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Abstract

We propose a simple method that, given a symbol distribution, yields upper and lower bounds on the average code
aD-ary optimal code over that distribution. Thanks to its simplicity, the method permits deriving analytical bounds for fa
of parametric distributions. We demonstrate this by obtaining new bounds, much better than the existing ones, for
exponential distributions whenD > 2.
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1. Introduction

Huffman coding [11] is one of the most wide
used coding methods. Given a probability distrib
tion {pi}0�i<n for a set of source symbols, Huffma
coding assigns a minimalprefix codeto the set of
source symbols. That is, Huffman assigns acodeword
(sequence of target symbols) to each source sym
such that no code is a prefix of another andL =∑

0�i<n pi�i is minimal, where�i is the length of the
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codeword assigned to symboli. If the alphabet of the
target symbols is of sizeD, then we say that the Huff
man code isD-ary. D-ary codes are useful for larg
source alphabets, where they may provide compet
compression ratios compared to binary codes, yet
mit faster decoding. For example, byte-oriented Hu
man is useful in compressed text databases [15].
infinite source alphabets, one can still speak ofoptimal
codes, that is, prefix codes that minimize the redu
dancy (difference betweenL and the entropy).

Several studies have been carried out on the p
lem of boundingL given{pi}. This is useful to predic
the compression ratios that can be achieved by opt
codes on specific sources or for families of parame
distributions. Although a lot of work has been carri
out on improving upper and lower bounds on the
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dundancy, most of it focuses on the caseD = 2 (see
an excellent survey by Abrahams [1], especially S
tion 2.2).

In this paper we present a new method to lower
upper bound the redundancy of optimalD-ary codes
when applied to a family of parametric distribution
Those bounds are analytic functions of the distri
tion parameters and, unlike numeric pointwise estim
tions that can be obtained with other methods, per
making general assertions on the compression of th
families. We demonstrate this by analyzing the Z
and exponential distributions, where we obtain mu
better analytical bounds than the existing ones for
D-ary case.

2. Related work

The most widely known bound to Huffman com
pression, coming from the Noiseless Coding theor
[16], is HD � L < HD + 1, where

HD =
∑

0�i<n

pi logD

1

pi

(1)

is theD-ary zero-order entropy of the distribution. Th
difference betweenL and the entropy,r = L − HD , is
called theredundancyof the code. Hence Shannon
theorem establishes that the redundancy is betwe
and 1.

This bound is tight (that is, there are distributio
for which the bounds are reached), but it is indep
dent of the distribution. Tighter bounds can be o
tained if we take into account the distribution. As e
plained, most of the huge amount of work on bound
the redundancy ofD-ary optimal codes applies to th
caseD = 2 [1]. The only bounds we could find fo
generalD are given in [14,4,5].

From now on we will assume, without loss of ge
erality, that{pi} is sorted in decreasing order. In [14,
it is shown that

r � s − (1− p1) logD(Ds − 1) − κ(p1), (2)

whereκ(x) = −x logD(x) − (1− x) logD(1− x) and
the positive integers is 1 if logD(D +1) � 1/(1−p1)

and otherwise it satisfies

logD

Ds − 1

Ds−1 − 1
>

1

1− p1
� logD

Ds+1 − 1

Ds − 1
,

and they prove that the bound is tight.
In [5] it is shown that, ifφi is the tight lower bound
as a function ofpi , thenφi−1 � φi , that is, the bound
improves as we consider less probable source s
bols. This makes the above bound valid for anypi ,
not justp1. They prove another bound for anyD > 2:

r � m − (1− pn) logD(Dm − 1) − κ(pn),

if αm+1 � pn < D−m,

r � m − (1− Dpn) logD(Dm − 1) − κ(Dpn),

if D−m−1 < pn � αm,

wherepn is the least probable symbol of the distri
ution andαm is the unique zero ofκ(x) − κ(Dx) +
x logD(Dm−1 − 1) in x ∈ (0,1/D).

