its. However, small adjustments were required to the GPC middleware in order to
better fit the migration process. The authors’ feeling is that most of the problems were
because it was the first test for the GPC middleware; therefore, many problems were
made clear in such instance. In addition, the lack of expertise in the setting of the
GPC middleware was another cause for problems encountered during the first migra-
tion process. Currently, most of the services provided by the JSDT platform [3] have
been included in the current version of GPC middleware. They have been partially
tested and successful results have been obtained. The process to include support for
JSDT in the middleware was, at the moment, faster and easier than for the previous
platforms.

The authors believe an important effort will be required to include support for
every white-box groupware platform. However, once the support is well imple-
mented, the groupware applications migration will be fast and with low cost.

6 Conclusions and Further Work

Many groupware applications developed on top of platforms supporting collaborative
work are limited in their portability due to the lack of compatibility among the ser-
vices they provide. Currently there is not a specific solution to help improve the port-
ability of groupware applications supported by white-box server platforms. This paper
presents the GPC (Groupware Platform Compatibility) middleware, which offers an
option to overcome some of these limitations using a set of common groupware ser-
vices. GPC works as a bridge between the groupware applications (clients) and the
white-box groupware platforms (servers). This hides incompatibilities among the

Reusing Groupware Applications 269

requested and the given services. GPC can be seen like an ODBC/JDBC driver, which
translates requests and responses from clients and servers to a compliant format and
meaning. This strategy has strengths and weaknesses. An important strength is the
small changes in the source code of groupware applications, and a small set up effort
required by the new solution. In addition, this solution is light-weight and independ-
ent of the operating systems used by groupware application and server platforms. On
the other hand, a limitation of GPC is that it does not take maximum advantage of the
server platform full functionality, since the collaboration should be based on the
groupware services provided by the middleware. In addition, there would be a per-
formance reduction for groupware applications using this solution. Despite the limita-
tions, GPC provides a way to improve the portability of groupware applications. The
current supported white-box platforms are TOP and TOP II. Three applications have
been ported from TOP to TOP II platform. The preliminary results have shown a high
portability of these applications. Although it is early to obtain conclusions, important
advantages on reuse of groupware applications could be obtained if the initial results
endure. Currently, the authors are working to include support for JSDT [3] soon and
other platforms later, in order to get well supported conclusions on the portability
features provided by GPC.

Acknowledgments

This work was partially supported by Fondecyt (Chile) grants No. 1040952 and
1030959 and by MECESUP (Chile) project No. UCH0109.

References

1. Brown, A., Large-scale component-based development. Object and Component Technol-
ogy Series, Prentice Hall., (2002)

2. Burner, M., The deliberate revolution: creating connectedness with XML Web services.
ACM QUEUE. 1 (1), (2003), 28-37

3. Burridge, R., Java Shared Data Toolkit: user guide. Sun Microsystems, Inc., (1998)
4. Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., Seguin, C., Java object-sharing in

habanero. Comm. of the ACM 41, 6, (1998), 69-76
5. Fabre,Y., Pitel, G., Soubrevilla, L., Marchand, E., Géraud, T., Demaille, A., Asynchronous

architecture to manage communication, display, and user interaction in distributed virtual
environments. Proc. of EGVE'2000, J.D. Mulder and R. van Liere (Eds.). Computer Sci-
ence / Eurographics Series, Springer-Verlag, (2000), 105-113

6. Gokhale, A., Natarajan, B., Schmidt, D., Wang, N., Modeling and synthesis of middle-
ware components. Communications of the ACM, Special Issue on Enterprise Components,
Services and Business Rules, edited by Ali Arsanjani, (2002)

7. Greenberg, S., Roseman, M., Groupware toolkits for synchronous work. Beaudouin-
Lafon, ed., Computer-Supported Cooperative Work, Chapt. 6, John Wiley & Sons, (1999),
135-168

8. Guerrero, L., Fuller, D., A pattern system for the development of collaborative applica-
tions. Information and Software Technology 43, 7, (2001), 457-467

9. Ochoa, S., Guerrero, L., Fuller, D., Herrera, O., Designing the communications infrastruc-
ture of groupware systems. In J. Haake, J.A. Pino (eds.): Groupware: Design, Implementa-
tion and Use. Lecture Notes in Computer Science 2440, (2002), 114-123

270 Sergio F. Ochoa et al.

10. Peterson, R., Database development with Jdbc, Odbc and SQL/Sqlj. Sams Publishing,
(2001)

11. Devsphere., SAX + DOM Mix = SAXDOMIX. URL:
www.devsphere.com/xml/saxdomix/

12. Schuckmann, C., Schümmer, J., Seitz, P., Modeling collaboration using shared objects. In:
S. C. Hayne (ed.): Proc. of ACM SIGGROUP Conf. on Supporting Group Work
(GROUP'99). Phoenix, Arizona, USA, 189-198, (1999)

13. Szyperski, C., Component software. Addison-Wesley, (2002)
14. Trevor, J., Koch, T., Woetzel, G., MetaWeb: bringing synchronous groupware to the

World Wide Web. Proc. of ECSCW'97, Lancaster, (1997)

	1 Introduction
	2 Groupware Services
	3 Related Work
	4 Groupware Platform Compatibility (GPC)
	4.1 Functionality of GPC
	4.2 Implementing the Groupware Platform Specification File
	4.3 Using the GPC Middleware

	5 Results
	6 Conclusions and Further Work
	References

