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Extended hydrodynamics from Enskog’s
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Abstract

A heat conduction problem is studied using extended hydrodynamic equations obtained

from Enskog’s equation for a simple case of two planar systems in contact through a porous

wall. One of the systems is in equilibrium and the other one in a steady conductive state. The

example is used to put to test the predictions which have been made with a new

thermodynamic formalism.
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1. Introduction

Today Enskog’s original kinetic theory is known as the standard Enskog theory
(SET) [1–3] because after the pioneering work of van Beijeren and Ernst [4] there are
several new versions of Enskog’s theory collectively called revised Enskog’s theory
(RET) [5]. Among the latter there are versions that have been extended to describe
condensed matter [6]. To Navier–Stokes level both SET and RET lead to the same
results [4,7], whether or not an external force is present.
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In the present article we make use of extended hydrodynamic equations for the
bidimensional case [9]. They are more complete than a linear approximation but still
they are the result of an approximation scheme that we explain elsewhere. Using a
strategy as in Ref. [8] and approximations defined in Ref. [9] we obtain in Section 5
the same hydrodynamic equations for SET and RET.
In this article we apply our extended hydrodynamics to a one-dimensional steady

heat conductive state. There is much work on this as, for e.g., the experimental
results in Ref. [10] or the theoretical ones in Refs. [11–13]. Recently Kim and
Hayakawa [14] studied this problem for hard core and Maxwellian particles using
Boltzmann’s equation combined with Chapman–Enskog’s method. They tried a test
and criticized the analysis of the nonequilibrium steady-state thermodynamics (SST)
proposed by Sasa and Tasaki [15]. In the last reference the authors state that if there
is gas in a one-dimensional heat conductive configuration in contact, through a
porous wall, with an equilibrium gas state, then a pressure difference must appear in
the direction of the heat flow. We analyze this double system making use of the
extended hydrodynamic equations derived from Enskog’s equation using Grad’s
moment expansion method [16]. Our conclusions differ from those in Ref. [15].
The organization of the present article is as follows: in Section 2 the configuration

of these systems is drawn schematically, in Section 3 the condition for the two
systems to be in contact via the central porous plate is introduced: the upper and
lower plates are normal plates; the central plate has many small pores through which
the gas can pass. In Section 4 we give the basic equations used in this paper.
Comments are in Section 5. Finally, our discussion and conclusions are written in
Sections 6 and 7, respectively.
2. Definition of the system

Sasa and Tasaki [15] proposed an interesting system consisting of a none-
quilibrium steady-state subsystem in contact with a subsystem in equilibrium as
explained below. This system has three plates as shown in Fig. 1 and there is gas
between them. The upper and lower plates (plates 1 and 3) are normal plates. The
central plate (plate 2) has pores through which gas can pass.
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Fig. 1. The plates of the system as described in the text.
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Following Sasa and Tasaki, we consider the system consisting of three infinite
parallel plates 1, 2 and 3 separated by a distance L. The Y-axis is defined
perpendicular to them while an X-axis is placed on plate 2. The pores in plate 2 are
distributed homogeneously. Plates 1 and 2 have fixed temperature T1 while plate 3
has a different (fixed) temperature T2.
After a sufficiently long time, by effusion, some of the gas passes through plate 2

and the gas between plates 1 and 2 reaches an equilibrium state. The system between
the plates 2 and 3 reaches a nonequilibrium steady state with translation symmetry
along the X-axis.
We assume that the typical distances between pores is very small and that the

diameter of the pores is also very small, so that the ratio between such lengths and
the mean free path is much smaller than unity. Having no external force and no
hydrodynamic velocity there is no heat flux parallel to the plates. The system is in a
static configuration.
3. The contact condition

In general, there is a difference between the temperatures of the plates and the
temperatures of the gas in contact with them. This well-known effect is called
thermal slip. However, for simplicity sake, we assume that the temperature of plate 2
and the gas in contact on both sides of it are equal, namely, we are neglecting the
Knudsen layer.
The velocity and the peculiar velocity of the gas will be denoted by c and C,

respectively. The condition that there is no mass flux through plate 2 is

Z 1

�1

dcx

Z 1

0

dcy cyf equil þ

Z 1

�1

dcx

Z 0

�1

dcy cyf y¼0 ¼ 0 , (1)

where

f equil ¼ neq

1

2pT1

� �
exp �

C2

2T1

� �

is the equilibrium distribution function associated to the gas between plates 1 and 2
and neq is the uniform number density in this same region while f y¼0 is the
nonequilibrium distribution function between plates 2 and 3 evaluated at y ¼ 0.
Next, it is necessary to see how the two distributions satisfy condition (1).
Imposing condition (1) yields

neq ¼
1

2
½nð0Þ þ Pyy� � d

w
2Kn

½nð0Þ þ Pyy�nð0Þ þ d2
w2

2Kn2
½nð0Þ þ Pyy�nð0Þ

2 . (2)