With respect to upper bounds, in [14] they impro
a bit a previous bound of [7] and obtain

r � σ + Dp1

e lnD
, (3)

whereσ = logD(D − 1) + logD(logD e) − logD e +
1/(D − 1). For the caseD > 2 andp1 � 1/2 they
show that

r � 1− κ(p1), (4)

and a result proved in [4] is useful forp1 < 1/2:

r � 1− κ(p1) + 2(1− p1)/D. (5)

There are also some related results, yet not
ing analytical bounds to the redundancy. For exam
in [12,13] they consider the problem of the existen
of optimal D-ary codes for a given infinite distribu
tion. Their methods also permit numerically derivi
bounds for infinite distributions, by successive a
proximations over finite truncations thereof. Tho
numerical methods are less powerful than the ana
ical methods we consider in this paper, as the for
are pointwise and cannot be used to derive ana
cal (and possibly parametric) formulas that bound
redundancy of families of distributions. In [9] the
consider the construction of optimal codes for g
metric distributions.

3. Dense Coding

In [3] we proposedDense Codingas a more effi-
cient alternative toTagged Huffman Coding[15] for
direct compressed text searching on natural langu
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texts. This dense coding, however, is interesting
itself as a bound for the compression that can be
tained with a Huffman code. In this section we pres
this coding and some of its properties, generalizing
previous proposal of [3].

Definition 1. Given source symbols with probabilitie
{pi}0�i<n, an(s, c) stop-cont code (wherec ands are
integers larger than zero) assigns to each source
bol i a unique code of target symbols formed by
base-c digit sequence terminated by a digit betweec
andc+ s −1. The target alphabet is thus[0, c+ s −1].

It should be clear that a stop-cont coding is j
a base-c numerical representation, with the excepti
that the last digit is betweenc and c + s − 1, i.e.,
the last digit is a base-s number that is distinguishe
from previous digits by addingc. Digits between 0 and
c − 1 are called “continuers” and those betweenc and
c + s − 1 are called “stoppers”.

An alternative useful view is to consider a tree
arity D = s + c, where the firstc children are interna
nodes reserved for continuers and the lasts children
are leaves corresponding to stoppers (although
possible for a node not to use all its continuers or al
stoppers). Then each codeword is a root-to-leaf pat
the tree. The next property clearly follows.

Property 1. Any(s, c) stop-cont code is a prefix cod

Proof. If one code were a prefix of the other, since t
shorter code must have a final digit of value at leasc,
then the longer code must have an intermediate d
which is not smaller thanc. A contradiction. �

Among all the possible(s, c) stop-cont codes fo
a given probability distribution, thedense codeis one
that minimizes the average symbol length.

Definition 2. Given source symbols withdecreas-
ing probabilities{pi}0�i<n, the corresponding(s, c)-
dense code is an(s, c) stop-cont code where the cod
words are assigned as follows: Letk � 1 be such that

s
ck−1 − 1

c − 1
� i < s

ck − 1

c − 1
,

then the code corresponding to source symboli is
formed by k − 1 base-c digits and a final digit be
-

tweenc andc + s − 1. If k = 1 then the code is sim
ply the stopperc + i. Otherwise the code is forme
by the number�x/s� written in basec, followed by
c + (x mods), wherex = i − (sck−1 − s)/(c − 1).

Example 1. The codes assigned to symbolsi =
0 . . .15 by a(2,3)-dense coding are as follows:〈3〉,
〈4〉, 〈0,3〉, 〈0,4〉, 〈1,3〉, 〈1,4〉, 〈2,3〉, 〈2,4〉, 〈0,0,3〉,
〈0,0,4〉, 〈0,1,3〉, 〈0,1,4〉, 〈0,2,3〉, 〈0,2,4〉, 〈1,0,3〉,
and〈1,0,4〉.

Note that the code does not depend on the e
symbol probabilities, but just on their ordering by fr
quency. We now prove that the dense coding is
optimal stop-cont coding.

Property 2. The average length of a(s, c)-dense code
is minimal with respect to any other(s, c) stop-cont
code.

Proof. Let us consider an arbitrary(s, c) stop-cont
code, and let us write down all the possible codewo
in numerical order, as in Example 1, together with
symbol they encode, if they encode one. Then i
clear that (i) any unused code in the middle could
used to represent the source symbol with longest c
word, hence a compact assignment of target sym
is optimal; and (ii) if a less probable symbol with
shorter code is swapped with a more probable sym
with a longer code, then the average code length
creases, and hence sorting the symbols by decrea
frequency is optimal. �

In [3] we use dense coding as an alternative co
pression method. In this paper we are interested in
ability to give simple lower and upper bounds to t
compression given by aD-ary optimal code.

