
A compact space decomposition for effective metric indexing q

Edgar Chávez a,*, Gonzalo Navarro b

a Escuela de Ciencias Fı́sico-Matemáticas, Universidad Michoacana, Edificio ‘‘B’’, Ciudad Universitaria,

Morelia, Michoacan 58000, Mexico
b Centro de Investigacin de la Web, Depto. de Ciencias de la Computación, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile
Abstract

The metric space model abstracts many proximity search problems, from nearest-neighbor classifiers to textual and

multimedia information retrieval. In this context, an index is a data structure that speeds up proximity queries. How-

ever, indexes lose their efficiency as the intrinsic data dimensionality increases. In this paper we present a simple index

called list of clusters (LC), which is based on a compact partitioning of the data set. The LC is shown to require little

space, to be suitable both for main and secondary memory implementations, and most importantly, to be very resistant

to the intrinsic dimensionality of the data set. In this aspect our structure is unbeaten. We finish with a discussion of the

role of unbalancing in metric space searching, and how it permits trading memory space for construction time.
1. Introduction

The problem of proximity searching has re-

ceived much attention in recent times, due to an
q This project has been partially supported by CYTED

VII.19 RIBIDI Project (both authors), CONACyT grant

36911-A (first author) and Millennium Nucleus Center for

Web Research, Grant P01-029-F, Mideplan, Chile (second

author). A preliminary version of this paper appeared in

(Chávez and Navarro, 2000).
* Corresponding author. Tel.: +524433477279; fax:

+524433167257.

E-mail addresses: elchavez@fismat.umich.mx (E. Chávez),

gnavarro@dcc.uchile.cl (G. Navarro).
increasing interest in manipulating and retrieving

the more and more common multimedia data.
Multimedia data have to be classified, forecasted,

filtered, organized, and so on. Their manipulation

poses new challenges to classifiers and function

approximators. The well-known k-nearest neigh-

bor (knn) classifier is a favorite candidate for this

task for being simple enough and well understood.

One of the main obstacles, however, of using this

classifier for massive data classification is its linear
complexity to find a set of k neighbors for a given

query.

The metric space model is gaining momentum as

a paradigm to speed up proximity queries. Metric

mailto:elchavez@fismat.umich.mx
mailto:gnavarro@dcc.uchile.cl

E. Chávez, G. Navarro
databases permit storing objects from ametric space

and performing ‘‘proximity queries’’ over them effi-

ciently, by building metric indexes that reduce the

number of distance evaluations needed (Chávez

et al., 2001; Hjaltason and Samet, 2003). By using
a metric index, a knn classifier can afford massive

classification tasks at reasonable time costs.

Proximity searching has applications in a vast

number of fields, apart from classification tasks

and multimedia data management. Some examples

are image quantization and compression (where

only some vectors can be represented and those that

cannot must be coded as their closest representable
point); text retrieval (where we look for words in a

text database allowing a small number of errors),

information retrieval (where we look for docu-

ments which are similar to a given query or docu-

ment); computational biology (where we want to

find a DNA or protein sequence in a database

allowing some errors due to typical variations);

function prediction (where we want to search the
most similar behavior of a function in the past so

as to predict its probable future behavior); etc.

The most challenging problem in metric space

searching is to deal with the so-called ‘‘high dimen-

sional spaces’’ (see Section 2), where all the ele-

ments are more or less at the same distance from

each other. Many metric spaces of interest in

applications are high dimensional, and most in-
dexes can do little on them.

In this paper we present the list of clusters (LC),

a metric index based on compact partitions (see

Section 3). We present analytical and experimental

results to evaluate the index and understand its

behavior. We show that our index is especially well

suited to search high dimensional spaces, where it

outperforms by far several prominent alternative
metric indexes. We also show how our index could

work efficiently in secondary memory and how

could it be updated upon insertions and deletions

in the database.

The key to the success of the LC in high dimen-

sions is that it trades construction time for query

time. Alternative structures attempt to cope with

high dimensions by trading memory space for
query time. Memory space is a much higher price

than construction time, which is paid only once

or sparsely. In practice, memory space puts a
tighter limit than those derived from construction

time.

We finish with a discussion of the role of unbal-

ancing in metric space searching. In exact search-

ing, balanced data structures are always best. We
show how this ceases to be true in metric spaces

as the intrinsic dimension grows, and how our

LC can be seen as an extremely unbalanced tree,

thus explaining its better fitting to high dimen-

sional spaces when compared, in particular,

against the many existing indexes based on bal-

anced trees. Moreover, unbalancing gives the

conceptual framework to understand how con-
struction time can be used instead of memory

space to face high dimensions.
2. Basic concepts

2.1. Metric spaces

Proximity queries extend exact searching in the

sense that they retrieve objects from a database

that are close to a given query object. The query

object is not necessarily a database element. The

concept can be formalized using the metric space

model, where a distance function d(x,y) is defined

over pairs of elements in a set X. The distance

function has metric properties, that is, it satisfies
d(x,y) P 0 (positiveness), d(x,y) = d(y,x) (sym-

metry), d(x,y) = 0 iff x = y (strict positiveness),

and d(x,y) 6 d(x,z) + d(z,y) (triangle inequality).

The database is a set U � X, and we define the

query element as q, an arbitrary element of X. A

proximity query involves additional information,

besides q, and can be of two basic types: Metric

Range queries, ðq; rÞd ¼ fu 2 U : dðq; uÞ 6 rg; and
Nearest Neighbor queries, nnkðqÞd ¼ fui 2U : 8v2
U; dðq; uiÞ 6 dðq; vÞ and j{ui}j = k}.