In addition, the total mass conservation law for the system is

neq þ

Z 1

0

nðyÞdy ¼ 2 . (3)
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Above we are using dimensionless fields and dimensionless variables in general. The
fields n (number density), Pij (pressure tensor), ~Q (net heat flux vector), and T

(temperature) generally depend on the coordinate y, where pij and qk are the
symmetric and traceless part of the pressure tensor and the kinetic part of the heat
flux vector, respectively. These hydrodynamic fields are defined according to the
following sum rules:Z

f dc ¼ nðyÞ , (4)

Z
CðyÞf dc ¼ 0 , (5)

Z
1
2
CðyÞ2f dc ¼ nðyÞTðyÞ , (6)

Z
CiðyÞCjðyÞf dc ¼ nðyÞTðyÞdij þ pijðyÞ , (7)

Z
1
2
CðyÞC2ðyÞf dc ¼ qkyðyÞ . (8)

We also use the following dimensionless numbers

Knudsen number; Kn ¼
8

ffiffiffi
2

p

p
‘

L
; d ¼

s
L
¼ Knr0 ,

where s is the particle’s diameter, ‘ the mean free path at equilibrium and r0 is the
mean area density.
4. Balance equations

The basic concrete equations solved here are the following:


 In the case of the linearized Boltzmann–Grad method (LBG): PyyðyÞ � Pyy ¼

constant, PxyðyÞ � Pxy ¼ constant, QyðyÞ � Qy ¼ constant,

nðyÞTðyÞ ¼ Pxx ¼ Pyy;
dTðyÞ

dy
þ

2Qy

Kn
ffiffiffiffiffiffiffiffiffiffiffiffi
pTðyÞ

p ¼ 0 . (9)


 In the case of the Enskog–Grad method (EG): PyyðyÞ � Pyy ¼ constant,
QyðyÞ � Qy ¼ constant, PxyðyÞ ¼ pxyðyÞ ¼ 0,

Pyy ¼ � 1þ
d
Kn

wnðyÞ

� �
pxxðyÞ þ 1þ 2

d
Kn

wnðyÞ

� �
nðyÞTðyÞ , (10)
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Qy ¼ 1þ
3

2
wnðyÞ

d
Kn

qk
yðyÞ � d2

2ffiffiffi
p

p
Kn

wnðyÞ2
ffiffiffiffiffiffiffiffiffiffi
TðyÞ

p dTðyÞ

dy
, (11)

�
1

2

dqk
yðyÞ

dy
¼ �

8ffiffiffi
p

p
Kn

w
ffiffiffiffiffiffiffiffiffiffi
TðyÞ

p
nðyÞpxxðyÞ �

qk
yðyÞ

2

128TðyÞ2

" #

þ
d

4Kn
w 5qk

yðyÞ
dnðyÞ

dy
þ 3nðyÞ

dqk
yðyÞ

dy

" #

�
d2ffiffiffi
p

p
Kn

wnðyÞ
ffiffiffiffiffiffiffiffiffiffi
TðyÞ

p
2
dnðyÞ

dy

dTðyÞ

dy
þ
1

2

nðyÞ

TðyÞ

dnðyÞ

dy

� 	2
"

þ nðyÞ
d2TðyÞ

dy

#
, ð12Þ

and

� TðyÞ
dpxxðyÞ

dy
� pxxðyÞ

dTðyÞ

dy
� nðyÞTðyÞ

dTðyÞ

dy
þ

TðyÞ

nðyÞ
pxxðyÞ

dnðyÞ

dy

�
pxxðyÞ

nðyÞ

dpxxðyÞ

dy

¼ �
4ffiffiffiffiffiffiffiffiffiffiffiffi

pTðyÞ
p

Kn
½nðyÞTðyÞ � pxxðyÞ�q

k
yðyÞ

þ
d
Kn

w
7

2
nðyÞTðyÞ

dpxxðyÞ

dy
þ
7

2
TðyÞpxxðyÞ

dnðyÞ

dy
þ 2pxxðyÞ

dTðyÞ

dy

�

�8nðyÞTðyÞ2
dnðyÞ

dy
� 7nðyÞ2TðyÞ

dTðyÞ

dy

�
. ð13Þ

The substitution of d ¼ 0 and w ¼ 1 in the EG equations yields the equations
corresponding to the nonlinearized Boltzmann–Grad method (NLBG).
5. The pressure difference between the equilibrium and nonequilibrium sides

