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Abstract

The classical problem of homogenization deals with elliptic operators in periodically oscillat-
ing media of small period ε > 0 and the asymptotic behavior of solution uε of boundary value
problems associated with such operators. In a previous work [5], the authors introduced what is
called Bloch approximation which provided energy norm approximation for the solution in RN .
This paper continues with the above development and proposes a modified Bloch approximation.
This function takes into account boundary effects. Its connection with the first order classical
correctors is also established with the corresponding error estimate. All the proofs are worked
out entirely in the Fourier-Bloch space.
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1 Introduction

This paper considers the behavior of solutions of elliptic boundary value problems when the
coefficients are periodic with small period ε > 0. In particular, we take the effects of the boundary
into account.

The fundamental work of A. Bensoussan, J.L. Lions and G. Papanicolaou [1] presents homog-
enization results using an approach based on physical space analysis. Now, in this work we are
going to take a Fourier point of view and propose accordingly a new way of obtaining the classical
correctors in homogenization.

In this direction, we introduced in [5] what we called Bloch approximation of the solution of uε

in the case of the whole space (i.e. without boundaries). It was shown that Bloch approximation
contains the classical first and second correctors introduced in [1]. Roughly speaking, this incorpo-
rates multiple scale structure of the solution and provides an approximation in the energy norm.
The Bloch approximation is given by an elegant oscillatory integral involving the first Bloch wave.

However, the results in a bounded domain do not automatically follow from those in the entire
space. Further, the method of obtaining such results in the physical space offers no clue to the
construction in the Bloch space. Therefore, we propose a modified Bloch approximation such that
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the proof of the classical first corrector remains entirely within Bloch space. In this case of a
smooth homogenized solution, it is proved that this first corrector term satisfies the classical rate
of convergence ε

1
2 . In its turn, this provides an error estimate of the same order for our modified

Bloch approximation. These two issues were further substantiated by the numerical experiments
performed by C. Conca, S. Natesan and M. Vanninathan in [4] and [3].

Let us now introduce the problem to be studied in this work. We consider the operator

A
def= − ∂

∂yk

(
ak`(y)

∂

∂y`

)
, y ∈ RN(1.1)

where the coefficients satisfy

(1.2)


ak` ∈ L∞# (Y ) where Y =]0, 2π[N , i.e., each ak` is a
Y -periodic bounded measurable function defined on RN , and
∃α > 0 such that ak`(y)ηkη` ≥ α|η|2 ∀η ∈ RN , y ∈ Y a.e.,
ak` = a`k ∀k, ` = 1, . . . , N.

For each ε > 0, we consider also the operator Aε where

Aε def= − ∂

∂xk

(
aε

k`(x)
∂

∂x`

)
with aε

k`(x) = ak`(
x

ε
) x ∈ RN .(1.3)

In homogenization theory, it is usual to refer to x and y the slow and the fast variables respectively.
They are related by y = x

ε . Associated with Aε, let us consider the following boundary-value
problem

Aεuε = f in Ω, uε ∈ H1
0 (Ω),(1.4)

which is posed in an arbitrary bounded domain Ω in RN and f is a given element in L2(Ω). It is
classical that the above problem admits a unique solution.

From the classical work [1], it is known that one can associate to Aε a homogenized operator
A∗ given by

(1.5) A∗def= − ∂

∂xk

(
qk`

∂

∂x`

)
.

The homogenized coefficients qk` are constants and their definition is

(1.6) qk` =
1
|Y |

∫
Y

(ak` + akm
∂χ`

∂ym
)dydef=MY

(
ak` + akm

∂χ`

∂ym

)
,

where, for any k = 1, . . . , N , χk is the unique solution of the cell problem

(1.7)


Aχk =

∂ak`

∂y`
in Y,

χk ∈ H1
#(Y ), MY (χk) = 0.

The theory of homogenization gives the following result: the entire sequence of solutions uε of (1.4)
converges weakly in H1

0 (Ω) to the so-called homogenized solution u∗ characterized by

A∗u∗ = f in Ω, u∗ ∈ H1
0 (Ω).(1.8)
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The problem of the first order correctors is to obtain functions ũε
1 ∈ H1

0 (Ω) which are easy to
construct and at the same time have the following characteristic property

‖uε − u∗ − εuε
1‖H1

0 (Ω)
→ 0 as ε→ 0.(1.9)

To obtain such corrector, multiscale expansion method is followed in [1]. The authors consider
an asymptotic expansion (with y = x

ε ) of the form

(1.10) uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · ,

where the functions ui are Y -periodic in the variable y. In particular, they get

u0(x, y) = u∗(x),
u1(x, y) = χk(y)∂u∗

∂xk
(x),

where χk is the solution of (1.7). Thus, an obvious candidate for the first order corrector is εu1(x, x
ε );

however it does not satisfy the boundary condition on ∂Ω and hence it is natural to introduce cut-off
functions mε having the following properties

(1.11)


mε ∈ D(Ω),
mε(x) = 0 if dist(x,Γ) ≤ ε,
mε(x) = 1 if dist(x,Γ) ≥ 2ε,
ε|γ||Dγ

xmε(x)| ≤ cγ ∀γ ∈ ZN
+ ,

which exist, provided ∂Ω is smooth enough. Then, the first order correctors can be chosen as

uε
1(x) = mε(x)χk(

x

ε
)
∂u∗

∂xk
(x).(1.12)

Under the hypotheses that χk ∈W 1,∞(Y ) and u∗ ∈ H2(Ω) it is proved in [1] that ũε
1 ∈ H1

0 (Ω) and
it is a first order corrector in the sense that (1.9) is satisfied.

In this work we are going to take a Fourier point of view and propose accordingly a new way
of obtaining correctors. A fundamental tool in this process is the modified Bloch approximation.
With such an approach we obtain in the dual space a first corrector of the solution uε and, using
Bloch techniques, we prove the convergence of this first corrector to the solution uε in the energy
norm. We observe further that the modified Bloch approximation has the advantage that spectral
methods can be implemented to approximate problems exhibiting multiple scales.