Given a database of j U j¼ n objects, all those

queries can be trivially answered by performing n

distance evaluations. Since the distance function

is usually expensive to compute, the goal is to

structure the database (that is, to build an index)

so that we perform few distance evaluations at
query time. Essentially, the index maintains infor-

mation on distances between database elements

that permits, using the metric properties, to prove

E. Chávez, G. Navarro
later that some database elements are far enough

from the query, without actually measuring each

distance.

The idea is that, given the database U, we first

build an index on it so that we can answer many
queries later. The database can be static (never

changing) or dynamic (incorporating or losing ele-

ments along time). In the latter case, the index

must support those database updates, and it is

expected that the construction and update cost is

amortized by sufficient queries between updates.

Many databases are essentially static and the index

construction cost is less relevant. On the other
hand, the memory space required by the index is

relevant in all cases, as it has to be maintained

all the time.

We focus on range queries in this paper, as the

others can be systematically built over these in an

optimal way (Hjaltason and Samet, 2000, 2003;

Chávez et al., 2001). The set of points of X that

are at distance at most r to q is called the ‘‘query
ball’’, so (q, r)d is the intersection of the query ball

and U. We remark that the radius r (as well as the

value k in nearest neighbor queries) is given as a

part of the query and depends on the application.

For example, it may be estimated so that a certain

number of elements or fraction of the database is

retrieved, or such that farther elements are known

to be irrelevant.
The indexing techniques discard elements using

the metric properties. There are applications, how-

ever, where some metric properties do not hold. If

the distance is not strictly positive, the space is

called a pseudo-metric space. Most techniques for

metric spaces work for pseudo-metric spaces as

well, by simply identifying all the objects at dis-

tance zero as a single object. In some cases we
may have a quasi-metric, where distance is not

symmetric. There exist techniques to derive a

new, symmetric, distance function from an asym-

metric one, such as d 0(x,y) = d(x,y) + d(y,x).

However, specific knowledge of the domain is

necessary to properly adapt a search radius to

the new space. Finally, sometimes the triangle

inequality holds only in relaxed form, such as
d(x,y) 6 ad(x,z) + bd(z,y) + d. After some scaling,

those spaces can be searched using the same algo-

rithms designed for metric spaces. Yet, if the trian-
gle inequality does not hold at all, and in absence

of further properties of the space, there are no

known methods to avoid a linear database scan

to solve a query.

On the other hand, there are some well-studied
particular cases of metric space searching. The best

known is the k-dimensional coordinate space Rk,

especially using the Euclidean distance. There are

effective methods for this case, such as kd-trees,

R-trees, X-trees and many others (Gaede and

Günther, 1998). However, for more than roughly

20 dimensions those structures cease to work well

(Böhm et al., 2001). We focus in this paper in gen-
eral metric spaces, although the solutions are well

suited also for k-dimensional spaces. An immedi-

ate advantage of regarding a k-dimensional space

as a metric space is that, if the data embedded in

the former space have lower dimension, then the

real, intrinsic, dimension of the data shows up in

the latter space, independently of k.

2.2. Dimensionality

It is interesting to notice that the concept of

‘‘dimensionality’’ can be translated to metric

spaces as well: The typical feature in high dimen-

sional spaces is that the probability distribution

of distances among elements has a very concen-

trated histogram (with larger mean as the dimen-
sion grows), hampering the work of any

proximity search algorithm (Böhm et al., 2001;

Brin, 1995; Chávez and Marroquı́n, 1997). In the

extreme case we have a space where d(x,x) = 0

and "y 5 x,d(x,y) = 1, where it is impossible to

avoid a single distance evaluation at search time.

We say that a general metric space is high dimen-

sional when its histogram of distances is concen-
trated. We use in this paper a quantitative

measure of the intrinsic dimensionality proposed

in (Chávez et al., 2001).

Definition 1. The intrinsic dimensionality of a
metric space is defined as q ¼ l2

2r2, where l and r2

are the mean and variance of its histogram of

distances.

Under this definition, a random vector space

with k coordinates has intrinsic dimension H(k),

with a constant close to 1, so the definition extends

E. Chávez, G. Navarro
naturally that of vector spaces. Note this measure

gives only a rough idea of how difficult it is to

search a given dataset from a metric space.

Many metric space of interest are indeed high-

dimensional. Searching them is so difficult that
the term ‘‘curse of dimensionality’’ has been

coined to refer to this fact. Finding efficient solu-

tions to high-dimensional metric space searching

is currently the most important open problem in

metric space searching.
3. Related work

According to Chávez et al. (2001) there are two

main approaches for metric index design (see also

Hjaltason and Samet (2003) for a different

characterization):

• Pivot-based algorithms, which select a number

of ‘‘pivots’’ from the database and classify all
the other elements according to their distances

to them. The distances between elements and

pivots and between the query q and the pivots

are used together with the triangle inequality

to filter out elements of the database without

actually measuring their distance to q. These

algorithms generally improve as more pivots

are added, although the space requirements of
the indexes increase as well.

• Compact partitioning algorithms, which divide

the set into spatial zones as compact as possible,

and are able to discard complete zones by per-

forming few distance evaluations (e.g., between

the query q and a centroid of the zone). The

partition into zones can be hierarchical, but

the indexes use a fixed amount of memory and
do not improve by having more space.

As shown in (Chávez et al., 2001), compact par-

titioning algorithms deal better with high dimen-

sional metric spaces. Despite that pivot-based

algorithms can improve by using more memory,

they need more and more memory to beat compact

partitioning algorithms as the dimension grows.
For intrinsic dimension around 20 they already

need impractical amounts of extra space. There-

fore, compact partitioning algorithms seem a
promising alternative to index high dimensional

metric spaces.

