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Abstract

Let ¢, 0 be odd increasing homeomorphisms fremontoR satisfying¢(0) = 6(0) = 0, and let
f :la,b] xR x R - R be a function satisfying Caratbdory’s conditions. Let; € R, &; € (a, b),
i=1,...,m—2,a<& <& <---<&,_»<bbegiven.We are interested in the problem of existence
of solutions for then-point boundary value problem:

(@) = f@t,uu), 1€ab),
m—2

u@)=0. 0@'(®) =) o0’ (&)
i=1

in the resonance and non-resonance cases. We say that this problees@ancéf the associated
problem

(pw")' =0, 1¢€(ab),
m—2

u(@ =0, 0w k)= o0 (&)
i=1
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has a non-trivial solutions. This is the case if and onlfjj”:_l2 o; = 1. Our results use topological
degree methods. Interestingly enough in the non-resonance case, i.e.Z\&Q’g%‘ai # 1 the sign
of degree for the relevant operator depends on Wh@fi@:r’lz o; >1or Z;":’lz o < 1.
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1. Introduction

In this paper, we consider the boundary value problem:

(pW") = f@t,u,u’), te(a,b),
m—2
u(@) =0, 0 (k)= o0 (&), (1.1)

i=1

whereg, 0 are odd increasing homeomorphisms frBnentoR with ¢ (0) = 0(0) =0 and
the functionf : [a,b] x R x R — R is Caratl#godory. Alsoo; € R, & € (a, b), for
i=12,...,m—2,are given numbers that satisfyx 1 <&y <--- < ¢,,_2<b.

We say that (1.1) is aesonanceif the associated multi-point boundary value problem

(p(u')) =0, a<t<b,
m—2
u(@) =0, 0/ b)) ="y x0'(&)) (1.2)

i=1

has a non-trivial solution.

We are interested here in the problem of existence of solutions fo-ba@nt boundary
value problem (1.1) in the resonance and in the non-resonance cases.

The study of multi-point boundary value problems in the case) = 0(u) = u was
initiated by IIin and Moiseev if14,15]and has been the subject of many papers, see for
example[2,3,7-13,16] A three-point boundary value problem for the linear operator and
the nonlinear boundary conditions has been dedt%h

More recently multi-point boundary value problems containingotheplace operator or
the more general operatef(¢(u))’ of problem (1.1), complemented with linear boundary
conditions, have been studied[ih4,6,17]and elsewhere.

In [5], using topological degree arguments, §h8)], using upper and lower solutions,
multi-point boundary value problems containing the operatap(z))’ and the nonlinear
boundary conditions are studied. The problem considergs] ipresents the feature that it
is always at resonance because of the boundary conditions imposed.

Problem (1.1) is of a different nature concerning resonance, since it does not have the
property presentifb]. In this case the problem will be at resonance if and on}Yjﬁ:—f o=
1, havingu(t) = p(t — a) as a non-trivial solution, where € R is an arbitrary constant.

Our aim in this paper is to obtain existence of solutions for problem (1.1), where the
nonlinear homeomorphismg and are in general different, by using topological degree
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arguments. Thus, in Section 2, we first derive a key deformation lemma that applies to
the situation when problem (1.1) is at resonance, no sign restrictions on the nuwmbers
i=1,....,m — 2, are needed in this lemma. Furthermore, it is important to notice that
conditions (ii) and (iii) of that lemma are the same as if the functiaimat generates the
differential operator and the functidhthat appears in the boundary conditions were the
linear functions, i.e., as ip(s) = O(s) = s. This is due to the homotopy we were able to
obtain and it is an answer to the question of finding the simplest conditions on the function
f that ensure the existence of solutions to our problem.

In Section 3 many existence theorems for problem (1.1) are derived from this lemma.
Finally in Section 4 we consider problem (1.1) when it is at non-resonance. The crucial
point here is to prove that the Leray Schauder degree of a certain operator is different from
zero. This is shown to be an explicit consequence of the non-resonance condition, i.e.,

;”;12 o; # 1.Inaddition, we obtain the interesting property that the degree of the operator
changes sign WheE;”:_l2 o; goes from being less than one to being greater than one.

We shall denote byC[a, b] (resp.C%[a, b]) the classical space of continuous (resp.
continuously differentiable) real-valued functions on the intefwab]. The norminCla, b]
is denoted by |. Also, we shall denote bl (a, b) the space of real-valued (equivalence
classes of) functions whose absolute value is Lebesgue integralie ion The Brouwer
and Leray—Schauder degree shall be, respectively, denoted pyddglegs.

2. A deformation lemma for the resonance case

We begin this section by formulating a general deformation lemma for the solvability of
the boundary value problem (1.1) in the resonance case.

Let f* : [a,b] x R x R x [0,1] — R be a given function satisfying Caratbdory’s
conditions, i.e. (i) for alls, r, ) € R x R x [0, 1] the functionf*(-, s, r, A) is measurable
onla, b], (i) fora.e.t € [a, b] the functionf*(z, -, -, -) is continuous oR x R x [0, 1], and
(iii) for each R > O there exists a Lebesgue integrable funcign: [a, b] — R such that
| f*(t,s,r, 2)|<pgr(t)fora.et € [a, bl and all(s, r, 2) € R x R x [0, 1] with |s| <R, and
|| < R. We suppose that(z, s, r) = f*(t, s, r, 1) is the given function in problem (1.1).