Now, let us briefly summarize how this paper is organized. In Section 2, we give a brief
exposition of previous results in homogenization of periodic structures via Bloch decomposition
along with the Bloch approximation in the case of the whole space. Section 3 introduces the
definition of the modified Bloch approximation taking into account boundary effects and presents
its main properties and its connection with the first order correctors. In the fourth section, we
establish technical lemmas useful in the sequel. In Section 5, we provide an asymptotic expansion
of the modified Bloch approximation which is used in the next section to show that it implicitly
contains first order correctors of uε. In Section 7 we establish the rate of convergence for the first
corrector term. Finally, we conclude with a summary and a brief discussion about the efforts to
adapt Bloch waves to the boundary for futures advances in homogenization.
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2 Survey of previous results

The basic tools of our approach are the Bloch waves associated with the differential operator A
introduced in (1.1). The Bloch waves are defined as follows:

Let us consider the following spectral problem parameterized by η ∈ RN : To find λ = λ(η) ∈ R
and ψ = ψ(y; η) (not identically zero) such that

(2.1)


Aψ(·; η) = λ(η)ψ(·; η) in RN ,
ψ(·; η) is (η;Y )-periodic, i.e.,

ψ(y + 2πm; η) = e2πim·ηψ(y; η) ∀m ∈ ZN , y ∈ RN .

Noting that the problem (2.1) is ZN -translation invariant with respect to η, we can restrict η to the
dual cell Y ′ = [−1

2 ,
1
2 [N . Seeking the solution ψ(y; η) in the form eiy·ηφ(y, η), φ being Y -periodic in

the variable y, one can prove (see [6]) that the above spectral problem admits a discrete sequence
of eigenvalues with the following properties:{

0 ≤ λ1(η) ≤ · · · ≤ λm(η) ≤ · · · → ∞,
∀m ≥ 1, λm(η) is a Lipschitz function of η ∈ Y ′.

The corresponding eigenfunctions denoted by ψm(·; η) and φm(·; η) can be chosen to constitute
orthonormal bases in the spaces of all L2

loc(RN )-functions which are (η;Y )-periodic and Y -periodic
respectively. The functions ψm(·; η) and φm(·; η) (referred to as Bloch waves) introduced above
enable us to describe the spectral resolution of A (an unbounded self-adjoint operator in L2(RN ))
in the orthogonal basis {eiy·ηφm(y; η)|m ≥ 1, η ∈ Y ′}. To obtain the spectral resolution of Aε let
us introduce Bloch waves at the ε-scale:

λε
m(ξ) = ε−2λm(η), φε

m(x; ξ) = φm(y; η), ψε
m(x; ξ) = ψm(y; η),

where the variables (x, ξ) and (y, η) are related by y = x
ε and η = εξ. Observe that φε

m(x; ξ) is
εY -periodic (in x) and ε−1Y ′ periodic with respect to ξ. In the same manner, ψε

m(·; ξ) is (εξ; εY )
periodic because of the relation ψε

m(x; ξ) = eix·ξφε
m(x; ξ). Note that the dual cell at ε-scale is ε−1Y ′

and hence we take ξ to vary in ε−1Y ′ in the sequel. With the above notations, we can state the
fundamental result concerning the spectral resolution of Aε.

Theorem 2.1 Let g ∈ L2(RN ). The mth Bloch coefficient of g at the ε-scale is defined as follows:

(Bε
mg)(ξ) =

∫
RN

g(x)e−ix·ξφ̄ε
m(x; ξ)dx ∀m ≥ 1, ξ ∈ ε−1Y ′.

Then the following inverse formula holds:

g(x) =
∫

ε−1Y ′

∞∑
m=1

(Bε
mg)(ξ)e

ix·ξφε
m(x; ξ)dξ.

Further, we have Parseval’s identity:∫
RN

|g(x)|2dx =
∫

ε−1Y ′

∞∑
m=1

|(Bε
mg)(ξ)|2dξ.
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Finally, for all g in the domain of Aε, we get

Aεg(x) =
∫

ε−1Y ′

∞∑
m=1

λε
m(ξ)(Bε

mg)(ξ)e
ix·ξφε

m(x; ξ)dξ.

Using the above theorem, the classical homogenization result was deduced in [7]. To this end,
the following results were established and applied.

Proposition 2.2 We assume that ak` satisfy (1.2). Then there exists δ > 0 such that the first
eigenvalue λ1(η) is an analytic function on Bδ = {η | |η| < δ}, and there is a choice of the first
eigenvector φ1(y; η) satisfying{

η → φ1(·; η) ∈ H1
#(Y ) is analytic on Bδ,

φ1(y; 0) = |Y |−1/2.

Moreover, we have the relations

λ1(0) = 0, Dkλ1(0)def=
∂λ1

∂ηk
(0) = 0 ∀k = 1, ..., N,

1
2
D2

k`λ1(0)def=
1
2
∂2λ1

∂ηk∂η`
(0) = qk` ∀k, ` = 1, ..., N,

and there exist constants c and c̃ such that

c|η|2 ≤ λ1(η) ≤ c̃|η|2 ∀η ∈ Y ′,(2.2)

0 < λ
(N)
2 ≤ λm(η) ∀m ≥ 2, η ∈ Y ′,(2.3)

where λ
(N)
2 is the second eigenvalue of the spectral problem for A in the cell Y with Neumann

boundary conditions on ∂Y .

Let us recall the main steps of the homogenization result deduced in [7] in the case of the whole
space RN . The first one consists of considering a sequence uε ∈ H1(RN ) satisfying

(2.4)


Aεuε = f in RN ,
uε ⇀ u∗ in H1(RN )-weak,
uε → u∗ in L2(RN )-strong.

We can express the equation Aεuε = f in RN in the equivalent form

λε
m(ξ)(Bε

mu
ε)(ξ) = (Bε

mf)(ξ) ∀m ≥ 1, ξ ∈ ε−1Y ′.(2.5)

In the homogenization process, one can neglect all the relations for m ≥ 2 (see [7] and [9]). In fact,
we have the following proposition taken from [5].

Proposition 2.3 For all v ∈ H1(RN ), we have∫
ε−1Y ′

∞∑
m=2

|Bε
mv(ξ)|2dξ ≤ cε2‖∇v‖2

L2(RN )
.