A way to see the difference between pivot-based

and compact partitioning algorithms is that the

former define ‘‘rings’’ (elements at the same dis-
tance) around pivots, and the intersections of rings

define the zones in which the space is partitioned.

To maintain those zones spatially compact as the

dimension grows, more and more rings have to

be intersected, that is, more pivots are necessary.

The alternative technique uses compact partitions

by construction, and takes no advantage from

additional memory. It is easier to prove that a
compact region is far enough from the query than

to do the same for a sparse region.

3.1. Pivot-based algorithms

Burkhard–Keller trees (bk-trees) (Burkhard and

Keller, 1973) are designed for discrete distance

functions: they select a pivot element p as the root
of the tree, and put at child i the elements which

are at distance i to the pivot. Each subtree is recur-

sively built with the same technique until there are

b elements or less, in which case the elements are

simply stored in a ‘‘bucket’’ at the tree leaf. A

range query q with tolerance radius r is searched

by measuring d(p,q), reporting p if appropriate,

and entering only into subtrees numbered
d(p,q) � r to d(p,q) + r. The rest need not be

considered because of the the triangle inequality.

The buckets reached are exhaustively compared

against q.

Fixed queries trees (fq-trees) (Baeza-Yates

et al., 1994) are an evolution where the same pivot

is used for all the nodes of the same level of the

tree. In this case the pivot does not need to belong
to the subtree. Many comparisons are saved in the

backtracking process because only one different

pivot per level exists. However, the tree is taller.

A variant called fixed height fq-tree (fhq-tree) is

also proposed where all the leaves are at the same

depth h, regardless of the bucket size.

Vantage point trees (vp-trees) (Uhlmann, 1991;

Yianilos, 1993) are designed for continuous dis-
tance functions. The root has two equal-size sub-

trees that divide the elements in closer to and

farther from the root. This can be extended to

E. Chávez, G. Navarro
m-ary trees (mvp-trees) (Brin, 1995; Bozkaya and

Ozsoyoglu, 1997).

Finally, algorithms like AESA (Vidal, 1986),

LAESA (Micó et al., 1994, 1996) and its variants

(Nene and Nayar, 1997; Chávez et al., 1999) and
Fixed Queries Arrays (fq-arrays (Chávez et al.,

2001)) are based in a common idea: k pivots are se-

lected and each object is mapped to k coordinates

which are its distances to the pivots. Later, the

query q is also mapped and if it differs from an

object in more than r along some coordinate then

the element is filtered out by the triangle inequal-

ity. That is, if for some pivot pi and some element
v of the set it holds jd(q,pi) � d(v,pi)j > r, then we

know that d(q,v) > r without need to evaluate

d(v,q). The elements that cannot be filtered out

using this rule are directly compared.

An interesting feature of most of these algo-

rithms is that they can reduce the number of

distance evaluations by increasing the number

of pivots. Define Dkðx; yÞ ¼ max16j6k j dðx; pjÞ�
dðy; pjÞ j. Using the pivots p1, . . . ,pk is equivalent

to discarding elements u such that Dk(q,u) > r.

As more pivots are added we need to perform

more distance evaluations (exactly k) to compute

Dk(q, *), but on the other hand Dk(q, *) increases

its value and hence it has a higher chance of filter-

ing out more elements. It follows that there exists

an optimum k. This optimum, however, cannot
be normally reached because it is too high in terms

of space requirements: kn distances have to be pre-

computed and stored in order to use k pivots.

Hence, in general these methods use as many

pivots as they can, and they are normally well

below their optimum.

3.2. Compact partitioning algorithms

Generalized hyperplane trees (gh-trees) (Uhl-

mann, 1991) use two ‘‘centers’’ for each tree node

and divide the space according to which of the two

centers is closer to each object. At search time the

query enters into the subtrees whose zone of influ-

ence has a nonempty intersection with the query

ball.
Bisector trees (Kalantari and McDonald, 1983;

Nolteimer et al., 1992) are similar but the zones are

not defined according to which is the closest center
but using the concept of ‘‘covering radius’’. The

covering radius of a zone is the minimum radius

of a sphere that is necessary to contain all the

points in the zone, and the elements are inserted

in the subtrees trying to minimize covering radii.
This is generalized to Voronoi trees (v-trees) in

(Dehne and Nolteimer, 1987) to reduce more the

covering radii.

Gh-trees are generalized to an m-ary partition

in the geometric near-neighbor access tree (gna-

tree) (Brin, 1995), which makes a Voronoi-like

partition of the space (Aurenhammer, 1991)

among the m centers at each node of the tree.
However, the gna-tree uses also the covering ra-

dius criterion to prune the search even more.

The M-tree (Ciaccia et al., 1997) also takes m

elements and divides the space among its zones

of influence, but it uses only the covering radius

information to classify and search the elements.

The M-tree is able of dynamic insertion and dele-

tion of points and is optimized for secondary
memory.

The D-index (Dohnal et al., 2003) data struc-

ture is also designed for secondary memory. It par-

titions the data using the concept of ‘‘separable

partitions’’, where a minimum distance is guaran-

teed among objects of different partitions. They

combine their idea with pivots to get the best of

each approach.
Spatial approximation trees (sa-trees) (Navarro,

2002) are based on approaching the query spa-

tially: the search starts at the root of the tree and

moves to neighbors that are closer to the query.