All the results we describe in what follows were obtained using perturbation
methods choosing T24T1 and using � ¼ ðT2 � T1Þ=T1 as the perturbation
parameter. We solve the system of equations and their boundary (contact)
conditions up to �6. We choose d ¼ 0:001. In such case Kn is in inverse proportion
to r0. We choose Henderson’s expression [17] as the concrete expression for w:

w ¼
1� ð7=16Þr0
ð1� r0Þ

2
. (14)

We calculate the pressure in both sides of plate 2. Using Pyy for the nonequilibrium
steady-state side and the pressure Peq which is estimated by the state equation for the
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equilibrium side

Peq � 1þ d
2

Kn
wneq

� �
neq , (15)

the pressure difference DP is defined by

DP ¼ Pyy � Peq . (16)

Note that nð0Þ ¼ neq and DP ¼ 0 to first order in �. Hence, we rewrite our results in
the following way:

nð0Þ ¼ neq 1þ ln

Q2
y

n2eq

" #
, (17)

DP ¼ lDP

Q2
y

neq

, (18)

where ln and lDP are constants. Furthermore, it is possible to rewrite Pyy:

Pyy ¼ nð0Þ 1þ d
2

Kn
wnð0Þ

� �
1þ lyy

p

Q2
y

nð0Þ2

" #
. (19)

Tables 1and 2 give the values of these constants for � ¼ 0:05 and 0.1, respectively.
The value and sign of DP depend on � and Kn. Table 3 gives the value of lDP

obtained by first-order EG, i.e., up to d for � ¼ 0:05 and 0.1, respectively. In this
case, the pressure difference also exists and its value and sign depend on � and Kn,
too.
In the case of LBG, since pxx ¼ 0, ln ¼ lDP ¼ lyy

p ¼ 0. There is no pressure
difference in this case.
On the other hand, for the case of NLBG, the substitution of d ¼ 0 in Eqs. (2),

(10)–(19) leads to ln ¼ 1
256
, lDP ¼ � 1

256
o0 and lyy

p ¼ � 1
128

where for ln and lDP it is
correct to consider only up to second order in Qy. Hence the osmotic pressure
difference does exist and its value is constant and negative. Furthermore, for the case
of EG, lDP=ln ¼ �2� dð4=KnÞneqa� 2.
Table 1

The values of ln, lDP and lyy
p =ln for � ¼ 0:05 in the case of EG

Kn ln � 10�2 lDP � 10�2 lyy
p =ln

0.005 �0.360727 1.43059 �3.45019

0.01 0.6175405 �0.37938 �1.17319

0.02 0.5891347 �0.51577 �1.66426

0.05 0.4851223 �0.46437 �1.87508

0.1 0.4309258 �0.44057 �1.93856

0.2 0.4158376 �0.41159 �1.96948
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The values of ln, lDP and lyy
p =ln for � ¼ 0:1 in the case of EG

Kn ln � 10�2 lDP � 10�2 lyy
p =ln

0.005 �0.405391 1.49646 �3.19368

0.01 0.614064 �0.37163 �1.16022

0.02 0.590175 �0.51564 �1.66031

0.05 0.486046 �0.40465 �1.87365

0.1 0.431343 �0.43093 �1.93785

0.2 0.416123 �0.41182 �1.96124

Table 3

The values of lDP for � ¼ 0:05 and 0.1 in the case of the first order EG

Kn lDP � 10�2 � ¼ 0:05 lDP � 10�2 � ¼ 0:1

0.005 1.208777 1.269384

0.01 �0.417305 �0.410453

0.1 �0.431207 �0.431631

H. Ugawa
We analyze the pressure difference DP from another point of view. It is sufficient
to calculate DP up to �2. It is given by

DP ¼ �2
pKn2

4096
215r20 �

52

w
r0 �

1

w2

� �

¼ �2
pKn2

4096ð7r0 � 16Þ2
½15335r40 � 69024r30 þ 81344r20 � 9216r0 � 1024�.