5



Thus we can concentrate our attention only on the relation corresponding to the first Bloch
wave:

λε
1(ξ)(B

ε
1u

ε)(ξ) = (Bε
1f)(ξ) ∀ξ ∈ ε−1Y ′.(2.6)

With the aim of passing to the limit in (2.6) as ε → 0, it was proved in [7] that the first Bloch
transform is an approximation to Fourier transform. This result is naturally expected from the
above result of regularity on the Bloch spectrum and the fact that φε

1(x; ξ) → (2π)−N/2, as ε→ 0,
∀ξ ∈ RN . More precisely, we have the next result whose proof can be found in [5].

Proposition 2.4 Let gε and g be in L2(RN ). Then

(i) If gε ⇀ g weakly in L2(RN
x ), then χ

ε−1Y ′B
ε
1g

ε ⇀ ĝ weakly in L2
loc(RN

ξ ) provided there is a

fixed compact set K such that supp (gε) ⊂ K, ∀ε.

(ii) If g ∈ L2(RN ), we have

χ
ε−1Y ′(ξ)B

ε
1g(ξ) → ĝ(ξ) in L2(RN

ξ ).

Thus, the homogenized equation in the Fourier space

qk`ξkξ`û∗(ξ) = f̂(ξ) ∀ξ ∈ RN(2.7)

is obtained from (2.6) by passing to the limit as ε → 0. Here, f̂ stands for the classical Fourier
transformation of f .

Once the homogenization result in RN is established, it is an easy matter to deduce the corres-
ponding result in a bounded domain Ω by localization techniques using cut-off functions (see [7]).

Theorem 2.5 Let Ω be an arbitrary domain in RN . We consider a sequence uε satisfying (1.4).
Then

aε
k`

∂uε

∂x`
⇀ qk`

∂u∗

∂x`
in L2(Ω)-weak, ∀k = 1, ..., N.

In particular, u∗ satisfies the homogenized equation (1.8).

The next stage of development was the introduction of the Bloch approximation of uε by the
following integral representation:

Θε(x) def=
∫

ε−1Y ′

û∗(ξ)eix·ξφε
1(x; ξ)dξ, x ∈ RN .(2.8)

According to Proposition 2.4, the Fourier transform û∗ is an approximation of Bε
1u

ε, and so heuris-
tically speaking, the Bloch approximation Θε is close to uε since higher modes can be neglected.
Indeed, this has been rigorously established (loc. cit.) without the hypotheses usually assumed in
literature in the justification of correctors.

Theorem 2.6 Assume that the coefficients ak` satisfy (1.2). Let uε be the sequence introduced in
(2.4). Then if f ∈ L2(RN ), we have

(2.9) (uε −Θε) → 0 in H1(RN ).

Furthermore, we have the estimate

‖∇(uε −Θε)‖
L2(RN )

≤ cε‖f‖
L2(RN )

.(2.10)
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Thanks to the above result, we were reduced to expand Θε in terms of ε in order to be able to
compare it with the classical correctors for uε. To fulfill this task, it is clear from the definition of
Θε, that it is necessary to obtain asymptotic expansion of the first Bloch mode φε

1(·; ξ). We state
now results in this direction and their proofs can be found in [5].

Proposition 2.7 All odd order derivatives of λ1 at η = 0 vanish, i.e.,

Dβλ1(0) = 0 ∀β ∈ ZN
+ , |β| odd.

Various derivatives of φ1 at η = 0 can also be calculated, in particular:

Dkφ1(y; 0) = iφ1(y; 0)χk(y).

Using the above result, we deduce the following one on first order correctors.

Theorem 2.8 Assume that the hypotheses of Theorem 2.6 hold.

(i) We have
‖Θε − u∗‖

L2(RN )
≤ cε‖u∗‖

H1(RN )
.

(ii) If f ∈ L2(RN ) and χk ∈W 1,∞
# (Y ) where χk is the solution of (1.7) and χε

k(x) = χk

(
x
ε

)
, then

we have ∥∥∥∥Θε − u∗ − εχε
k

∂u∗

∂xk

∥∥∥∥
H1(RN )

≤ cε‖f‖
L2(RN )

.

3 Presentation of new results

After discussing the case of the whole space, let us now go back to the case of bounded domains
and consider the original problem (1.4). Let us recall that the difficulties of adapting Fourier type
techniques in bounded domains are very well-known. Nevertheless, we could prove the homogeniza-
tion result (namely Theorem 2.5) in the case of bounded domains via localization techniques in the
physical space [7]. This shows that certain results on bounded domains can be deduced using the
Bloch wave method. We substantiate further this statement by showing how Bloch techniques can
be adapted to give the correct definition of the Bloch approximation in bounded domains taking
into account the boundary condition. Somewhat surprisingly, this does not involve localization
neither in the physical space nor in the momentum space but in the state space. Accordingly, we
introduce cut-off functions in R enjoying the following properties:

(3.1)


ϕε ∈ C1(R), ϕε(0) =

∂ϕε

∂t
(0) = 0,

ϕε(u) = u, if |u| ≥ ε,
(ϕε)′ ∈W 1,∞(R), |ϕε(u)| ≤ c|u|,
|(ϕε)′(u)| ≤ c, |(ϕε)′′(u)| ≤ cε−1, for u ∈ R, a.e.

Explicitly, we can take, for example

ϕε(u) =


u if |u| ≥ ε,

u sin(
uπ

2ε
) if 0 ≤ u ≤ ε,

−u sin(
uπ

2ε
) if −ε ≤ u ≤ 0.
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Next, we define the modified Bloch approximation for the Dirichlet boundary value problem as
follows:

θε(x) def=
∫

ε−1Y ′

ϕ̂ε(ũ∗)(ξ)eix·ξφε
1(x; ξ)dξ for x ∈ Ω,(3.2)

where we recall the definition of the Fourier transform used in our work:

ϕ̂ε(ũ∗)(ξ) = (2π)−
N
2

∫
RN

ϕε(ũ∗(x))e−ix·ξdξ,

with ũ∗ denoting the extension of u∗ defined by

ũ∗(x) =
{
u∗(x) if x ∈ Ω,

0 if x 6∈ Ω.