4. The bounds

Since any(s, c)-dense code is a prefix code, its a
erage code length is not smaller than aD-ary optimal
code, whereD = s + c. This is valid for any choice
of s andc, so different bounds can be obtained fo
givenD.

On the other hand, aD-ary optimal code can b
seen as a(D,D) stop-cont code, provided we addD
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to the last digit of all the codewords. Hence, its av
age code length cannot be smaller than a(D,D)-dense
code.

Hence, if we callLh(D) the average code length u
ing D-ary optimal code andLd(s,c) the average cod
length using(s, c)-dense code, then we have the f
lowing bounds for any 1� s < D:

Ld(D,D) � Lh(D) � Ld(s,D−s).

The first inequality gives us a simple method
lower bounding the average codeword length of aD-
ary optimal code: Add up 1 for the firstD probabili-
ties, 2 for the nextD2, 3 for the nextD3, and so on.
The second inequality gives us an upper bound
can be computed the same way, but this is different
each choice ofs.

The simplicity of the bounds opens to door to t
possibility of derivinganalyticbounds for a family of
distributions, if there exists an analytical expression
the symbol frequencies. We start with a generic de
opment than can be applied to any distribution. In
following sections, we complete the analysis for s
cific examples of distributions that are interesting
real life. Recall that we assume that symbols are so
in decreasing frequency order.

Sinceck−1s different codewords can be coded u
ing k digits, let us call

wk =
k∑

j=1

scj−1 = s
ck − 1

c − 1

(wherew0 = 0) the number of source symbols that c
be coded with up tok digits. Let us also call

fk =
wk∑

j=wk−1+1

pj

the overall probability of source symbols coded withk

digits.
Then, the average codeword length for the(s, c)-

dense coding is

Ld(s,c) =
K∑

k=1

kfk =
K∑

k=1

k

wk∑
j=wk−1+1

pj

= 1+
K−1∑

k

wk+1∑
pj
k=1 j=wk+1
= 1+
K−1∑
k=1

wK∑
j=wk+1

pj , (6)

whereK = �logc(1+ n(c − 1)/s) − 1�.

5. Generalized Zipf distribution

An interesting particular case is a distribution ar
ing in natural language texts, and in many ot
processes as well [17]. It is well known [2] tha
in natural language texts, the vocabulary distribut
closely follows a generalized Zipf’s law [17], that i
pi = A/iθ andn = ∞, for suitable constantsA and
θ > 1. The latter depends on the text, while

A = 1∑
i�1 1/iθ

= 1

ζ(θ)

makes sure that the distribution adds up 1.1 From
Eq. (1), the entropy of this distribution is

HD =
∑
i�1

pi logD

1

pi

= Aθ
∑
i�1

logD i

iθ
− logD A

= −θζ ′(θ)/ζ(θ) + ln ζ(θ)

lnD
,

and this is of course a lower bound forLh(D).
On the other hand, from Eq. (6) we have

Ld(s,c) = 1+ A
∑
k�1

∑
j�wk+1

1/jθ .

At this point we resort to integration to get low
and upper bounds. Since 1/jθ decreases withj and
sinceck − 1 � (c − 1)ck−1, we have that the abov
summation is upper bounded as follows

Ld(s,c) � 1+ A
∑
k�1

∞∫

wk

1/xθ dx

= 1+ A(c − 1)θ−1

(θ − 1)sθ−1

∑
k�1

1

(ck − 1)θ−1

� 1+ A(c − 1)θ−1

(θ − 1)sθ−1

c1−θ

1− c1−θ
(1− 1/c)1−θ

= 1+ 1

(θ − 1)ζ(θ)sθ−1(1− c1−θ )
.