We, now, introduce an operat@u, /) : C1[a, b] x [0, 1] — R defined for(u, 1) €
Cla, b] x [0, 1] by

m—2
Bu. 7) =1 (0(u’(b)) -y oci9<u/<éi)>)

i=1

b
+(1-A (/ At u(), u'(v), 2)de

m—2

&
_ Z oc,-/ (r,u(t), u'(v), 2) dr) ) (2.1)
i=1 a

For / € [0, 1] we consider the family of boundary value problems:

(P =Af @ u,u', 2), t€(a,b),
u(a) =0, B(u,l)=0. (2.2)
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Let @ ¢ C[a, b] be a bounded open set. Let us set foe R, ip(t) = p(t — a), for
t € [a, b], and

X ={iplp € R}.

ThenX is one-dimensional subspace ©t[a, b]. Definingi : R — X by i(p) = ipitis
clear that is an isomorphism fronR onto X.
Next let us defingF : X — R by

b m=2 &
Fip= [ fpt-ap.06-Y 5 [ fCp0-a.p.0d
a l:1 a

and set# = F oi. ThenZ : R — R is continuous, and is given by

b m—2 &
%p):/ f*(r,p(t—a>,p,0)dt—2ai/ 5t plt —a). p, ).
a l:l a

We have the following lemma.
Lemma 2.1. Assume that

(i) foreach/ € (0, 1), the boundary value proble(2.2) has no solution: € 0€2,
(i) equationZ (p) = 0 has no solution for any such that, € 02 N X, and
(iii) the Brouwer degredegs (Z,i~%(Q N X), 0) # 0.

Then the boundary value problefd.1) has at least one solution if2.

Proof. Letus define an operatd* : C1[a, b] x [0, 1] — C[a, b] by setting for(u, 1) €
Cla, b] x [0, 1]
t s
V¥ (u, ) (1) = / ot |:q'>(u’(a)) + /l/ (v u(), u'(t), 1) dri| ds
+(t —a)B(u, ). (2.3)

Sincef* satisfies Caratfodory’s conditions, then fo, 1) € C1[a, b] x [0, 1] we have
F*Cou(),u'(-), 2) € LY(a, b). Accordingly, the integrand in (2.3) is continuous [an 5]
and the operata?* is well defined. Furthermore, using standard arguments, one can show
that ¥* is a completely continuous operator.

Next, forsomel € (0, 1], let us suppose thatis a solution to the boundary value problem
(2.2). Then by integrating the equation in (2.2) and using iliaj = 0 andB(u, 1) = 0,
we see thatl satisfies

t s
u(t) = / ot |:¢)(u/(a)) + /1/ A u), u'(t), 1) dr:| ds
+(t —a)Bu, ) (2.4)
for all t € [a, b], and thusu satisfies

u=Y*u,l. (2.5)
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Conversely, let us suppose thatfor soime (0, 1],u € C[a, b], satisfies (2.5), equivalently
(2.4). From Eq. (2.4) we first see that
u(a) =0
and by differentiating that

W(t)y=¢* (d)(u’(a)) + /1/[ [ru), u'(v), 2) df) + B(u, 4),
t € [a, b]. ’ (2.6)
Evaluating this equation at= a we see that
Bu,)=0

and thusu satisfies the boundary conditions in problem (2.2). Also, Eq. (2.6) further implies
that¢(u’(r)) is absolutely continuous da, ] and

(W' @) =Af*t,u@t),u'(t), ), ae. in (a,b).

Thus,u is a solution of problem (2.2). In this form, fdre (0, 1], we have proved thatis
a solution of problem (2.2) if and only if is a solution of Eq. (2.5), equivalently (2.4).

If, now, there is a functiom € 02 which is a solution to problem (1.1), then we are done.
Accordingly, let us assume that the boundary value problem (1.1) has no soluti®. on
This correspond to saying that problem (2.2), wite: 1, does not have a solution 0.
This combined with assumption (i) of the lemma implies that

u# Y u, ) foralluecdQandle (0,1].

We, next, assert that # ¥Y*(u,0) for all u € 0Q. Indeed, letu € 02 be such that
u=¥*(u,0). Then by (2.4)

u(t) = (u'(a) + B(u, 0))(t — a) (2.7)

for all t € [a, b]. Differentiating and evaluating at= a, we find thatB(«, 0) = 0. Hence
u(t) = p(t —a) =i,(t), wherep = u’(a) implying thati, € 02 N X. But, sincei, must
satisfy

b m—2 <
OZSB(IP,O)If .f*(Tﬂp(T_a)’p9o)dT_Zaif f*(fap(’[_a)vpvo)df
a i=1 a

=7(p),
we obtain a contradiction to assumption (ii) of the lemma. We thus get that
u# ¥ wu, ) foralluedQandie|0,1].

Thusdegg(I —V*(-, 1), 2, 0)iswell defined for all € [0, 1]. By the homotopy invariance
property of Leray—Schauder degree we obtain immediately that
degs(I — P*(-,1),Q,0) =deg (I — P*(-,0), 2,0)
=degy (I — P*(-, 0)|x. Q0. 0). (2.8)
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whereQy = QN X. Now since forv € X

(I =Y, 00)v=—ipw),

degs(/ — ¥*(;, 1), Q,0) = degs(—ir(,), Qo, 0) = —deg; (ir(,), 2o, 0). (2.9)
Since,i~to ir() oi =% ,we obtain by using a standard formula in degree theory that

degs (ir(y. 20, 0) = degs (7, i 1(Qo), 0)).