Throughout this paper, we use the notation ·̃ to denote the extension by zero outside Ω.
We make now a few comments on the modified Bloch approximation. First of all, it is not

difficult to compute this object numerically following the algorithm of [4] and [3]. Secondly, its
definition involves only the first Bloch mode which is also the case with RN . The main difference
lies in the fact that it depends on the boundary condition through ϕε and u∗. At first glance, it
may seem strange to introduce nonlinear function of the solution in a linear set-up. However, this
introduction is natural if the reader recalls that the solution depends nonlinearly on the boundary.
One can also observe in the definition of θε that the values of u∗ are modified not only close to
the boundary on which u∗ vanishes but also at places inside Ω where u∗ may be zero. (But, of
course, this modification becomes negligible as ε→ 0). This is one of the main differences with the
classical expression of first order correctors where values of u∗ are taken as such.

Since φ1(·; η) is analytic for |η| ≤ δ, we can expand it as in Theorem 2.8 and this gives rise to an
asymptotic expansion of the modified Bloch approximation (3.2). The main result in this direction
is as follows:

Theorem 3.1 Let Ω be an open bounded set in RN and the modified Bloch approximation θε be
defined by (3.2). Then

(i) θε converges to u∗ in L2(Ω) as ε→ 0. In fact, we have the estimate

‖θε − ϕε(u∗)‖
L2(Ω)

≤ cε‖u∗‖
H1(Ω)

.

(ii) Under the additional hypotheses that u∗ ∈ H2(Ω), ∇u∗ ∈ L4(Ω) and χk ∈W 1,∞(Y ), we have

θε − ϕε(u∗)− εχε
k

∂ϕε(u∗)
∂xk

→ 0 in H1(Ω),

with the notation χε
k(x) = χk

(
x
ε

)
.

The connection between the modified Bloch approximation and the corrector property is given
by:
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Theorem 3.2 Under the hypotheses that u∗ ∈ H2(Ω), ∇u∗ ∈ L4(Ω) and χk ∈W 1,∞(Y ), we have

χε
k

∂ϕε(u∗)
∂xk

∈ H1
0 (Ω)

and it provides a first corrector in the sense that it satisfies

uε − u∗ − εχε
k

∂ϕε(u∗)
∂xk

→ 0 in H1
0 (Ω).

The proof of this theorem is based entirely on a Fourier point of view. In particular, we use
Bloch techniques to prove the convergence in the energy method. Putting Theorems 3.1 and 3.2
together, we have easily that

Corollary 3.3 Under the hypotheses of Theorem 3.2 the modified Bloch approximation approxi-
mates the solution in the energy norm:

‖uε − θε‖H1(Ω) → 0.

Under suitable hypotheses on the homogenized solution and using the maximum principle, we
are now in a position to establish a rate of convergence for the first corrector term as well as for
the modified Bloch approximation. This error estimate is of order ε

1
2 , and more precisely, we have

Theorem 3.4 Let χk ∈W 1,∞(Y ) and u∗ ∈ H2(Ω) the continuous solution of (1.8) with f ≥ 0 and
whenever N ≥ 3, assume u∗ in W 2,p(Ω) with p = 4(N + 1)/(N + 4). Assume that the boundary of
Ω satisfies the standard interior sphere condition at any x ∈ ∂Ω. Then∥∥∥∥θε − ϕε(u∗)− εχε

k

∂ϕε(u∗)
∂xk

∥∥∥∥
H1(Ω)

≤ cε
1
2 .

Finally, combining Theorem 3.4 and the classical error estimates of the first corrector term
proved in [1] (see pp. 66), we get

Corollary 3.5 Under the hypotheses of Theorem 3.4 and if ∇u∗ ∈ L∞(Ω), the modified Bloch
approximation approximates the solution as:

‖uε − θε‖H1(Ω) ≤ cε
1
2 .

In general, u∗ may be zero inside Ω. Thus, to obtain the error estimate of order ε
1
2 is as follows:

Remark 3.6 In the case f changes sign, we decompose u∗ in

u∗(x) = u∗+(x)− u∗−(x) x ∈ Ω,

where u∗+(x) is the solution of (1.8) with f+(x) = max(0, f(x)) and u∗−(x) is the solution of (1.8)
with f−(x) = max(0,−f(x)). Now, we consider the modified Bloch approximation for uε

+

θε
+(x) =

∫
ε−1Y ′

ϕ̂ε(ũ∗+)(ξ)eix·ξφε
1(x; ξ)dξ for x ∈ RN ,

and, analogously, θε
− is the modified Bloch approximation of uε

−. Then, applying Theorem 3.4 and
Corollary 3.5, we establish

‖uε − θε
+ + θε

−‖H1(Ω) ≤ cε
1
2 .
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4 Preliminary lemmas

Here, we prove a couple of results about the convergence behavior of ϕε(ũ∗).

Lemma 4.1 Let ϕε be as in (3.1).

(i) If u ∈ L2(Ω) then ϕε(u) ∈ L2(Ω) and we have the estimate

‖ϕε(u)− u‖
L2(Ω)

≤ cε.

(ii) If u ∈ H1(Ω) (resp. H1
0 (Ω)) then ϕε(u) ∈ H1(Ω) (resp. H1

0 (Ω)) and

ϕε(u) → u in H1(Ω) (resp. H1
0 (Ω)) as ε→ 0.

Proof. First let us prove the estimate in L2(Ω). To this end, let us note

ϕε(u)− u = (ϕε(u)− u)χωε in Ω,

where χ
ωε

is the characteristic function of the set

(4.1) ωε = {x ∈ Ω; |u(x)| ≤ ε} .

Hence, using (3.1) we get
|ϕε(u)− u|2 ≤ c|u(x)|2χ

ωε
x ∈ Ω.

A simple integration yields the estimate

‖ϕε(u)− u‖
L2(Ω)

≤ cε.

The next step is to prove the strong convergence in L2(Ω) of the first order derivatives. We
apply Dominated Convergence Theorem. By Chain Rule, we have

∂

∂xk
ϕε(u) = (ϕε)′(u)

∂u

∂xk
in Ω.