The ideal data structure to obtain this is a Voronoi

graph, which in the paper is proven impossible to

build on a general metric space. Therefore the

sa-tree is a simplification which forces some back-
tracking in the tree. Dynamic and secondary mem-

ory improvements have been recently added.
4. A new compact partitioning technique

We propose now a simple but effective tech-

nique to index a metric space. We start by choos-
ing a ‘‘center’’ c 2 U and a radius rc whose value

is discussed later (do not confuse with the search

radius r, whose possible values are unknown at

E. Chávez, G. Navarro
indexing time). We define the center ball of (c, rc)

(or just c if no ambiguity is possible) as the subset

of elements of X which are at distance at most rc
from c. Now we define

IU;c;rc ¼ fu 2 U� fcg; dðc; uÞ 6 rcg

as the bucket of ‘‘internal’’ elements, which lie in-

side center ball of c, and

EU;c;rc ¼ fu 2 U; dðc; uÞ > rcg
as the rest of the elements (the ‘‘external’’ ones).

Now the process is repeated recursively inside E.

The construction procedure returns a list of triples

(ci, ri, Ii) (center, radius,bucket) and it is shown in

Fig. 1.

The data structure that is built looks rather
symmetric, but it is not. The first center chosen

has preference over subsequent centers in case of

overlapping balls, as illustrated on the bottom

of Fig. 1. All the elements that lie inside the ball

of the first center (c1 in the figure) are stored in its

I bucket, despite that they may also lie inside the

I buckets of subsequent centers (c2 and c3 in the

figure). The figure also shows how the data struc-
ture can be seen as a list.

The search algorithm is depicted in Fig. 2. The

idea is that if the first center chosen is c and its ra-

dius is rc, then the search for a query (q, r) starts by
Fig. 1. The construction algorithm. The operator ‘‘:’’ is the list cons

iterative. On the bottom, the influence zones of three centers taken in t

structure.
measuring d(c,q) and adding c to the set of results

if appropriate. Then, we search exhaustively the

bucket I only if the query ball has some intersec-

tion with the center ball of c. After considering

the first ball, we go on with E. However, given
the asymmetry of the data structure, we can also

prune the search in the other way: If the query ball

is totally contained in the center ball of c, then we

do not consider E, as by construction we know

that all the elements that are inside the query ball

have been inserted into I.

This is an essential feature absent in other com-

pact partitioning algorithms, where the search
needs to enter into all the partitions which are

intersected by the query ball. With our data

structure, the consideration of relevant partitions

can be preempted as soon as the query ball is

totally contained in a partition. Fig. 2 (right)

illustrates.
5. Building and updating the data structure

5.1. Center and radius selection

We have not discussed until now how centers c

and radii rc are chosen when the structure is built.

This affects only performance, not correctness. We
tructor. It is not hard to remove the tail recursion to make it

his order: c1, c2, c3. We also show a list arrangement for the data

Fig. 2. The search algorithm. It is not hard to remove the tail recursion to make it iterative. On the right we illustrate three cases of

query ball versus center ball. For q1 we need to consider the current bucket and the rest of centers. For q2 we can prune the search

inside the rest of the partitions. For q3 we can avoid considering the current bucket.

E. Chávez, G. Navarro
show several alternatives here and test them in Sec-

tion 6.

Center selection. We can apply different heuris-

tics to select the ith center.

(p1) At random.

(p2) The element closest to ci�1 in the remaining
set.

(p3) The element farthest from ci�1 in the remain-

ing set.

(p4) The element minimizing the sum of distances

to previous centers.

(p5) The element maximizing the sum of distances

to previous centers.

The first alternative is the simplest but not nec-

essarily the best one. The second one aims at build-

ing a bucket ordering that moves slowly across the

metric space. The third one aims at minimizing the

overlap between partitions. (p4) and (p5) are more

global versions of (p2) and (p3), respectively.

Moreover, (p2) and (p4) aim at finding a next cen-

ter close to the current one, as in sa-trees, while
(p3) and (p5) try that the volumes of different par-

titions do not overlap, as gna-trees.

Radius selection. Two simple alternatives are:

(1) Partitions of Fixed Radius: The simplest alter-

native seems to be selecting a fixed radius r*

for all the balls in the list. This implies that,

as we advance in the list, they get emptier.
(2) Partitions of Fixed Size: Another choice is to

try to have a fixed number m* of elements

inside each center ball, and to define the radii

accordingly. This also fixes the length of the
list to dn/(m* + 1)e. As we advance in the list,

the balls will be spatially larger.
5.2. Construction

Our data structure can be built by brute force

in O(n2/p*) time for fixed radius partitions and

O(n2/m*) time for fixed size partitions, where p*

is the average number of elements in each bucket.
Although in principle this cost is independent of

the dimension, it gets higher in practice as the

dimension grows because m* or p* have to be

reduced to ensure low query times on higher

dimensions.

This cost, however, can be reduced by noting

that I is defined as the result of a range query

(ci, r*) for fixed radius partitions and of a nearest
neighbor nnm� ðciÞ query for fixed size partitions.

Therefore, another (cheaper to build) data struc-

ture built on the metric space could be used as

an auxiliary data structure to build ours. This

matches especially well with the center selection

heuristics (p1) and (p2), while the others may need

extra work. It is also worthwhile to note that this

auxiliary data structure should be able of efficient
deletion of the elements that are inserted into each

new partition, in order to answer queries on the

remaining set.

5.3. Updating

Let us consider the process of inserting a new

element into the fixed radius data structure. The
insertion can be done by traversing the list of par-

titions until the element falls inside some center

E. Chávez, G. Navarro
ball, or otherwise creating a new partition for it at

the end of the list.