Hence, by assumption (iii) of the lemma, it follows that geg — ¥*(-, 1), Q,0) # O.
Thus, the mapping” = ¥*(-, 1) : C[a, b] — C[a, b] has at least one fixed pomtm
and hence the boundary value problem (1.1) has at least one solufbiTiris completes
the proof of the lemma. O

3. Some applications of Lemma 2.1

As in the previous sectiong and 0 will denote odd increasing homeomorphisms from
R ontoR satisfying¢(0) = 0(0) =

In some of our results we shall assume the following condition, foraasyi, ¢ is such
that

¢(o z)

li 3.1

P © (31)
If this is the case, we set

a(a, b) = lim supw. (3.2)

7—>00 (15(2)

Theorem 3.1. Let f : [a,b] x R x R — R in the boundary value problerfi.1) be a
continuous function that satisfies the following conditions

(i) there exist non-negative functiods(r), d»(r), andr(r) in L1(a, b) such that

Lf (2, u, v)|<di@@(ul) + d2@)((v]) + r @),

fora.e.r € [a,b]and ally v € R,
(i) there exist constantd >0, B>0, A > 0, andvg > 0 such that for allv with |v| > vo,
all t € [a, b],and allu € R, one has

|f @t u,0)| = — A(ul) + Ap(jv]) — B

(i) there exists arR > 0 such that for allp, with |p| > R, either

b m-2 &
p[/ f(np(r—axp)dr—Zaif f(r,p<r—a>,p)dr]>o
a i=1 a
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or

m—2

b &
pU f(r,p(r—axp)dr—Zoc,-/ f(r,p<r—a>,p>dr]<o.
a i=1 a

Supposegfurther, ¢ satisfieg3.1),that

A
a(a, b) (”dl“Ll(a,b) + X) + lld2llp1apy <1 (3.3)

and that the coefficientg, i =1, ..., m — 2,in the boundary conditions of problefh.1)
are non-negative with "7 o; = 1.
Then the boundary value problefi.1) has at least one solutian € C1[a, b].

Proof. First lete > 0 be such that

A
Ve = (aa, b) +©) (ndluu(u,,,) + Z) + lld2ll g ) < 1. (3.4)

Next, we see from the definition afa, b) that there existgg > 0 such that
d((b—a)z)<(a(a, b) + e)p(z) for z>zo. (3.5)

We consider the family of boundary value problems (2.2) wyittiz, u, v, 1) = f(t, u, v)
forall (¢, u, v, A) € [a, b] x R x R x [0, 1], i.e., we consider the family of boundary value
problems:

(W)Y =Af(t,u,u’), te(a,b), Lel01],
u(@) =0, B(u, ) =0. (3.6)

We shall show that the family of boundary value problems (3.6) satisfies the conditions of
Lemma 2.1 to conclude that the boundary value problem (1.1) has at least one solution in
Cla, b).

Letu € C'[a, b] be a solution to the boundary value problem (3.6) for sanae(0, 1).
Suppose firstg € [a, b] is such thatu’(so)| < vo, wherevg is as in assumption (ii). Then,
by integrating the equation in (3.6) frosg to ¢ € [a, b], using assumption (i), and the
assumption tha# is an odd increasing homeomorphism frétronto R with ¢(0) = 0,
we get

(u' ) < p(vo) + PUllulloo) ldall 1(a,py + PU o) 21l 1,6y + 17 220 0)
<o) + d((b — a)lu'llso) 11l 120 1)
+ o' lloo) 2]l L1 by + 171l L2, 1) (3.7)
forallz € [a, b], sinceu(a) =0 implies|jullc < (b — a)||u’|| . It then follows, using (3.5),
that eithen|u’|| o <zo O
Plu'lloo) < P (vo) + (axla, b) + &) (llulloo) | dall 1 1q.p) + DUl o) |21l 120, 1)
F 17l 120,y <V o) | + 171l L2045y + P (VO)-
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Thus ifsg € [a, b] is such thatu’(sg)| < vo, then there is a positive constati such that
[/ lloo < C1. (3.8)

Let us, next, suppose thiat ()| > vg for all t € [a, b]. Then, from the boundary condition

B(u, 1) =0, we have that

b
p) |:9 |:d)(u/(a)) + i/ f(t,u), u' () dri|

m—2

S
— Y ol [(b(u’(a)) + /1/ f @ ou@),u'(0) df} }
i=1 ¢

b
+@A-7 (/ fu(r), u'(v) de
m—2 ¢
_ Z a,.f f(t, ux), u/(f))df) =0. (3.9)
i=1 a

We observe next that sin@}”‘l2 o =1, witho; >0,i =1,2,...,m — 2, there must

existng, 11 € la, £,,_»] such that
m—2

&
E:weiﬂwm»+zf fﬁmﬁ%wﬁnm}

i=1

=9LMMWD+2/%f@M@LW@DM} (3.10)

and
m=2 & N1
Z o f f(t,um), u' () dr = / f(t, u(r), u'(v)) dr. (3.11)
l=1 a a

Suppose, nowy (¢, u(t), u’(t)) >0 for all r € [a, b]. Then, using the fact that is an
increasing homeomorphism, and Egs. (3.9)—(3.11), we obtai®,0a contradiction. A
similar contradiction is obtained if we assume that, u(r), u’(¢)) <0 for all t € [a, b].

Hence, there must existm@ € [a, b] such that

f (o, u(zo), u'(10)) = 0.

This and assumption (ii) then gives

B A
¢(u' t0)D < — + —¢(lulloo). (3.12)
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Next, integrating the equation in (3.6) frorg to ¢ € [a, b] and using assumption (i) we
obtain that

(' (O < Pu’ (t0)D) + llulloo) Idall L1¢ap)
+ @l lloo) ld2ll L2apy + 171 30,1y

A
SOUlulloo) | Ndallz1ap) + n

B
+ U lloo) Id2ll L2¢a,py + 17 L3gap) + n

, A
<O((b — a)||u'lloo) (”dl“Ll(a,b) + X)

B
+ ¢l lloo) ld2ll L2a, 5y + 171l 22,5y + (3.13)

A

using, as before, the fact thata) = 0 implies||u | oo < (b —a)||u'] s It now follows, using
(3.5), that eithefu’| 0o <zo OF

A
Pllu'lloo) < [(Ot(a, b) +¢) <I|d1||L1<a,b) + X) + ||d2||L1(a,h):| Pl llo)

B B
— <l lloe) + 171l 1) + (3.14)

A A
This inequality combined with (3.8) implies that in all cases there is a positive coigstant
such that

17l Lrga,p) +

' loo < C.