Thus, the following relation holds:

∂

∂xk
(ϕε(u)− u) =

(
(ϕε)′(u)− 1

) ∂u

∂xk
χ

ωε
x ∈ Ω,

from which we can deduce the uniform bound, namely,∣∣∣∣ ∂

∂xk
(ϕε(u)− u)

∣∣∣∣2 ≤ c

∣∣∣∣ ∂u∂xk

∣∣∣∣2 .
To show the point-wise convergence a.e. in Ω, we introduce the set

ω = {x ∈ Ω; u(x) = 0} ⊂ ωε

and use the property that
∇u(x) = 0 a.e. on ω

to deduce
∂u

∂xk
χ

ωε
→ 0 x ∈ Ω a.e.

This completes the proof of Lemma 4.1.

10



Lemma 4.2 For u ∈ H2(Ω) with ∇u ∈ L4(Ω), we have ϕε(u) ∈ H2(Ω) and

εϕε(u) → 0 in H2(Ω).

Proof. By virtue of the previous lemma, it is enough to show

(4.2) ε
∂2ϕε(u)
∂xi∂xj

→ 0 in L2(Ω) ∀i, j = 1, . . . N.

First of all ϕε(u) ∈ H2(Ω) since ϕε ∈ C1(R), (ϕε)′ ∈ W 1,∞(R) and u ∈ H2(Ω). Further, by Chain
Rule, we have

(4.3) ε
∂2ϕε(u)
∂xi∂xj

(x) = ε(ϕε)′(u(x))
∂2u

∂xi∂xj
(x) + ε(ϕε)′′(u(x))

∂u

∂xi
(x)

∂u

∂xj
(x) in Ω.

The first term on the right side of (4.3) obviously tends to zero in L2(Ω). Regarding the second
term, we note that it is bounded above by

(4.4) c|∇u(x)|2χ
ωε
.

This is because (ϕε)′(t) = 1 if |t| > ε and (ϕε)′′(u(x)) = 0 if x 6∈ ωε. Since ∇u ∈ L4(Ω), it follows
from our arguments in the last part of the proof of Lemma 4.1, that (4.4) converges to zero in
L2(Ω). This finishes the proof.

Remark 4.3 We will use the above lemma with u = u∗, the solution of the homogenized equation.
Thus, assuming ∂Ω is smooth and that f ∈ L2(Ω) and f = div(g) with g ∈ L4(Ω)N , it follows from
classical regularity results that u∗ ∈ H2(Ω) and ∇u∗ ∈ L4(Ω)N . Thus the hypotheses of Lemma 4.2
are satisfied in this particular case.

Remark 4.4 It is important to note that if the homogenized solution u∗ lies in H2(Ω) ∩ H1
0 (Ω)

and ∇u∗ ∈ L4(Ω)N then ϕε(u∗) is not only in H2(Ω)∩H1
0 (Ω) but also in H2

0 (Ω). Hence, ϕε(ũ∗) ∈
H2(RN ).

Our next result is a generalization of Parseval’s identity of Theorem 2.1.

Lemma 4.5 For gε ∈ L2(ε−1Y ′) and ρ ∈ L∞(Y ′;H1
#(Y )), we define

Gε(x) =
∫

ε−1Y ′

gε(ξ)eix·ξρ(
x

ε
; εξ)dξ, x ∈ RN .(4.5)

Then, we have

‖Gε‖2

L2(RN )
=

∫
ε−1Y ′

|gε(ξ)|2‖ρ(·; εξ)‖2

L2(Y )
dξ,

‖∇xG
ε‖2

L2(RN )
=

∫
ε−1Y ′

|gε(ξ)|2‖iξρ(·; εξ) + ε−1∇yρ(·; εξ)‖2

L2(Y )N
dξ.
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Proof. We expand ρ(y; η) as a function of y in the orthonormal basis {φm(y; η)}∞m=1 where η is a
parameter:

ρ(y; η) =
∞∑

m=1

am(η)φm(y; η).

Introducing this expression in (4.5), we get

Gε(x) =
∫

ε−1Y ′

gε(ξ)
∞∑

m=1

am(εξ)eix·ξφε
m(x; ξ)dξ.

Applying the Parseval’s identity of Theorem 2.1, we get

‖Gε‖2

L2(RN )
=

∫
ε−1Y ′

|gε(ξ)|2
∞∑

m=1

|am(εξ)|2dξ.

This completes the proof of the first part of the lemma if we use the Parseval’s identity in L2(Y ):

‖ρ(·; η)‖2

L2(Y )
=

∞∑
m=1

|am(η)|2 ∀η ∈ Y ′.

For the second part of the lemma, we differentiate formally Gε(x) with respect to x. We obtain

∇xG
ε(x) =

∫
ε−1Y ′

gε(ξ)eix·ξ
(
iξρ(

x

ε
; εξ) + ε−1∇yρ(

x

ε
; εξ)

)
dξ.

We remark that the above integral is of the same type as the one analyzed in the first part. This
completes the proof.

5 Asymptotic expansion of the modified Bloch approximation

In this section, we are going to prove the Theorem 3.1. To this end, we use the results established
in Proposition 2.2 and Proposition 2.7.

First, we show

(5.1) ‖θε − ϕε(ũ∗)‖
L2(RN )

≤ cε‖u∗‖H1(Ω).

We use the decomposition

θε(x)− ϕε(ũ∗(x)) = uε
1(x) + uε

2(x) + uε
3(x).(5.2)

where

uε
1(x) =

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)[φε
1(x; ξ)− φε

1(x; 0)]eix·ξdξ,

uε
2(x) =

∫
ε−1(Y ′−Bδ)

ϕ̂ε(ũ∗)(ξ)φε
1(x; ξ)e

ix·ξdξ,

uε
3(x) = −(2π)−

N
2

∫
RN−ε−1Bδ

ϕ̂ε(ũ∗)(ξ)eix·ξdξ.
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Applying Parseval’s identity we get:

‖uε
2‖2

L2(RN )
≤ c

∫
ε−1(Y ′−Bδ)

|ϕ̂ε(ũ∗)|2dξ ≤ cδ−2ε2
∫

RN

|ξ|2|ϕ̂ε(ũ∗)|2dξ,

and
‖uε

3‖2

L2(RN )
≤

∫
RN−ε−1Bδ

|ϕ̂ε(ũ∗)|2dξ ≤ cδ−2ε2
∫

RN

|ξ|2|ϕ̂ε(ũ∗)|2dξ.