Deletion can be trivially done except if a center

is deleted, in which case a first choice is to keep

it anyway as a fake element. A safer choice is to
remove the whole bucket from the list and reinsert

all the elements (note that the insertion of those ele-

ments can be done just in the tail of the list, as we

already know that they do not lie inside any previ-

ous center ball).

If r* has been correctly computed in the begin-

ning, it should not change as we insert more ele-

ments. However, a massive insertion of elements
may affect the optimality of the r* value chosen.

In those cases a periodic rebuild of the whole data

structure may be benefical for the performance.

These update operations are a bit more complex

if we have a fixed bucket size. When inserting an

element, as soon as we find its appropriate ball i,

the bucket will overflow. Hence we take the ele-

ment of the bucket which is farthest from the cen-
ter ci, remove it from the bucket (modifying ri
accordingly), and continue the insertion process

in the tail of the list with the new element. Hence

we are guaranteed to traverse the whole list of cen-

ters for every insertion. Deletion presents a more

difficult problem, since the bucket underflows

and we have to find the next nearest neighbor of

ci in the rest of the elements. This can be done
using the same data structure, but it is costly any-

way. Two choices are lazy deletion (i.e., leave the

hole hoping that a new insertion will fit the place)

and setting a range of values for m* instead of a

fixed value. Deletion of a center can be handled

as for the fixed radius data structure.

5.4. Secondary memory

Our data structure has the advantage of a

rather predictable access pattern. The partition

centers are compared always in the same order.

Sometimes we need to retrieve a whole bucket,

sometimes not. Finally, we can stop the search at

any moment in the list of centers.

A simple linear arrangement of the centers
yields an efficient disk layout for this search algo-

rithm, with minimal seek time. The buckets should

be similarly arranged in a separate list. Fixed size
buckets make this extremely simple, while fixed

radius partitions need an expansion mechanism

to accommodate their varying size. There are well

known mechanisms of that type, and the histo-

gram can be used as a tool to upper bound over-
flow probabilities.
6. Experimental results

We present now experiments that compare dif-

ferent choices of our data structure, as well as

alternative structures.
Our metric space is the unitary real cube in k

dimensions ([0,1)k) under the Euclidean distance.

We generate a fixed number n of random points

and search random queries q with a radius r such

that 0.01–0.1% of the set of points is retrieved.

We show the results as a function of the dimension

k of the space. Despite that this is a restricted case

of vector space, we can in this case effectively con-
trol the dimension, which is difficult to do in real-

world examples. We make the experiments with

n = 100,000 elements.

Our first experiment tries to determine the best

choice among (p1)–(p5). Fig. 3 shows the results

using two different choices for m* (12 and 100)

and r* (1/4 and 1/8 of the maximum distance).

For fixed bucket size (p3) and (p5) are better
choices, which favors heuristics that try to mini-

mize the intersection among partitions (Yianilos,

1993; Brin, 1995). The difference among (p3) and

(p5) is not statistically significant when using a

large bucket size. With a smaller bucket size (12)

the (p5) heuristic is clearly better and therefore

we use (p5) from now on, as it is a more elaborated

version of (p3) that should work in more complex
scenarios (such as clustered data).

For balls of fixed radius the results are quite dif-

ferent. For a large radius r* the difference between

the five heuristics is not statistically significant.

For a smaller radius r* the best heuristic is (p4).

Observe also that the results for the fixed radius

alternative are quite promising, though the tuning

of the algorithm is far more complicated than for
the fixed bucket strategy. Fig. 3 (bottom) shows

that a relatively small change in the fixed radius

yields a very large difference in performance.

0

10000

20000

30000

40000

50000

60000

70000

80000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 Dimension. Radius captures 0.01% of N

 Bucket size 12

P1
P2
P3
P4
P5

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 Dimensions. Radius captures 0.01% of N

 Bucket size 100

P1
P2
P3
P4
P5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 Dimension. Radius captures 0.05% of N

 Radius = [1/4 MaxDist]

P1
P2
P3
P4
P5

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 Dimension. Radius captures 0.05% of N

 Radius = [1/8 MaxDist]

P1
P2
P3
P4
P5

Fig. 3. Number of distance evaluations for center selection techniques (p1)–(p5), as the dimension grows. On the top row, fixed bucket

sizes m* = 12 and m* = 100, capturing 0.01% of the database. On the bottom row, fixed radii r* = 1/4 and r* = 1/8 of the maximum

distance, capturing 0.05% of the database.

E. Chávez, G. Navarro
Let us from now on focus in partitions of fixed
size, and consider the optimal m* parameter. Fig. 4

shows that there exist optimal bucket sizes. These

depend on the search radius and the intrinsic

dimension of the dataset. In the left of the figure,

we have used a smaller search radius, showing

how the optimum shifts to the right as the search

radius increases.

We now compare our data structure against
some existing techniques. Observe in Fig. 5 that

three pivot-based algorithms (fhq-trees, fq-arrays

and LAESA) have needed at least 64 times more

memory than the other compact partitioning algo-

rithms (gna-trees and sa-trees) in order to beat

them in medium dimension. This experimental

evidence favors the use of compact partitioning

algorithms instead of pivot-based ones in high
dimensions. In particular, we had not enough
memory in our machine to give them enough

pivots so that they beat our LC in 20 dimensions,

and this would be even more difficult for them in

higher dimensions or larger search radii. Our

index, instead, does not need more memory to cope

with higher dimensions. Moreover, its complexity

grows much slower as the dimension grows. In

particular, the combination we have chosen is by
far the best in 20 dimensions, even if we allow using

64 times more memory to competing pivot based

algorithms.