This fact combines in turn with the estimaltg|| o < (b —a) ||’ || to imply that there exists
anRo > R, whereRis as in assumption (jii) such that boundary value problems (3.6) have
no solution on the boundary of the ba&l{0, R) c C1[a, b], for everyR > Ro. Accordingly,
boundary value problems (3.6) satisfy condition (i) of Lemma 2.1.

Next, from assumption (iii), for alp, |p| > R, we have that

m—2

F(p) = f = = 3 f fGpE—a).pde  (3.15)

is either strictly positive or strictly negative implying that condition (ii) of Lemma 2.1 is
satisfied.

Finally, by assumption (i) and the continuity of the functigh defined in (3.15), for
any fixedR > R, it follows that# (R),/f( R) < 0. Hence lettingX be the one-dimensional
space ofC[a, b], X = {ip | p € R}, used in Section 2, we have that the Brouwer degree

degs(Z,i X(B(0, R) N X),0) =degs(Z, (—R, R), 0) # 0,

and condition (iii) of Lemma 2.1 is also satisfied.
Thus from Lemma 2.1 we conclude that the boundary value problem (1.1) has at least
one solutioru such that|ul/c1, ,) < R. U
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An immediate and simple corollary to this theorem (the proof of which is left to the
reader) is given by the following result.

Example 3.2. Letp>1,g>1,andfori=1,...,m — 2. Lety; >0,¢; € (0, 1), be given
numbers such th{;":’lz o =1landO< ¢y <--- <&, o<1
In addition letB > 0, A4 > 0, andA > 0, be given numbers, with

A (1 + %) + A<l
Then, the boundary value problem
(¢p(u/))/ = A, (u) + A¢,,(u/) +B, 1€(01),

m—2

w0 =0, ¢,@@D)=Y 0d,w &), (3.16)

i=1
has at least one solutiene C1[0, 1].
We next consider a variant of the last theorem wheng in problem (1.1). Basically we
change condition (ii) of the last theorem by a new one. This change allows us to consider

functionsf which are Caratfodory. Furthermore we will impose no restriction on the sign
of o; € R. We consider the problem

(¢ = ft,u,u’), t€(a,b),

m—2

u(@) =0, ¢u'b) =Y %)), (3.17)

i=1

wherefori =1,...,m — 2,0;, & € (0, 1) are given numbers such th@l’.”:_l2 o; =1 and
0< ¢y <---<¢,_o< 1. Thefunctionp denotes an odd increasing homeomorphisms from
R ontoR satisfying¢(0) = 0. The functiorf is Caratl@odory.

Theorem 3.3. Suppose in probler8.17)the following conditions are satisfied

(i) there exist nomegative functiondy (1), d(r), andr(r) in L(a, b) such that

Lf(t,u, v)|<di@)@(ul) + d2@) () + r (@),

fora.e.r e [a,b]and ally v € R,
(ii) there exists! > 0 such that for allu € C1[a, b] with MiNsefa.p) U/ () >d

b m=2 &
f f@u@. ' @)de—3 " o f (@ u(@).u'(m) du 0. (3.18)
a i=1 a

(iif) For everyR > 0, there existgp| > R such that# (p).# (—p) < 0, where

b m—2 &
Fo=[ repc-apd-Y o [ fpc-a
“ i=1

a
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Then for a(a, b) as in(3.2),problem(3.17)has at least one solutiane C*[a, b] provided

ala, b)lldill g1,y + ld2ll p1(a,p) <1 (3.19)

Proof. As in the proof of Theorem 3.1 let> 0 be such that

Ve i= (a(a, D) + o)lldallpiap) + ld2ll p1apy <1 (3.20)
so that, using the definition of(a, b), there exists ap > 0 such that

d((b —a)z) <(ala,b) +e)Pp(z) for z>zo. (3.21)

We consider the family of boundary value problems (2.2) vfitttz, u, v, A) = 1f (¢, u, v)
and withB(u, 1), see (2.1), now given by

m—2

B, L= pu' b)) = Y o' ())).

i=1
Thus we are led to consider the family of boundary value problems

(W) =Af(t,u,u’), te(a,b), Lel0,1],

m—2

u(@) =0, ¢u'®) =Y %)) (3.22)

i=1

Letu e C'[a, b] be a solution to problem (3.22) for some= (0, 1). Then, integrating the
equation in (3.22) frona to ¢, we find that

t
S (D) = Pl (@) + / £ (), ' () dr,

which combined with the second boundary condition yields

b m—2 <
/ fu@. ' (@)yd =Y txi/ f(t,u(r), u' () dr =0.
a i=1 a

Thus, from (i), it must be that mja, 5 |’ ()| <d. Accordingly, there exists € [a, b]
such thaiu’(tg)| <d. Then, integrating the equation in (3.22) fregito ¢ < [a, b], we get

t
' (1) = (' (10)) +/ [t u(n), u' () d,
o
and hence, by using assumption (i), we obtain

DIl lloo) < Pd) + Pllulloo) ldall 10,5y + P o) 2]l L20.5y + 171 L2001 -

Using now the fact that(a) = 0 implies||u||oo < (b — a)||u’ ||, the definition ofx(a, b),
and (3.20) we see that eithigr’ || oo <zo Or

Dl llo0) < P(d) + (@, b) + &)lldall 1,5y + Id2ll L1¢0,5)) DU o) + 171l L300,
<A@ + 7, lloo) + +17ll 1¢a,)-
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This implies that there exists atyp > 0 such that
||M||Cl[a,b] < Ro.