On the other hand, using Parseval’s identity and the estimate

‖φ1(·; η)− φ(·; 0)‖H1(Y ) ≤ c|η| for η ∈ Bδ,

we get

‖uε
1‖2

L2(RN )
≤ cε2

∫
ε−1Bδ

|ξ|2|ϕ̂ε(ũ∗)|2dξ.

Now, we apply Lemma 4.1 which shows, in particular that ϕε(ũ∗) is bounded in H1(RN ) and hence∫
RN

|ξ|2|ϕ̂ε(ũ∗)|2dξ ≤ c‖ũ∗‖2

H1(RN )
= c‖u∗‖2

H1(Ω)
.

Therefore, (5.1) is proven.
Now, we are going to prove (ii) of Theorem 3.1. Because of (5.1), it remains to prove that

(5.3)
∂θε

∂x`
− ∂ϕε(ũ∗)

∂x`
− ∂χk

∂y`

∂ϕε(ũ∗)
∂xk

− εχε
k

∂2ϕε(ũ∗)
∂xk∂x`

→ 0 in L2(RN ) ∀k, ` = 1, . . . , N.

A simple application of Lemma 4.2 immediately yields that the fourth term in (5.3) goes to
zero in L2(RN ). The remaining terms in (5.3) are decomposed individually as follows:

∂θε

∂x`
=

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξ`[φε
1(x, ξ)− φε

1(x, 0)]eix·ξdξ +
∫

ε−1(Y ′−Bδ)

ϕ̂ε(ũ∗)(ξ)iξ`φε
1(x, ξ)e

ix·ξdξ +

+(2π)−
N
2

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξ`eix·ξdξ + ε−1

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iεξk(2π)−
N
2
∂χk

∂y`
(
x

ε
)eix·ξdξ +

+ε−1

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)[
∂φ1

∂y`
(
x

ε
; εξ)− iεξk(2π)−

N
2
∂χk

∂y`
(
x

ε
)]eix·ξdξ +

+ε−1

∫
ε−1(Y ′−Bδ)

ϕ̂ε(ũ∗)(ξ)
∂φ1

∂y`
(
x

ε
; εξ)eix·ξdξ,

∂ϕε(ũ∗)
∂x`

= (2π)−
N
2

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξ`eix·ξdξ + (2π)−
N
2

∫
RN−ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξ`eix·ξdξ,
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∂χk

∂y`
(
x

ε
)
∂ϕε(u∗)
∂xk

(x) =
∫

ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξk(2π)−
N
2
∂χk

∂y`
(
x

ε
)eix·ξdξ +

+
∫

RN−ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξk(2π)−
N
2
∂χk

∂y`
(
x

ε
)eix·ξdξ.

Putting them together, we reach the decomposition

∂θε

∂x`
− ∂ϕε(ũ∗)

∂x`
−
∂χε

k

∂y`

∂ϕε(ũ∗)
∂xk

= vε
1(x) + vε

2(x) + vε
3(x) +

∂uε
2

∂x`
+
∂uε

3

∂x`
,(5.4)

where uε
2 and uε

3 were already introduced and where

vε
1(x) =

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)iξ`
(
φε

1(x; ξ)− φε
1(x; 0)

)
eix·ξdξ,

vε
2(x) = ε−1

∫
ε−1Bδ

ϕ̂ε(ũ∗)(ξ)
(∂φε

1

∂y`
(x; ξ)− iεξk(2π)−

N
2
∂χk

∂y`
(
x

ε
)
)
eix·ξdξ,

vε
3(x) = −(2π)−

N
2
∂χε

k

∂y`
(x)

∫
RN−ε−1Bδ

ϕ̂ε(ũ∗)iξkeixξdξ.

Applying Lemma 4.5 to the expression defining uε
2, we deduce easily∥∥∥∥∂uε

2

∂x`

∥∥∥∥2

L2(RN )

≤ cδε
2

∫
ε−1(Y ′−Bδ)

|ξ|4|ϕ̂ε(ũ∗)|2dξ.

A more direct application of Parseval’s identity yields∥∥∥∥∂uε
3

∂x`

∥∥∥∥2

L2(RN )

≤ cδ−2ε2
∫

RN−ε−1Bδ

|ξ|4|ϕ̂ε(ũ∗)|2dξ,

‖vε
3‖

2

L2(RN )
≤ cδ−2ε2‖χk‖2

1,∞

∫
RN−ε−1Bδ

|ξ|4|ϕ̂ε(ũ∗)|2dξ.

It remains to estimate vε
1 and vε

2. Once more invoking Lemma 4.5, we obtain

‖vε
1‖2

L2(RN )
≤ c

∫
ε−1Bδ

|ξ|2|ϕ̂ε(ũ∗)|2‖φ1(·; εξ)− φ1(·; 0)‖2
L2(Y )dξ,

‖vε
2‖2

L2(RN )
≤ cε−2

∫
ε−1Bδ

|ϕ̂ε(ũ∗)|2
∥∥∥∥∂φ1

∂y`
(·; εξ)− iεξk(2π)−

N
2
∂χk

∂y`
(·)

∥∥∥∥2

L2(Y )

dξ.

Applying Proposition 2.2 and Proposition 2.7, we arrive at

‖vε
1‖2

L2(RN )
≤ cε2

∫
ε−1Bδ

|ξ|4|ϕ̂ε(ũ∗)|2dξ,

‖vε
2‖2

L2(RN )
≤ cε2

∫
ε−1Bδ

|ξ|4|ϕ̂ε(ũ∗)|2dξ.
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Therefore, we get the following estimate∥∥∥∥∂θε

∂x`
− ∂ϕε(ũ∗)

∂x`
− ∂χk

∂y`

∂ϕε(ũ∗)
∂xk

− εχε
k

∂2ϕε(ũ∗)
∂xk∂x`

∥∥∥∥2

L2(RN )

≤ cε2
∫

RN

|ξ|4|ϕ̂ε(ũ∗)|2dξ.(5.5)

According to Lemma 4.2, εϕε(ũ∗) → 0 in H2(RN ) and so

ε2
∫

ε−1Bδ

|ξ|4|ϕ̂ε(ũ∗)|2dξ → 0.