Finally, in Fig. 6 we contrast the construction

cost versus the space usage. We note that LC uses

a constant amount of space per bucket (all the rest

is solved by a suitable arrangement of elements),

while the best representative of pivots uses an

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 50 100 150 200 250 300 350 400

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 Bucket size. Radius captures 0.01% of N

 P5 Heuristic

DIM 4
DIM 8

DIM 16
DIM 20

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 Bucket size. Radius captures 0.10% of N

 P5 Heuristic

DIM 4
DIM 8

DIM 16
DIM 20

Fig. 4. Selection of the optimal bucket sizes, for varying dimension. On the left we used a small search radius (0.01% of the dataset),

and a larger one on the right (0.1% of the dataset).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

 Optimum bucket size in each dimension

bk-tree
gna-tree

sa-tree
fq-array
LAESA

LC fixed bucket

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

 Optimum bucket size in each dimension

bk-tree
gna-tree

sa-tree
fq-array 1024 bits
LAESA 2048 bits

LC fixed bucket

Fig. 5. Comparison with existing approaches. On the left all the indexes use (about) the same memory. On the right the pivot-based

algorithms are allowed to use more memory.

E. Chávez, G. Navarro
increasing number of pivots in each dimension to

keep up with the LC. The efficiency of LC in space

usage (right) is paid in the construction cost (left).
7. Discussion

7.1. Balancing versus unbalancing

Note that it is possible to see our list of clusters

as a particular case of vp-trees, by considering I

and E as the left and right subtrees of the root c.

There is, however, a fundamental difference. While

vp-trees and many related data structures try to
build balanced trees, our structure is extremely

unbalanced, as I is much smaller than E. More-

over, our I bucket does not have any internal

structure.

One of the first lessons learned in any elemen-

tary book of algorithms is that balanced data

structures (trees in general) provide the best per-

formance. Indeed, as a tree becomes more unbal-
anced it becomes more similar to a linked list,

and the search cost raises from Oðlog nÞ to O(n).

Different techniques to have balanced data struc-

tures are proposed, such as 2–3 trees, AVL trees

and red-black trees for the worst case; splay trees

for the amortized worst case; and randomized

1

 10

 100

 1000

 10000

 100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Dimension

Construction cost (per database element)

LC
Pivots

 0.01

 0.1

1

 10

 100

 1000

4 6 8 10 12 14 16 18 20

B
yt

es

Dimension

Space usage (per database element)

LC
Pivots

Fig. 6. Pivots and LC compared for construction cost (left) and space usage (right). LC uses the optimal bucket size for each

dimension. The number of pivots used in each dimension are those necessary to reach the same LC query cost.

E. Chávez, G. Navarro
trees and skip lists for the average case (Gonnet

and Baeza-Yates, 1991).

However, all the concept of balancing is based

on the implicit assumption of exact searching:
We have a search query and want to find its exact

replica in the tree. Hence, we enter only one

branch of the tree, and therefore a balanced tree

minimizes the cost. More sophisticated queries

such as range searching are still based on the

assumption that there exists a total linear order

on the keys. Hence, these queries are reduced to

a couple of exact searches to find the extremes of
the range of interest.

None of these assumptions is valid in proximity

searching. The only tool to organize a data struc-

ture on metric spaces is the distances among ele-

ments. Many proposals still manage to design

tree data structures, where a total linear order is

imposed by sorting the elements according to their

distances to the root. Probably influenced by a
strong algorithmic background, most authors try

as well to obtain a balanced data structure by split-

ting the range of distances so that the subtrees

have the same size. 1

The real problem with this approach appears

when one considers the type of search carried out
1 This approach is sometimes of value if we are also

interested in disk access costs, as an unbalanced tree might

access more disk pages.
on these balanced trees. As explained, the search

is not exact, but it has a tolerance radius r which

is fixed at query time and is insensitive to the slices

assigned by the tree. Low dimensional metric
spaces have a histogram of distances which is more

uniform than those of high dimensional spaces. In

low dimensional spaces, therefore, the query is

compared against the root and a range of the histo-

gram is selected (see Fig. 7). This range contains a

reasonably small fraction of the distribution and

therefore the problem is reduced well along the iter-

ations. Moreover, since the histogram is not con-
centrated, a partition where the subtrees have the

same number of elements yields slices of approxi-

mately the same width, and therefore the search

enters into a reasonable number of subtrees.

Consider now a high dimensional space (right

hand of Fig. 7). All the histogram is concentrated

in a small range, where the query also lies with

high probability when compared to the root of
the tree.

Hence a large proportion of the elements will

now be selected by the query range. This is the

basic reason that makes searching in high dimen-

sional spaces so difficult.

However, balancing the trees adds an extra inef-

ficiency to this. As the histogram becomes more

concentrated, the slices to partition the elements
in equal sized groups become thinner (Fig. 8). Since

the search radius stays the same, it will intersect

2r2r

q qra rb ra rb

Fig. 7. A low-dimensional (left) and high-dimensional (right) histogram of distances, showing that on high dimensions virtually all the

elements become candidates for the exhaustive evaluation.

Uniform slices Uniform percentiles

Fig. 8. The same query intersects more rings when the slices have the same number of elements (outer rings are denser).

E. Chávez, G. Navarro
more slices and the search will need to enter more

subtrees. This shows why the search model for

proximity queries makes balanced trees a poor

choice for high dimensional metric spaces.