Thus for anyl € (0, 1) problem (3.22) does not have solutions in the boundary of the
ball B(0, Rg) C Cl[a, b], implying that condition (i) of Lemma 2.1 is satisfied. Finally,
we see that assumption (iii) of this theorem implies that conditions (ii) and (iii) of Lemma
2.1 are satisfied, and we conclude that problem (3.17) has at least one solsticm that

ll]l 114,57 < Ro. This completes the proof of the theoreni]

Let nextq € L(a, b) and let us define

g = max !
4= b

b
/ q(s)ds | ne [a,émz]}
n

and

1 b
_,,,/ q(s)ds }ne[a,{m_z]}_

q=min{
N n

b
Our, next, existence theorem concern the multi-point boundary value problem:

(W) + f(t,u,u)=q@®), te€(ab),

m—2

u(@) =0, 0'®) =Y %0 (&). (3.23)

i=1

Theorem 3.4.Letg € LYa,b) and f : [a,b] x R x R — R in the boundary value
problem(3.23)be a continuous function satisfying the following conditions

i) there exist non-negative functiods, do, and rin L1(a, b) such that
g

Lf @t u, 0)| <di@)P(lul) + d2t)p(|v]) + r (1)

foralla.e.t € [a,b]and allu v € R,
(i) there existsl > 0 such that

f(t, u,v)>q forv>d,
f(t,u,v)<gf0rv< —d

fort € [a,b]and allu € R.
Supposegfurther, that ¢ satisfieg3.1),and
A
oc(a, b) (”dl”Ll(a,b) + Z) + ”dZ”Ll((l,h) <1. (324)
If the coefficients;, i = 1,...,m — 2, in the boundary conditions of proble(t.1) are

non-negative and satisi’ig"z_l2 «; = 1,then the boundary value problgi®.23)has at least
one solutioru € C1[a, b].
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Proof. We shall show that the family of multi-point boundary value problems
(") =iq@) — f(t,u,u")), te(a,b), 2€[0,1],
u(a) =0, B(u,l)=0. (3.25)

satisfies the conditions (i), (ii), and (iii) of Lemma 2.1.
As in the proof of Theorem 3.1, let> 0 be such that

A
Ve = (a(a, b) + &) (”dl”Ll(a,h) + Z) +lldall Ly <1, (3.26)

and letzg > 0 be such that
d((b—a)z)<(a(a, b) + e)Pp(z) for z>zo. (3.27)

Let, now,u(¢) be a solution of (3.25) for some € (0, 1). We claim that there exists a
7 € [a, b] such that

—d<u'()<d.
Indeed, we see by integrating the equation in (3.25) on the int@aval and using the
boundary conditions in (3.25) that

b
A |:9 [fﬁ(u’(a)) + i[ (q(0) = f(z, u@),u' (1)) df}

m—2

&
L [¢(u’(a)) 2 / (¢ — f (e u), u’(r)))drﬂ

i=1

b
+@=7) </ (@) = f(t,u(@),u' () dt

m—2 &
- Z %‘/ (g(v) — f(z, u(v), M'(f)))df> =0. (3.28)
i=1 a
Next, using thagj."z‘l2 o; =1, withe; >0,i =1, ..., m — 2, we obtain as in the proof of

Theorem 3.1, that there exigg, 14 € [a, £,,_»] such that

m—2 &
Z o0 |:¢(M/(ﬂ)) + i/ (q(v) — f(z,u(r),u' (1)) df:|

i=1

n
=0 [¢(u/(a)) + )»/ O(61(1) — ftu(@), u' (1)) df] )

m=—2 S n
> ai/ (q(r) — f(r,u(r),u’(r)))dr=/ (@@ — £z u(@, ' (@) do.
i=1 a a
(3.29)
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Hence, if we assume that(¢) > d for all ¢+ € [a, b], we arrive at the contradiction©0,
by using the first part of the assumption (ii) of the theorem, the facttiman increasing
homeomorphism and Egs. (3.28) and (3.29).

Similarly, the assumption’(1) < — d for all t € [a, b] leads to the contradiction9 0.
This proves the claim that there exists a [a, b] such that

—d<u'(1)<d.
Since assumption (i) of the theorem implies that

lg(@) — f(t, u, )| <diOP(ul) + d2(OHp(v]) +7(1), (3.30)

wherer (1) =r(1) +¢(t), by integrating the equation in (3.25) frano ¢ € [a, b] and using
estimate (3.30), we obtain

Ul lloo) <) + dllulloa) Idall 1(a,p) + DU o) A2l 10,0y + 171l L20,0)
<P(d) + d((b — a)||u'llco) 1dall L2¢4 1)
+ o' lloo) 2]l L1 by + 171 10, 0)- (3.31)

Hence eithelju’|| o < zp or from (3.27) we obtain

Bl lo0) < B(d) + (e, b) + Dl 100y + I2ll100.5) B o)
+ |I7”L1(a,b) < (:b(d) + V{:”u/”OO + ”’F”Ll(a,b)' (332)

Combining this inequality with the fact thata) = 0 implies the estimatgu .o < (b —
a)llu'll, and (3.32), we obtain that there exists R§1> d, d is as in (i), such that for
all R > Ro the family of boundary value problems (3.25) has no solutiodB(D, R) for
all 0< 1< 1, whereB(0, R) is the ball with center 0 and radiug in Cla, b). We have
thus proved that the family of boundary value problems (3.25) satisfies condition (i) of
Lemma 2.1.