It then follows from the above estimates that each individual term of the right side of (5.4) converges
to zero in L2(RN ) and hence (5.3) is proven. This concludes the proof of Theorem 3.1.

6 First order correctors

The aim of this section is to provide a proof of Theorem 3.2 which is concerned with first order
correctors for uε.

As per the recipe provided by our earlier work [5], in order to get an expression of the first order
corrector, we must seek an expansion of the modified Bloch approximation which is precisely what
we have done in Theorem 3.1. Our choice for the first order corrector is thus the following:

(6.1) zε(x) = ϕε(u∗(x)) + εχε
k(x)

∂ϕε(u∗)
∂xk

(x).

Let us begin remarking that zε defined by (6.1) indeed belongs to H1
0 (Ω) under our hypotheses

that u∗ ∈ H2(Ω) ∩W 1,4
0 (Ω) and χk ∈W 1,∞(Y ). In the statement of Theorem 3.2, we have ϕε(u∗)

in the place of u∗ which is perfectly legal according to Lemma 4.1.
The result announced in Theorem 3.2 would follow if we show

‖∇(ũε − z̃ε)‖
L2(RN )

→ 0, as ε→ 0,

(or) equivalently ∫
ε−1Y ′

∞∑
m=1

λε
m(ξ)|Bε

mũ
ε(ξ)−Bε

mz̃
ε(ξ)|2dξ → 0, as ε→ 0.(6.2)

In order to prove this, we observe that ũε is the solution of

(6.3) Aεũε +N εũε = f̃ in RN , and ũε ∈ H1(RN ),

where N εũε is defined as an element of H−1(RN ) by

(6.4)
H−1(RN )

< N εũε, v >
H1(RN )

= −
H− 1

2 (∂Ω)
<

∂uε

∂nAε
, v >

H
1
2 (∂Ω)

∀v ∈ H1(RN ).

The above equation (6.3) can be written equivalently in terms of Bloch coefficients:

(6.5) λε
m(ξ)Bε

mũ
ε +Bε

mN
εũε = Bε

mf̃ , ∀m ≥ 1, ξ ∈ ε−1Y ′.
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Now, we expand the integral of (6.2)

(6.6)
∫

ε−1Y ′

∞∑
m=1

(
Bε

mf̃(ξ)Bε
mũ

ε(ξ) + λε
m(ξ)|Bε

mz̃
ε(ξ)|2 −Bε

mf̃(ξ)Bε
mz̃

ε(ξ)−Bε
mz̃

ε(ξ)Bε
mf̃(ξ)

)
dξ

+
∫

ε−1Y ′

∞∑
m=1

(
−Bε

mN
εũε(ξ)Bε

mũ
ε(ξ) +Bε

mN
εũε(ξ)Bε

mz̃
ε(ξ) +Bε

mz̃
ε(ξ)Bε

mN
εũε(ξ)

)
dξ.

The last three terms of (6.6) vanish because, in fact, for all v ∈ H1
0 (Ω) we have∫

ε−1Y ′

∞∑
m=1

Bε
mN

εũε(ξ)Bε
mṽ(ξ)dξ =

H−1(RN )
< N εũε, ṽ >H1(RN )= 0.

Regarding the first term of (6.6), we have to distinguish two cases: m = 1 and m ≥ 2. For
m = 1, we use the Proposition 2.4. For the case m ≥ 2, using the Proposition 2.3, we see that the
contribution of all higher modes together tends to zero. Thus, the first term converges to∫

RN

f̃ ũ∗dx.

The treatment of third and fourth terms of (6.6) is similar and their sum has the following limit
since z̃ε → ũ∗ weakly in H1(RN ):

−2
∫

RN

f̃ ũ∗dx.

So, it remains to study the limiting behavior of the second term in the expression (6.6). Below, we
prove that

(6.7)
∫

ε−1Y ′

∞∑
m=1

λε
m(ξ)|Bε

mz̃
ε(ξ)|2dξ →

∫
RN

f̃ ũ∗dx
def=(f̃ , ũ∗),

with will establish (6.2) and thereby Theorem 3.2. We introduce the notations

aε(u, v) =
∫

ε−1Y ′

∞∑
m=1

λε
m(ξ)Bε

mu(ξ)Bε
mv(ξ)dξ, ∀u, v ∈ H1(RN ),

a∗(u, v) =
∫

RN

qijξiξj û(ξ)v̂(ξ)dξ, ∀u, v ∈ H1(RN ).

Now, we decompose aε(z̃ε) and (f̃ , ũ∗):

aε(z̃ε) = aε(z̃ε, z̃ε − θε) + aε(z̃ε − θε, θε) + aε(θε),
(f̃ , ũ∗) = a∗(ũ∗, ũ∗ − ϕε(ũ∗)) + a∗(ũ∗ − ϕε(ũ∗), ϕε(ũ∗)) + a∗(ϕε(ũ∗)),

where θε is the modified Bloch approximation (3.2). Then, thanks to (5.3) and Lemma 4.1 we have
(z̃ε−θε) → 0 in H1(RN ) and ϕε(ũ∗) → ũ∗ in H1(RN ). Thus, proving (6.7) is equivalent to showing

aε(θε)− a∗(ϕε(u∗)) → 0 as ε→ 0.(6.8)
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Now, by definition of θε, we get

aε(θε) =
∫

ε−1Y ′

λε
1(ξ)|ϕ̂ε(ũ∗)|2dξ.

Therefore, if we decompose

aε(θε)− a∗(ϕε(ũ∗)) =
∫

ε−1Bδ

(λε
1(ξ)− qijξiξj)|ϕ̂ε(ũ∗)|2dξ +

∫
ε−1(Y ′−Bδ)

λε
1(ξ)|ϕ̂ε(ũ∗)|2dξ +

+
∫

RN−ε−1Bδ

qijξiξj |ϕ̂ε(ũ∗)|2dξ,

we see that each term on the right side can be estimated using Proposition 2.2 and Proposition 2.7.
We finally arrive at

|aε(θε)− a∗(ϕε(ũ∗))| ≤ cε2
∫

RN

|ξ|4|ϕ̂ε(ũ∗)|2dξ.

