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Abstract

A suspension confined between two close parallel plates is studied in the Stokesian regime.

The use of boundary integral equations and the lubrication approximation allows to compute

the hydrodynamic forces acting on the particles. The forces are long ranged and depend on the

orientation of the relative position and velocity of particles. This tensorial character predicts

an ‘‘antidrag’’ that is observed in experiments. The effect of the computed hydrodynamic

forces is studied in the dynamics of a jet of particles falling by a gravitational field, which

shows a surface instability similar to the Kelvin–Helmholtz one. A theoretical model, based on

hydrodynamic-like equations, is able to predict the instability that is produced by the

interaction of the long-range forces and the free surface.
Suspensions, that is, solid particles immersed in a fluid—such as sand in water or
dust in air—have been extensively studied in physics and engineering science. Their
applications are wide, and a few examples are fluidized beds, pneumatic flow or
sedimentation. Recent experiments show a wide variety of phenomena, for example
the break-up of a blob of particles [1–3], the pattern formation in a rotating
suspension [4], and a suspension jet [3]. All of these show the importance of a
microscopic description of suspensions. Confined suspensions between two parallel
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plates, in quasi-2D (Q2D) geometries, have been extensively studied because they
present many peculiar features and allow for a detailed experimental characteriza-
tion of the microstructure. The pair correlation function and the structure
factor reveal that particles tend to be much more in contact than in a 2D hard
disk fluid [6]. The study of diffusion in counterflow stabilized suspensions shows
anomalous diffusion [6] and in the case of Brownian motion an ‘‘antidrag’’
hydrodynamic interaction is observed, which decays as the inverse of the relative
distance squared [7].

To model suspensions theoretically, different approaches have been employed.
From a more phenomenological approach, suspensions are modeled as equivalent
fluids or as if the fluid and solid phases constitute a mixture of two miscible fluids. In
these models [8], the theoretical description is not closed and empirical parameters
are necessary, like the effective viscosity. When the microstructure is taken into
account, the dynamics of the individual particles is considered by the influence of the
fluid. To compute the forces the fluid exerts on the particles, different methods have
been used. More commonly, the fluid phase is described as a continuum, with its
dynamics modeled by the hydrodynamic equations [9,10]. The Stokesian Dynamics
[10] is a theory for slow flow, where the time scale of particles is bigger than the fluid
ones. Using the Faxen law and multipole expansions, it is possible to obtain the
particle velocities as a function of the forces acting on the particles.

In this article we study the dynamics of a Q2D confined suspension. In particular,
we consider cylindrical particles in a thin cell in an intermediate regime, where the
fluid time scale is lower than for the particles, like in Stokesian Dynamics. The choice
of cylinders allows to compute explicitly both the long- and short-range forces but
the results are applicable also to spherical particles of diameter comparable to the
plates separation.

The presence of long-range forces in suspensions is ubiquitous and their treatment
is complex. The study of cylindrical particles in Q2D geometry helps to understand
the macroscopic effects of the long-range interactions. An important feature that is
extracted from this analysis is that the mean force acting on a particle surrounded by
an homogeneous medium vanishes, but in the presence of abrupt changes on the
concentration of the suspension, they can produce instabilities.

We describe the evolution of a jet of suspended particles driven by the
gravitational force. We consider a system of N solid particles that move through
an incompressible Newtonian fluid of viscosity Z. The fluid is confined between two
parallel plates separated at a distance 2d in the z direction, being infinite in the other
two directions. The particles are restricted to move in the plane and for simplicity we
consider cylindrical particles of height L (slightly smaller than 2d), radius s, and
mass m. The particles are thin, i.e., 2d5s.

In principle, the system is described by the coupled set of Newton’s equation for
the particles with the forces given produced by the fluid and other external forces,
and the Navier–Stokes equations for the fluid with boundary conditions imposed by
the particles. This coupled system of equations is too complex and a number of
approximations are needed in order to obtain analytic results. If the characteristic
time of the particles is much larger than the fluid’s one tf ¼ 4d2rf =Z and if 2d5s
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(both properties that can be easily obtained if the cell is thin), the fluid can be
considered as stationary for any given particle configuration and the Hele–Shaw
equations can be used to model the fluid [11]:

~vðx; y; zÞ ¼ 1 �
z2

d2

� �
~V ðx; yÞ; ~V ðx; yÞ ¼ �

d2

2Z
rP; r2P ¼ 0 , (1)

where P ¼ Pðx; yÞ is the pressure, and the gradients operate in the x–y plane. The
three-dimensional velocity profile is valid beyond the viscous boundary layer that
has a size comparable to the plate separation. The Laplace equation, together with
the boundary conditions given by (1), can be solved using the boundary integral
method [12,13] in the limit of a dilute concentration of particles. The resulting
pressure and velocity field allow to compute the total force over each particle due to
the pressure and viscous contributions

~Fk ¼ �
m

tp

~uk �
m

8tp

XN

i¼1

Kð~RkiÞ~uk , (2)

where tp ¼ md=ps2Z is the particle relaxation time, ~Rki ¼ ~Ri � ~Rk is the relative
distance between particles, and ~Ri the position of the center of mass of the ith
particle. The tensor K is given by

Kð~RÞ ¼ ðs=RÞ
2
ðI� 2R̂R̂Þ , (3)

with R̂ ¼ ~R=R and I is the identity tensor. Besides, the net computed torque on each
cylinder is null.

These results indicate that there is a viscous drag force acting on a particle,
proportional to its own velocity. In addition, there is an effective force between
particles that is proportional to the velocities of the partners. This force decays as
R�2 that in two dimensions corresponds to a long-range force. The interaction force
on particle k has a tensorial character and its direction depends both on the direction
of the velocity ~ui and the relative distance ~Rki. When ~ui is parallel to ~Rki, the
interaction force on k is parallel to ~ui, and if ~ui is perpendicular to ~Rki, the force turns
out to be in an opposite direction to ~ui. If spherical particles of radius slightly smaller
that d were used instead of cylinders, the force computation is similar. An equivalent
expression to Eq. (2) is found, with appropriate geometrical pre-factors. Therefore, a
suspension of spheres confined between two plates experience the same long-range
interactions and, in particular, the ‘‘antidrag’’ interaction observed in Ref. [7] can be
explained by the tensorial character of the force described in this article.

At short interparticle distances, however, the Hele–Shaw approximation cannot be
used and the full Navier–Stokes are necessary. When particles are very close such
that j~Rikj � s5s, the lubrication approximation allows to compute the hydro-
dynamic forces [14,13]: ~Fik ¼ �2aðI� R̂ikR̂ikÞ~uik=

ffiffi
�

p
� 3að~uik � R̂ikÞR̂ik=�, where

a ¼ md2=ts2, ~uik ¼ ~ui �~uk, and � ¼ ðRik � sÞ=s. Note that the lubrication force
diverges when two particles come in contact. This forbids hard collisions between
them making it unnecessary to include any collisional force into the total force on the
cylinders.
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For particles at intermediate distances there is no satisfactory results and we
consider a mixed model, where the expression used to compute the force on a particle
depends on the relative distance with its partners. If the distance R is larger than Rfar

the far field expression (2) is used; if RoRlubr the lubrication force is used; and finally
when RlubroRoRfar a linear interpolation between the two expressions is employed.

Numerical simulations of particles in a Q2D suspension interacting with the
computed forces are performed. Initially, the suspended particles are placed at rest
randomly ordered in a rectangle of width Lx ¼ 90s and height Ly ¼ 600s, and they
fall down due to the action of a gravitational field �gŷ. To simulate an infinity jet the
vertical direction is periodic, and the force computation uses the minimum image
convention [15]. Thus the system initially has a surface that separates the region with
suspended particles and the region with pure fluid. As our description is for the
dynamics of the suspended particles, and not for the surrounding fluid dynamics that
is already solved, it is sensible to call free surface the separation between the region
with particles and the region empty of them.

The jet consists of N ¼ 12 000 particles. Units are chosen such that the particle
diameter s and the limiting velocity for a single particle v1 ¼ gtp are set to one. The
gravitational force is mg ¼ 2:0. Finally, the values chosen for the cutoffs in the
simulations are Rlubr ¼ 1:3s and Rfar ¼ 2:0s. In Fig. 1, three successive snapshots of
the jet are shown. It is observed that the free surfaces become unstable, showing
oscillations that grow with time. At the beginning the surface waves are
characterized by a short wavelength but later a coarsening process is developed
leading to larger structures. Once the size of this structure is comparable to the jet
width, interactions between the two surfaces are observed and in-phase surface
Fig. 1. Numerical simulation of a suspension of N ¼ 1200 particles of s ¼ 1, under an external force

mg ¼ 2. From the left to the right: t ¼ 578; t ¼ 788, and t ¼ 1388.
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oscillations are obtained. Simulations with other parameters show the same kind of
instability, regardless of the intensity of the gravitation acceleration or the initial
density.