Next, using again that; >0, for everyi =1, .. ., m—2and) [} 25; = 1, we find that
for everyp € R, there exists an,, € [a, ¢,,_2] such that

b m— &
p{/ <f(r,p(r—a),p)—q<r)>dr—Zoci/ (f(r,p(r—axp)—q(r))dr}
a l:l a
b ”p
=p{/ (f(r,p(r—a),p)—q(r))dr—/ (f(r,p(r—a),p)—q(r))dr}
b
=p[ (f(r,p(r—a),p)—q(r))dr}- (3.33)
p

Assumption (ii) implies that for alp € R, with |p| > d,

b
(f(z, p(t —a), p) —q(r))dr>0.
My
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Hence, from (3.33), we obtain that

b m- &
p {/ (f (@, p(z—a), p) —q@)dr— ) % / (f(z. p(t —a), p) —q (1)) dr
a i=1 a
> 0. (3.39)

Finally, the validity of conditions (ii) and (iii) of Lemma 2.1 can now be obtained from
(3.34) by an argument totally similar to the one used in proof of Theorem 3.1. This completes
the proof of the theorem.[d

Remark 3.5. Theorem 3.4 continues to hold if we replace assumption (ii) by the following:
“there exists/ > 0 such that

f(t,u,v)<z for u>d,
ft,u,v)y>q foru< —d

fora.e.r € [a,b] and allv € R.”

In our next existence theorem we are able to relax sublinear assumptions of the type
used in (i) of Theorem 3.1. Indeed we will allow superlinear behavior of the fungtioh
problem (1.1) with respect to the variahleFurthermore we will not need condition (3.1)

on ¢.

Theorem 3.6. Let f : [a,b] x R x R — R in the boundary value problerfi.1) be a
continuous function which satisfies the following condition
there exists > 0 such that for alljv| > M, all u € R, and allz € [a, b], one has

vf(t,u,v) >0,

If furthermore the coefficients, i = l ,m — 2,in the boundary conditions of problem
(1.1)are non-negative and satispy ;" 24, =1, then the boundary value problgfh.1) has
at least one solution € C[q, b].

Proof. We consider the family of boundary value problems (2.2) withz, u, v, 1) =
f(t,u,v) forall (z,u,v,2) € [a,b] x R x R x [0, 1], i.e. we consider the family of
problems:

(W) =Af(t,u,u’), te(a,b), iel0,1],
u(a) =0, B(u,l)=0. (3.35)

We shall show that the family of problems (3.35) satisfies the conditions of Lemma 2.1
to conclude that problem (1.1) has at least one solutiaftja, b].
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Letu be a solution to problem (3.35) for some (0, 1). We note first that the boundary
condition

m—2
Bu, 1) = 4 (9(u’(b>> -y oc,-0<u’<é,~>>>

i=1
b
+@A-A (/ f(t,u(m),u' (1) dr

m—2 &
- o [ f@u), u’(r))dr) =0,

i=1 a

can be written as

m—2 m—2
i <0(u/<b)> -y ai0<u/<éi>)> +(1— 2 (qs(u’(b)) - w(u’(éi»)
i=1 i=1
-0 (3.36)
and hence
m—2 m—2
<0<u’<b>> - oqt%u’(@-))) (qs(u’(b)) - ow(u’(éi))) <O0. (3.37)
i=1 =1

Then lettings' (&) =max=1,...m—2u’(;) andu’ (&) =mini=1,.. m—2u’(&;), we have that
(3.37) implies that

u' (&) <u'(b) <u'(E)). (3.38)

We claim first thafu’(a)| < M, whereM is as in the hypotheses of the theorem. Indeed,
let us suppose that(a) > M. It, then, follows that there exists an- 0 such that’(r) > M
for r € [0, ¢], and hence that

(' ®)) =Af(t,u(),u'(t)) >0 forre]0,e]. (3.39)

This implies that/(z) is strictly increasing ofi0, ¢]. Let us define

/

ty = supt € [a,b] | u' s strictly increasing ofa, t]}.

Clearlyty; > ¢ andu’(ty;) > M. If we assume,, < b, then it is immediate to see that there
is a¢’ >0 such that.’ is strictly increasing onity, ) + €¢'] and hence offa, ty; + €]
contradicting the definition aofy;. Thusry, = b andu’ is strictly increasing oifa, b]. But
this cannot be in light of the last inequality in (3.38) and it must besth@b < M. Since an
entire similar argument (using this time the firstinequality in (3.38)) givesitliay > — M,
we obtain thatu’(a)| <M.

Next, we claim thatu’(r)| < M for everyt € [a, b]. Indeed, let us now set

ty i=max{t € [a,b]] |u'(s)|<M fors € [a,t]},

which implies that,; > a. The proof of the claim consists then in showing that= b.
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Suppose thaty, < b, then|u'(tpy)| = M. If u/(tp;) = M, from the definition ofz,,, it
follows thatu'(r) > M for t nearr,; and greater thany,, which implies (as above) that
is strictly increasing ority,, b]. In particular it holds thaM < u’(b) and thus from (3.38),
we find that

M </ ()< (E)),

But this implies that ;  (y, b] and hence that’ must be strictly increasing ad;, b],
which contradicts the last inequality in (3.38). Similarlyyifty;) = —M (using the other
part of the inequality (3.38)) we obtain a contradiction. Thus, we must have b and
lu'(t)| < M for everyt € [a, b],i.e.|u|co <M.