A direct application of Lemma 4.2 shows that this last term tends to zero. This completes the
proof of Theorem 3.2.

7 Error estimates

Finally, in this last section we prove Theorem 3.4. To this end, we prove the following estimates
of ϕε(ũ∗).

Lemma 7.1 Assume that u∗ ∈ H2(Ω) is continuous solution of (1.8) with f ≥ 0 (not zero) and
whenever n ≥ 3 u∗ ∈ W 2,p(Ω) with p = 4(n + 1)/(n + 4). Moreover, assume that the boundary Ω
satisfies the standard interior sphere condition at any x ∈ ∂Ω. Then,

(7.1) ‖ũ∗ − ϕε(ũ∗)‖
H1(RN )

≤ cε
1
2 ‖u∗‖H2(Ω),

and

(7.2) ε‖∇2ϕε(ũ∗)‖2

L2(RN )
≤ c.

Proof. By Lemma 4.1, we only need to prove (7.1) that

(7.3)
∥∥∥∥ ∂

∂xk
(ũ∗ − ϕε(ũ∗))

∥∥∥∥
L2(RN )

≤ cε
1
2 ‖u∗‖H2(Ω)

Since (ϕε)′(t) = 1 if |t| > ε and is bounded, we get∥∥∥∥ ∂

∂xk
(ũ∗ − ϕε(ũ∗))

∥∥∥∥2

L2(RN )

≤ c

∥∥∥∥∂u∗∂xk

∥∥∥∥
L2(ωε)

,

with ωε defined as in (4.1). Thanks to the strong maximum principle (see Lemma 3.4 in [8]), there
exists c > 0 such that

ωε ⊆ {x ∈ Ω; dist(x,Γ) ≤ cε} .
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For ν small enough (ν ≤ ν0), let us denote by Sν the boundary of the domain defined by {x ∈
Ω |dist(x, ∂Ω) ≥ ν}. By virtue of the imbedding theorem (see [2] pp. 197) we have∫

Sν

|v|2 dS ≤ C‖v‖2
H1({x∈Ω | dist(x,∂Ω)≥ν}) ≤ C‖v‖2

H1(Ω), ∀v ∈ H1(Ω).

Considering this inequality with v = ∂ku
∗ and integrating with respect ν from 0 to cε, we obtain

(7.4)
∥∥∥∥∂u∗∂xk

∥∥∥∥2

L2(ωε)

≤ Cε‖u∗‖2
H2(Ω),

and we prove (7.3).
Now, we see (7.2). By (3.1) and (4.3), we get

ε

∥∥∥∥∂2ϕε(ũ∗)
∂xi∂xj

∥∥∥∥2

L2(RN )

≤ cε

∥∥∥∥ ∂2u∗

∂xi∂xj

∥∥∥∥2

L2(Ω)

+ ε−1

∥∥∥∥∂u∗∂xi

∂u∗

∂xj

∥∥∥∥2

L2(ωε)

.

By imbedding theorems (see [2]) we have∫
Sν

|v|4 dS ≤ C‖v‖4
W 1,p({x∈Ω | dist(x,∂Ω)≥ν}) ≤ C‖v‖4

W 1,p(Ω), ∀v ∈W 1,p(Ω).

Considering this inequality with v = |∇u∗| and integrating with respect ν from 0 to cε, we obtain∥∥∥∥∂u∗∂xi

∂u∗

∂xj

∥∥∥∥2

L2(ωε)

≤ Cε,

and we conclude the proof of (7.2).

Proof of Theorem 3.4. By (i) in Theorem 3.1 we have the estimate in L2(Ω). Now, applying
Lemma 7.1 in (5.5) we conclude the proof.

Finally, thanks to Lemma 7.1, Corollary 3.5 is proved using the Theorem 3.4 and error estimate
(see [1] pp. 66)

‖uε − u∗ − εuε
1‖H1

0 (Ω)
≤ cε

1
2 ,

uε
1 defined in (1.12) and if ∇u∗ ∈ L∞(Ω)N .

Conclusions

We have shown a better approximation of the solution (which we have been calling Bloch
Approximation in [5]). To take into account boundary effects, we have modified the Bloch ap-
proximation. We have established its connection with the first order classical corrector worked out
entirely in the Fourier-Bloch space. Now, taking into account that the Bloch approximation has
for future advances we thought that it will not be out of context to include the following brief
discussion about our on-going efforts to adapt Bloch waves to domains with boundaries. Details
will appear in a future publication.

Just as in the case of Fourier analysis in domains with boundary, it will be convenient to proceed
systematically in steps to see the effect of boundary on Bloch waves. We start with half-space, then
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analyze quarter space and so on. It is important to realize that the basic object in the Bloch
analysis is the following transform:

f̃(y; k) =
∑

γ∈ZN

f(y + 2πγ)e−ik·(y+2πγ), k ∈ Y ′.

This has been well exploited in [5] in our proposal of Bloch approximation in the entire space. It
is therefore natural to seek the corresponding transform which takes into account the presence of
boundary, study its properties and apply them to homogenization problems. To this end, our idea
is to restrict suitably the translations used in the above expression. For instance, in the case of
half-space, translations will be chosen to be tangential to the boundary, more precisely, in ZN

+ . This
will produce an object of interest in the half-space. As already demonstrated by our earlier work
[5] in the case of the entire space, above efforts will throw more light in the homogenization process
in domains with boundary. In particular, it will lead to a better approximation of the solution. We
plan to carry out this analysis in a future publication.

Acknowledgements
This research was done thanks to a visit of R. Orive and M. Vanninathan to the Center of

Mathematical Modelling and to the Department of Mathematical Engineering of the University
of Chile. These authors thank warmly these Institutions. R. Orive was supported by the Fon-
dap’s Programme on Mathematical-Mechanics and the grant BFM2002-03345 of the MCYT
(Spain). M. Vanninathan was supported by the Fondap’s Programme on Mathematical-Mechanics
and“Marcel Dassault” Chair.

The authors would like to thank the anonymous referee whose comments allowed us not only to
improve the presentation of our results but also to strengthen some of them in the earlier version
of the article.

References

[1] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic
Structures, North-Holland, Amsterdam, 1978.
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