ð20Þ

It is seen that the sign of DP changes from negative to positive approximately at
r0 ¼ 0:2, whereas it is always negative in the NLBG and to first order in the EG’s
case.
Besides the system far from equilibrium, we are also interested in a region

extremely close to the equilibrium condition. Therefore, we analyze the case without
the strong nonlinear term, namely, we eliminate the terms involving qk

yðyÞ
2 and

pxxðyÞq
k
yðyÞ in Eqs. (12) and (13). In this case, up to d,

Pyy ¼ nð0Þ � d

ffiffiffi
p

p
Qy

16nð0Þ

dnðyÞ

dy

� 	
y¼0

,

DP ¼ �d

ffiffiffi
p

p
Qy

32nð0Þ

dnðyÞ

dy

� 	
y¼0

. (21)
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Table 4

The values of ln, lDP and lyy
p =ln for � ¼ 0:05 in the case of EG without a strong nonlinear term

Kn ln � 10�2 lDP � 10�2 lyy
p =ln

0.005 �0.552682 1.59241 �2.72540

0.01 0.3430882 �0.16459 �1.00243

0.02 0.2577696 �0.22015 �1.63486

0.05 0.1182556 �0.11280 �1.87030

0.1 0.0612808 �0.05996 �1.93731

0.2 0.0311473 �0.03082 �1.96915

Table 5

The values of ln, lDP and lyy
p =ln for � ¼ 0:1 in the case of EG without a strong nonlinear term

Kn ln � 10�2 lDP � 10�2 lyy
p =ln

0.005 �0.598881 1.66316 �2.60733

0.01 0.340322 �0.15760 �0.98090

0.02 0.259368 �0.22086 �1.62996

0.05 0.119439 �0.11385 �1.86873

0.1 0.061951 �0.06598 �1.93656

0.2 0.031501 �0.03117 �1.96879

H. Ugawa
Assuming that the derivative dnðyÞ=dy of the density at plate 2 has the same sign as
Qy (this is normally correct), DP is always negative. Evaluating up to d2 and �2 yields

DP ¼ �2d
pKn
128w

½9wr0 � 2� ¼ �2d
pKn
128w

9r0ð16� 7r0Þ

16ð1� r0Þ
2

� 2

" #
,

ln ¼
w
16

1�
9

2
wr0

� �
;

lyy
p

ln

¼ �2þ 2wr0 þ 9ðwr0Þ
2 . (22)

As 0or0o1, DP is positive but lyy
p =lna� 2.

Furthermore, we calculate ln, lDP and lyy
p =ln up to d2 and �6. Tables 4 and 5 give

the values of these constants for � ¼ 0:05 and 0.1, respectively. The value and sign of
DP depends on � and Kn, too.
6. Discussion

In Ref. [15] the authors argue that there is a pressure difference at plate 2, namely
the pressure on one side of the plate is different from that on the other side. They call
this new pressure, which acts on the central plate, the ‘‘flux induced osmosis’’ (FIO).
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We consider the existence of FIO proposed in Ref. [15] identifying DP as the pressure
difference defined in Section 5.
In Ref. [15] the following criteria are stated:
(1) DP40 regardless of the sign of Qy.
(2) Pyy is a function of the nonequilibrium quantities: T1, the nonequilibrium

steady heat flow Qy, and it is related to the equilibrium quantity Peq as long as the
nonequilibrium and equilibrium temperature at both sides of plate 2 coincide

nð0Þ

neq

¼
qPyy

qPeq

� 	
T1;Qy

, (23)

where T1 is the thermodynamic temperature of plate 2. In Ref. [14], for a system of
hard spheres and of maxwellian particles—which obey Boltzmann’s equation and
which obey the BGK equation [18]—using the Chapman–Enskog method, it is
shown that criterion 1 in Ref. [15] is valid but criterion 2 is not valid.
On the other hand, for the hard disk’s system, from our present scheme based on

Enskog’s equation we obtain that
(1) Criterion 1 in Ref. [15] is not obeyed in the case of NLBG: DP is always

negative independent of the sign of Qy.
(2) In the case of LBG, (23) is valid. However, substitution of (17) and (19) into

(23) leads to lyy
p =ln ¼ �2. This is correct only in the case of NLBG. Hence, criterion