Next, sinceu(a) = 0 implies ||u]loo < (b — a) ||t |00, We see thafjulleo < (b — a)M.
Accordingly, if R > (b —a+1)M thenfor/ € (0, 1) the family of boundary value problems
(3.35) has no solution on the boundary of the B0, R) c C1[a, b], and condition (i) of
Lemma 2.1 is satisfied.

Finally, since the assumed condition of the theorem implies

pf(t,pt —a),p)>0 forall|p|>M andallz € [a, b],

we have that conditions (ii) and (iii) of Lemma 2.1 can be shown to hold by an argument
totally similar to the one used in proof of Theorem 3.1. This completes the proof of the
theorem. O

The following example is an immediate and simple corollary to this theorem.

Example 3.7.Letp>1,g>1,andfori=1,...,m — 2, lete; >0, ¢&; € (0, 1), be given
numbers such th{;”:’f o =1land0< ¢ <---<¢,_o<1.
Let us consider the problem

(¢, =gt u)(¢,(u) +1). 1€ (a.b)
m—2
u@) =0, ¢, ®) = 0w (&) (3.40)

i=1

whereg : R — R is a continuous function such thag (¢, v) > 0, for all |[v| > M > 0 and
forall ¢ € [a, b], and wheréM is a constant. Then problem (3.40) has at least one solution
u € Ca, bl.

4. Some results for the non-resonance case

In this section we will consider problem (1.1) in the non-resonance case.

Problem (1.1) is in the non-resonance case if problem (1.2) has only the trivial solution.
This holds if and only if the coefficients satisfij”:_l2 o; # 1. We assume henceforth
the o;'s satisfy this condition and that the homeomorphignin problem (1.1) satisfies
condition (3.1). Notice that we do not assume a sign condition on;theAlso, as before,
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we set
a(a, b) = lim sup -7 4.1)
7—>00 d)(Z)
In addition, we shall assume that for anx@& < 1 we have
(o) =lim supM 1. (4.2)
oo (o 07H(2)
Let us set
. Zm 2 + 1 4 Zm—z - m_2 4
if 0
a*—[mmll_,_zmz D S a t2ise # (4.3)

wheres™ = max(«, 0) ande~ = max(—«, 0). Note that G ¢* < 1. The main result of this
section is the following theorem.

Theorem 4.1. Let f : [a,b] x R x R — R be a function satisfying Caraébdory’s
conditions such that the following condition haltisere exist non-negative functiogg(r),
do(1), andr(¢) in LY(a, b) such that

Lf(t, u, v)| <da(®)p(lu)) + d2(t) Pp(|v]) + r (1),
fora.e.t € [a, b] and allu, v € R. Supposgfurther,
aa, b)ldill 1 py + N2l 1ga,p) <1 — (0™, (4.4)

whereo is as defined irf4.1),¢* is as defined iif4.3)anda is as defined if4.2).
Then the boundary value problefi.1) has at least one solution € C*[a, b].

We need an a priori estimate in the proof of Theorem 4.1 and present this in the following
lemma.
Lemma 4.2. Letu € C1[a, b], be such thatp(u' (1)) is absolutely continuous and satisfies

m—2

00 (b)) = > @00 (&) (4.5)

i=1

If Y 2 o # 0, then for every > 0 with &(c*) + ¢ < 1, there is a constan€; > 0 such
that

P(llu'lloo) < 1)) | 1.5 + Ce- (4.6)

1
1 - ((c*) + &)
If now Y72 o = 0, thenu’ (170) = O for someyq € [a, b], and

U lloo) S NP Il L1a.5)- (4.7)
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Proof. Ifitis the case thai'(¢) is constant for € [a, b], then from (4.5) and the fact that
Z;”;lz o; # 1, itis immediate that’ = 0. Clearly in this case both (4.6) and (4.7) are
satisfied.

Suppose next th@f”:—lz ocl+ # 0 which impliese* # 0. Then from (4.5) we see that

m—2 m—2
0/ (b)) + Y o 0/ (€)=Y o570’ (&),
i=1 i=1

and thus from the definition of* and the intermediate value property for continuous
functions, we find that there exisg, 1, in [a, b] such that

0’ (1)) = ™0’ (11))
so that
' () = 071" 0 (n)))
and
D' (1) = (§ 0 071 (a* 0w (1))

We, next, use the equation
t
¢’ (1)) = P’ (111)) +/ (P (s)ds
n

t
= (¢ o 07N (™0 (1)) + [ (p@")) (s)ds,

n
to get
Pl lls0) < (0 071 ("0l | 0)) + (A @) [ 110.1)- (4.8)

Now, for ¢* as given in (4.3), let > 0 be such thak(c*) + ¢ <1. It follows from the
definition ofa(c™) that there exists a constafit such that foz € R we have

(¢ 0 071 (a%12]) < (@(a™) + &) (P 0 07 H)(Iz]) + C.
We thus get from (4.8) that
Bl lls0) < @™ + &) (0 07O o)) + I PU)) [l L1q.p) + Co.