A tree where the slices have fixed width avoids

this last problem. Since the width is independent

on the dimension of the space, the search will

not enter more subtrees of a node as the dimen-
sion grows (Fig. 8). However, a new consequence

shows up when fixed slices are used: The subtrees

corresponding to the slices containing the core of

the distribution will have much more elements

than the rest, and therefore the tree will be more

and more unbalanced as the dimension grows.

As the tree becomes more unbalanced and

hence taller as the dimension grows, the leaves
of the tree will know their (approximate) distance

to more pivots: from Oðlog nÞ in a balanced tree
to O(n) in a very unbalanced tree. Also a random

query will be compared against more pivots as

it traverses the tree. This effect is very similar to

having a large number k of pivots in plain pivot-

based algorithms. Unlike those, however, this

unbalanced tree takes always linear space. The

main problem is its construction cost, which

moves from Oðn log nÞ to O(n2) as the tree loses
balance.

To summarize, unbalancing permits, in essence,

to have a large number of pivots without incre-

menting the space cost (the price is paid in con-

struction cost). Hence we can reach the optimum

number of pivots, which grows with the dimen-

sion. Needless to say, this shows that the division

into pivoting and compact partitioning schemes
can be blurred and one can consider them as quan-

titative variants of a single general concept.

E. Chávez, G. Navarro
7.2. Optimum unbalance

Let us still see our data structure as an unbal-

anced binary tree. We focus now on how to split

the range of distances so as to optimize the average
search time. Our goal is to show analytically why it

might be benefical to unbalance the tree in high

dimensions.

Let us assume that we choose a tree root p at

random and cut the interval of distances to the tree

root at value s. Let us call F(x) the cumulative dis-

tribution of the histogram of distances, that is,

F(x) = Prob(d(a,b) 6 x). The fraction of elements
that are stored inside the left subtree is P0 = F(s),

while P1 = 1 � F(s) go to the right subtree.

At search time, the probability of entering the

left subtree with a query of radius r is that of

[d(q,p) � r,d(q,p) + r] intersecting the interval

[0, s], that is, d(q,p) � r 6 s, or d(q,p) 6 s + r. Let

us call Q0 this probability, so Q0 = F(s + r) P P0.

Similarly, Q1 = 1 � F(s � r) P P1 for the right
subtree.

Let us assume that the subtrees conserve the

same probabilistic structure (this is a simplifica-

tion, but serves to illustrate our point). In this case

the average cost of a query with radius r in a tree

of n elements is T(1) = 1 and

T ðnÞ ¼ 1þ Q0T ðP 0nÞ þ Q1T ðP 1nÞ

whose rationale is as follows. The first comparison

is for the root of the tree. Then, each subtree is en-

tered with probability Qi and inside it we have

recursively the same problem on Pi n elements. De-

spite that entering into different subtrees are not

independent events, the average is still the same

as if they were.
It is easy to prove by substitution that T(n) =

(Sna � 1)/(S � 1) = O(na), where S = Q0 + Q1 > 1

and a is the solution to the trascendental equation

Q0P
a
0 þ Q1P

a
1 ¼ 1

where we see that 0 6 a 6 1, as this summation

goes from Q0 + Q1 P 1 to Q0P0 + Q1P1 6 1 as a
moves from zero to one. Note that if r = 0 then
the solution is different, Oðlog nÞ, as it is exact

searching. Proximity searching has an entirely dif-

ferent analytical structure.
Our optimization problem is then to choose s

values so as to minimize the search complexity,

that is, to satisfy
P

QiP
a
i ¼ 1 for the least possible

a. Note that s determines the Pi values and, to-

gether with r, the Qi values. So the optimum choice
will depend on the r of interest.

Consider now the case of low dimension. The

histogram is relatively flat, and therefore the differ-

ences Qi � Pi are relatively independent of s (they

do depend on r). In this case the optimum solution

is at s = 1/2, that is, a balanced structure. On the

other hand, when the histogram is concentrated

around its mean, Qi � Pi is much larger around
the mean (close to s = 1/2). As the Qi values grow,

a goes to 1 and the complexity increases. In order

to reduce this effect, it is preferable to shift s to an

area of the histogram where the mass of the histo-

gram in the area [s � r, s + r] is small. This occurs

at the tails of the distribution, hence advising

an unbalanced partition. A larger radius only

increases this effect, as the area [s � r, s + r] is
enlarged.
8. Conclusions

We have presented a new compact partitioning

index for proximity searching, which is experimen-

tally shown to be much more efficient than others
in high dimensions. It is also simple to program

and use, needs little space, and is amenable of a

secondary memory implementation.

Unlike existing approaches, which face high

dimensions by increasing the memory space of the

index, ours increases instead construction time.

This is a much more affordable cost in practice

and it permits handling higher dimensions effi-
ciently. Given the good properties of the data struc-

ture, it is worth to explore parallel and distributed

algorithms for the index construction.

We have shown how our structure can be seen

as the result of unbalancing some classical tree

approaches for metric space searching, which work

well only on low dimensions. Moreover, we have

shown how unbalancing is a key feature to deal
with high dimensional spaces, and how it is the

key to use more construction time instead of more

memory space.

E. Chávez, G. Navarro
Future work involves improving the construc-

tion procedure, possibly by using auxiliary data

structures to build the I buckets. We also plan to

pursue in the problem of obtaining a dynamic data

structure that supports insertion and removal of
elements.

The List of Clusters give a sui-generis hierarchi-

cal view of the data. It could be interesting to fur-

ther investigate the relationship between classical

data cluster detection algorithms and the clusters

obtained with our algorithm.