The observed instability is similar to the one observed when two immiscible fluid
in contact move with a relative velocity (Kelvin–Helmholtz instability). To make a
quantitative analysis we build a global model, similar to Euler-hydrodynamic
equations, for the particle mass and mass current densities, r and ~J, respectively

qrð~RÞ

qt
þ r � ~Jð~RÞ ¼ 0 , ð4Þ

q~Jð~RÞ

qt
þ

~Jð~RÞ

rð~RÞ
� r~Jð~RÞ ¼ �

1

tp

~Jð~RÞ �
1

2mtp

rð~RÞ

Z
d~R

0
Kð~R � ~R

0
Þ~Jð~R

0
Þ þ rð~RÞ~g ,

ð5Þ

where the average force density over the suspension, produced by the far force
contribution (2), was included. The near force contribution can be neglected in this
simple model because its effect is to reduce velocity fluctuations, but it does not
modify the mean velocity as it only affects the relative velocity. In the presence of a
free surface, an additional equation must be added to describe the evolution of the
free surface position xðy; tÞ. The equation is obtained as in the case of two fluids,
imposing continuity between the movement of the suspension and the surface. That
is, the mean suspension velocity at the surface must be equal to the surface velocity

qx
qt

þ
Jy

r

����
x¼x

qx
qy

¼
Jx

r

����
x¼x

. (6)

Assuming that at the beginning the two free surfaces do not interact, we will consider
the simple case of a single free surface, limiting a semi-infinite homogeneous
suspension in the xo0 region, of density r0. Eq. (5) implies that a stationary
homogeneous solution exists with ~J0 ¼ �r0gtpŷ=ð1 þ b0=8Þ, where b0 ¼ ps2r0=4m is
the area fraction of the suspension. Note that the presence of the free surface reduces
the value of J0 that when there is no free surface ~J0 ¼ �r0gtpŷ. Linear perturbation
in Fourier space of Eqs. (4)–(6) is performed around the equilibrium state. Solutions
in the form expðlsÞ are looked for, and the eigenvalues l, for k51 and bo51, in
dimensionless units are l1 ¼ ik cosf� kðb2

o=2Þj cosfj cosf sinf, l2 ¼ ikðbo=2Þ
cosfþ ikðb2

o=2Þ cosf� kðb2
o=2Þj cosfj cosf sinf, l3 ¼ �1 þ bo þ kðbo=2Þj cosfj

cosf sinf, and l4 ¼ �1 � bo � kðbo=2Þði cosfþ j cos fj cosf sinfÞ, where f is
the angle between the wave vector ~k and the ŷ direction.

Two of the eigenvalues, l3 and l4, have negative real parts for small k and
therefore correspond to damped motion. However, the real parts of l1 and l2 are
positive for p=2ofop and 3p=2ofo2p and an instability is predicted. The
analysis shows that the system becomes unstable for any strength of the gravitational
force and, coming back to the original unit, the instability rate is directly
proportional to t�1

p , which is the only quantity with units of time. In the limit
k51 the real parts of l1 and l2 are proportional to the wave vector. It is reasonable
to expect that a more detailed model, which includes terms proportional to gradients
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of ~J, the viscous effect produced by the lubrication forces and fluctuations, will
produce that for high enough wave vectors; the real part of the eigenvalues becomes
negative again. Hence, it is expected that the system is unstable for a range of wave
vectors going from zero to a finite value. The absence of a lower limit in k for
the instability and the linear proportionality of the growth rate with k explain the
coarsening process that is observed in the simulations. A correct description of
the coarsening process needs a nonlinear treatment of the instability and it is
beyond the scope of the preset work.

In summary, the hydrodynamic-like formulation of the long-range hydrodynamic
forces allows to predict that an homogeneous moving medium produces no net force
acting on a particle, but a curved free surface does produce a net force. The
interaction of the long-range forces with the free surface is responsible for the surface
instability that is observed in the simulations.
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