Hence, we obtain the estimate

Pllu'lloo) < (@) I L1¢a,p) + Ce

(11— (@(o*) +¢)
where we have sef;/(1 — (3(c*) + &) = C;. If Y777 o = 0, then from (4.5)

i=

m—2

0’ (b)) + Y o7 0 (&) =0,

i=1
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which implies the existence af, € [a, b] such thai (1) = 0. Hence we now have

t
dW' ()= | (P (s)ds,

Mo

from which it is immediate to see that (4.7) holds. This completes the proof of the
lemma. O

Proof of Theorem 4.1. We consider the family of boundary value problems:

(pW")) =Aft,u,u’), te(a,b), Lel01],

m—2

w(@) =0, 0 (b)) = «0'(&)). (4.9)
i=1
Also, we define an operatdF* : Clla, b] x [0, 1] — Cl[a, b] by setting for(u, 1) €
Cla, b] x [0, 1]

t s
Y (u, () = / ¢t [(b(u’(a)) +i/ f(r,u(r),u’(r))dr] ds

m—2
+(—a) <0<u’(b)> -y aie(u’(é,-») . (4.10)

i=1

Following standard arguments, it can be proved Wfais a completely continuous operator.
Furthermore reasoning in the same way as in the proof of Lemma 2.1 it can be proved that
u is a solution to the family of boundary value problems (4.9) if and only i a fixed

point for the operatol?*(-, 1), i.e.,u satisfies

u=Y*"(u,l). (4.11)

We will show next that there is a constaRt> 0 independent of. € [0, 1] such that ifu
satisfies (4.11) for somee [0, 1] then|lu|c1f, 5 < R. We note first that if: satisfies

u=¥*"u,O0), (4.12)

then it must be that =0. Indeed from the definition d#* or from problem (4.9), it follows
thatu(r) = p(t —a) with p=u'(a) =u'(¢), for allt € [a, b]. Then from the second boundary
condition in (4.9), and taking into account tlﬁl;”z_l2 o; # 1, we find thatp = 0, implying
thatu(r) =0 forallr € [a, b].

In the rest of the argument we will assume that (0, 1]. Also we will suppose that
Z;"z_lz ocjr # 0 and hence & ¢* since the proof for the cage = 0 is simpler.

Let us choose > 0 such thafi(¢*) + ¢ <1 and

(@, b) +o)lldill 1ap) + 1d2ll L1005y <1 — (B(0™) + o), (4.13)

which can be done in view of the assumption (4.4). It then follows from the definition of
a(a, b) that there exist a positive constafit such that for alt € R, we have

(P((b — a)lz]) < (a(a, b) + &) (p(|z]) + C2. (4.14)
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Letu be a solution of boundary value problems (4.9) for séree[0, 1]. Thenu € C1[a, b]
with ¢ (u’(r)) absolutely continuous o, b] and satisfies

m—2

0/ (b)) =Y a0 ().

i=1

Hence from Lemma 4.2, we have the estimate

P(llu'lloo) < 1@ 10y + CZ, (4.15)

(1= (@(o*) +2)

whereC? is a positive constant. Now from our assumptions on the funétitwe definitions
of a(a, b), &(c*), the choice of, C2, C? and (4.15), we find that

D@ | 10 ,p) < DUlttlloo) ldall L1ga,py + U N 2] L1apy + 171l 10 p)
<GB — )l o) dall L1apy + U o) 121l 10,1
+ 17l L.
<[(@(a, b) + &)1l L1apy + Id2ll 105 1PN llo0)
+ 17l L2y + CRHIdLl L1ap)
L (4@ D) + )il iaapy + Id2liian)
(1— (3(c*) + &)
X ||(¢(M/))/||L1(a,b) + G, (4.16)

where
Ce=rllzigp + CL:-L”dl”Ll(a,b) + C2[(a, b) + lldallrapy + 1421l L1a,p)]-

It, now, follows from (4.13) that there exists a const&gt> 0, independent of € (0, 1]
such that ifu is a solution of the family of boundary value problems (4.10) then

l (¢(“/))/”L1(a,b)) < Ro.

This, combined with (4.15), and the fact that:) = 0 implies thatl|u|| oo < (b — a) ||t/ ]| 0o,
yield that there exist a constaRt> 0 such that

”u”Cl[a,b] < R.

This in turn implies that dgg,(/ — P*(-, 1), B(0, R), 0) is well defined for alll € [0, 1],
whereB(0, R) is the ball with center 0 and radif&sin C1[a, b].

In what follows we will use the notation of Section 2. Th¥swill denote the one-
dimensional subspace 6f}[a, b] given by X = {iplp € R}, ip(®) =(t —a)p andi :
R — X is the isomorphism fronR onto X given byi(p) =i,. Let us define the function
G:R— Rby

m—2
G(p) = (Z % — 1) 0(p). (4.17)
i=1
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and note that fov € X, v(¢) = p(t — a) for somep € R. Now, since
(I = ¥*(-,0)(v) =ig(p),
it is easy to see that
G=i"to(—=V*,0)|xoi,
and hence, by the homotopy invariance property of Leray—Schauder degree, it follows that

deqs(/ — P*(-, 1), B(O, R), 0) =deq g(I — P*(-,0), B(O, R), 0)
degs(I — P*(-,0)|x, X N B(0, R), 0) =deg (G, (—R, R), 0).

Thus taking into account (4.17), we obtain the interesting formulas for the degree:

if Y2y > 1,

1
i=1 % .

Hence ifZ;”z_lzoci # 1 we have that dgeg(/ — ¥*(-, 1), B(0, R), 0) # 0 and there is a
u € B(0, R) that satisfies
u= .P*(s 1)1

equivalentlyu is a solution to the boundary value problem (4.1). This completes the proof
of the theorem. [J

We have the following simple application of this theorem.

Example 4.3.Letp>1,g>1and € (0,1),i=1,..., m — 2, be given numbers such
thatand O< ¢y <& <---<&,,_p < 1. Lety : R — R be given by

Y(s) = Is|”~2s log(L + Is)).

Theny is an odd increasing homeomorphisnmRobntoR, with (0) = 0. If
2A + g B+ (6*)(17*1)/([171) <1,

then the boundary value problem

W) =AY w) + B V3w + (1), te(0,1)

m—2

w0 =0, ¢,W@D)=Y" 2%¢,w &), (4.18)

i=1

whereY""?a; # 1, has a solutiom € C1[0, 1]. Recall thatp,, (s) = |s]97%s.

1=
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