Finally, it would be interesting to devise I/O

efficient variants that are able to compete with
M-trees and D-indexes in secondary memory. We

have sketched possible alternatives but a deeper

study is necessary.

Acknowledgment

We wish to thank the anonymous referees who
helped us to improve the presentation.

References

Aurenhammer, F., 1991. Voronoi diagrams—a survey of a

fundamental geometric data structure. ACM Comput.

Surveys 23 (3).

Baeza-Yates, R., Cunto, W., Manber, U., Wu, S., 1994.

Proximity matching using fixed-queries trees. In: Proc.

CPM�94, LNCS 807, pp. 198–212.

Böhm, C., Berchtold, S., Keim, D., 2001. Searching in high-

dimensional spaces: Index structures for improving the

performance of multimedia databases. ACM Comput.

Surveys 33 (3), 322–373.

Bozkaya, T., Ozsoyoglu, M., 1997. Distance-based indexing for

high-dimensional metric spaces. In: Proc. SIGMOD�97.
Sigmod Record 26 (2), 357–368.

Brin, S., 1995. Near neighbor search in large metric spaces. In:

Proc. VLDB�95, pp. 574–584.
Burkhard, W., Keller, R., 1973. Some approaches to best-

match file searching. CACM 16 (4), 230–236.

Chávez, E., Marroquı́n, J., 1997. Proximity queries in metric

spaces. In: Proc. WSP�97. Carleton University Press, pp.

21–36.

Chávez, E., Marroquı́n, J.L., Navarro, G., 2001. Fixed queries

array: A fast and economical data structure for proximity

searching. Multimedia Tools Applic. (MTAP) 14 (2), 113–

135.

Chávez, E., Marroquı́n, J., Baeza-Yates, R., 1999. Spaghettis:

an array based algorithm for similarity queries in metric

spaces. In: Proc. String Process. Inform. Retrieval

(SPIRE�99). IEEE CS Press, pp. 38–46.
Chávez, E., Navarro, G., 2000. An effective clustering algo-

rithm to index high dimensional metric spaces. In: Proc. 7th

Internat. Symp. on String Process. Inform. Retrieval

(SPIRE�2000). IEEE CS Press, pp. 75–86.

Chávez, E., Navarro, G., Baeza-Yates, R., Marroquı́n, J.L.,

2001. Proximity searching in metric spaces. ACM Comput.

Surveys 33 (3), 273–321.

Ciaccia, P., Patella, M., Zezula, P., 1997. M-tree: an efficient

access method for similarity search in metric spaces. In:

Proc. 23rd Conf. on Very Large Databases (VLDB�97), pp.
426–435.

Dehne, F., Nolteimer, H., 1987. Voronoi trees and clustering

problems. Inform. Syst. 12 (2), 171–175.

Dohnal, V., Gennaro, C., Savino, P., Zezula, P., 2003. D-index:

Distance searching index for metric data sets. Multimedia

Tools Applic. 21, 9–33.

Gaede, V., Günther, O., 1998. Multidimensional access meth-

ods. ACM Comput. Surveys 30 (2), 170–231.

Gonnet, G., Baeza-Yates, R., 1991. Handbook of Algorithms

and Data Structures, second Ed. Addison-Wesley, Reading,

MA.

Hjaltason, Gisli R., Samet, Hanan, 2003. Index-driven similar-

ity search in metric spaces. ACM Trans. Database Syst.

(TODS) 28 (December), 517–580.

Hjaltason, G.R., Samet, H., 2000. Incremental similarity

search in multimedia databases. Technical Report CS-TR-

4199, Department of Computer Science, University of

Maryland.

Kalantari, I., McDonald, G., 1983. A data structure and an

algorithm for the nearest point problem. IEEE Trans.

Software Eng. 9 (5).

Micó, L., Oncina, J., Carrasco, R.C., 1996. A fast branch and

bound nearest neighbor classifier in metric spaces. Pattern

Recognition Lett. 17, 731–739.

Micó, L., Oncina, J., Vidal, E., 1994. A new version of the

nearest-neighbor approximating and eliminating search

(AESA) with linear preprocessing-time and memory

requirements. Pattern Recognition Lett. 15, 9–17.

Navarro, G., 2002. Searching in metric spaces by spatial

approximation. Very Large Databases J. (VLDBJ) 11 (1),

28–46.

Nene, S., Nayar, S., 1997. A simple algorithm for nearest

neighbor search in high dimensions. IEEE Trans. PAMI 19

(9), 989–1003.

Nolteimer, H., Verbarg, K., Zirkelbach, C., 1992. Monotonous

Bisector* Trees—a tool for efficient partitioning of complex

schenes of geometric objects. In: Data Structures and

Efficient Algorithms, LNCS, 594. Springer-Verlag, Berlin,

pp. 186–203.

Uhlmann, J., 1991. Satisfying general proximity/similarity

queries with metric trees. IPL 40, 175–179.

Vidal, E., 1986. An algorithm for finding nearest neighbors in

(approximately) constant average time. Pattern Recognition

Lett. 4, 145–157.

Yianilos, P., 1993. Data structures and algorithms for nearest

neighbor search in general metric spaces. In: Proc.

SODA�93, pp. 311–321.

	A compact space decomposition for effective metric indexing
	Introduction
	Basic concepts
	Metric spaces
	Dimensionality

	Related work
	Pivot-based algorithms
	Compact partitioning algorithms

	A new compact partitioning technique
	Building and updating the data structure
	Center and radius selection
	Construction
	Updating
	Secondary memory

	Experimental results
	Discussion
	Balancing versus unbalancing
	Optimum unbalance

	Conclusions
	Acknowledgment
	References