2 in Ref. [15] is not satisfied.
In the formulation of SST it is assumed that the number of particles and the size of

the system is infinite but that the number density of the system is finite [15]. This
condition implies that the terms Oðd2Þ in the collision terms can be neglected. Table 3
still indicates that under such condition the osmotic pressure difference is not always
positive. Especially when the system is extremely close to equilibrium, Eq. (21)
implies that DP is always negative.
However when the system is extremely close to equilibrium, Eq. (22) implies

that DP is always positive. This result coincides with the hard sphere case in
Ref. [14].
Furthermore, the condition under which there is no heat flux at the porous wall isZ 1

�1

dcx

Z 1

0

dcy

cy

2
C2f equil þ

Z 1

�1

dcx

Z 0

�1

dcy

cy

2
C2f y¼0 ¼ 0 . (24)

Using Eq. (1) yields

qk
yð0Þ ¼

ffiffiffi
2

p

r
½neq � nð0Þ� . (25)

The above condition is not satisfied without introducing a difference between the
temperature of the gas and the porous wall except in the LBG case. Therefore, except
in the LBG case, it must be difficult to maintain the equilibrium state between plates
1 and 2 even if the heat conductivity of plate 2 is extremely high. Here, as a rough
simplification, let us introduce the temperature of the gas in contact with plate 2,
TgaT1. Substituting d ¼ 0 in Eqs. (2), (10)–(19), using the no-mass-flux condition
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given by an equation similar to (1), yields

DP ¼ nð0Þ 1�

ffiffiffiffiffiffi
Tg

p
2

�
1

2
ffiffiffiffiffiffi
Tg

p
" #

þ
1ffiffiffiffiffiffi
Tg

p � 2

" #
Q2

y

256nð0Þ
. (26)

As T1oTgoT2 it follows that 1oTgo1þ �, and putting qk
yðyÞ

2
¼ Q2

y ¼ 0 in the
right side of Eq. (12), not only for NLBG but also for BGL, DPo0. The behavior of
the pressure difference changes qualitatively even if we restrict the analysis to
Boltzmann’s regime. This implies that the estimation of DP is a very delicate
problem. Even if one can prepare the walls which satisfy Eq. (23) and estimate the
pressure difference in Enskog’s regime, it is difficult to know what physical meaning
lies behind such case.
7. Conclusions

We have analyzed a simple nonequilibrium steady-state system inspired by Ref.
[15]. Our study refers only to a hard disk system and analyzes in great detail its
behavior using our extended hydrodynamic equations [9] using various approxima-
tions. Since we obtain that the osmotic pressure difference is negative in many cases
for which Eq. (23) is not satisfied we cannot agree with Ref. [15].
We have assumed that the pores in plate 2 are small enough and we have not

considered the problem about reflections on the wall at all. As we point out in the
last part of Section 6, the boundary (contact) condition is very delicate. We recognize
that a more sophisticated analysis is necessary.
However, in cases when strong nonlinearities can be neglected and the system is

quite close to equilibrium—so that higher-order terms in � do not contribute—the
osmotic pressure is positive. This implies the possibility of the existence of FIO.
In addition, in the full-paper [15], the authors point out that Eq. (23) is directly related

to the condition at the wall and this condition is essential to construct the formalism of
SST in a complete form which gets a new nonequilibrium extensive quantity which
determines the degree of nonequilibrium. Therefore, to clarify the problem, the measure
of the pressure difference is done only for the case of a wall obeying Eq. (23). Within this
context, they still recognize the results of Ref. [14] as implying the existence FIO. Hence
we also think that it is worth estimating the pressure difference starting from Eq. (23). If
one were to analyze the problem in such a way, then the boundary (contact) condition
would have to be reconsidered to solve the kinetic equation. In other words, one would
have to evaluate DP under the rather complex conditions required by kinetic theory that
would lead to satisfy Eq. (23). This has not been done.
The SST formalism is quite interesting and the present study has only put to test

the possible existence of FIO.
Finally, we briefly comment about extended irreversible thermodynamics [19–21]

(EIT). For an ideal gas, Refs. [20,21] studied a problem quite similar to the one in the
present article. In Ref. [20], the authors estimated the pressure difference without
considering a special wall. They assumed that the direction of the heat flow is parallel
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to the interface and their results are very interesting. Furthermore, in Ref. [21] the
authors estimated the difference between the pressures which are parallel and
perpendicular to the heat flow.
For a hard disk, applying LBG to the systems of Refs. [20,21], it is easily possible

to get equations similar to (9) and to see that the pressure difference predicted by
Ref. [20] is positive and that the difference predicted by Ref. [21] is zero. In both
cases, of course, it is totally unnecessary to use conditions (1) and (3).
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