1 We are using the Zeta functionζ(x) = ∑
i>0 1/ix . We will also

useζ ′(x) = ∂ζ(x)/∂x.
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In order to obtain the optimum upper bound f
Ld(s,c) we substitutec = D − s in the latter formula
and differentiate with respect tos. It turns out that the
minimum upper bound is reached fors = D − D1/θ

andc = D1/θ . The upper bound becomes

min
s

Ld(s,D−s)

� 1+ 1

(θ − 1)ζ(θ)(D − D1/θ )θ−1(1− D1/θ−1)
.

A lower bound can be obtained similarly, as fo
lows:

Ld(s,c) � 1+ A
∑
k�1

∞∫

wk+1

1/xθ dx

= 1+ A(c − 1)θ−1

θ − 1

∑
k�1

1

(sck − s + c − 1)θ−1
,

where the last term is difficult to bound. Howev
since we need this only for the cases = c = D, we
substitute and go on

Ld(D,D) � 1+ A(D − 1)θ−1

θ − 1

∑
k�1

1

(Dk+1 − 1)θ−1

� 1+ A(D − 1)θ−1

θ − 1

∑
k�1

1

(Dθ−1)k+1

= 1+ (D − 1)θ−1

(θ − 1)ζ(θ)Dθ−1(Dθ−1 − 1)
.

In order to demonstrate the relevance of this res
we have compared our upper and lower bounds aga
the best previous bounds we could find, which are
pressed in Eqs. (2) to (5). The lower bounds of
were left out because in this casepn → 0. We chose
the rangeθ ∈ [1,2], since it is the interesting one i
most real-life texts. We have experimented withD val-
ues 2, 4, 8, 16, 32, 64, 128 and 256. Our bounds
better than others asD increases, but forD as low
as 4 we give already competitive upper bounds.
largerD values our bounds are by far the tightest, a
at some point our lower and upper bound are so c
that they permit predicting the Huffman redundan
with high precision without actually running the alg
rithm. We show in Fig. 1 a sample of theD values
tried.

We also include a line called “Real value”. This
the result of running the Huffman algorithm on the fi
Fig. 1. Comparison between our and previous lower and upper
bounds on the redundancy of aD-ary optimal coding over a Zipf
distribution with parameterθ ∈ [1,2]. From top to bottom we show
D = 4, D = 16 andD = 128. Note that our lower bound is totally
out of range forD = 4.
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part of the sequence, up topi = 10−9 (this meant up
to 54 million symbols). At this point the redundan
results were stable up to precision 10−3. It can be seen
that, except for very lowD values, our upper bound
actually a good predictor of the real redundancy.
D = 128 the two curves are almost indistinguishab
For low D values, on the other hand, the lower bou
of Eq. (2) turns out to be a better predictor.

This result is particularly important for compress
text databases, as it permits predicting their co
pressed size from an analytical model of the w
distribution in some language.

We remark that there exists previous work on
nary coding andθ = 1 [10], which is out of our scope
(D > 2, θ > 1).

6. Exponential distribution

Let us now consider a distribution of the formpj =
(1− a)aj−1, j � 1. TheD-ary entropy of this distrib-
ution is easily computed:

HD = −a logD(a) − (1− a) logD(1− a)

1− a
.

An (s, c)-dense code has the following avera
code length, following Eq. (6):

Ld(s,c) = 1+ (1− a)
∑
k�1

∑
j�wk+1

aj−1

= 1+
∑
k�1

awk ;

by replacingwk we get

Ld(s,c) = 1+
∑
k�1

a
s(ck−1)

c−1

= 1+ as + as(1+c) + as(1+c+c2) + · · · .
We could not find a closed expression for the abo

but the terms become superexponentially less im
tant as we go on. For example, a very tight low
bound is given byLd(D,D) � 1 + aD + aD(D+1) +
aD(D2+D+1).

With respect to the upper bound, we used a s
ple bound such asLd(s,c) � 1 + as + as(c+1) +
as(c2+c+1)/(1 − a). We could not find the optimum
analytically, but only numerically for each case. Ho
ever, a reasonable solution iss = c = D/2. In fact,
Fig. 2. Comparison between our and previous lower and u
bounds on the redundancy of aD-ary optimal coding over an ex
ponential distribution of the formpj = (1− a)aj−1, j � 1, for the
caseD = 8.

the effect of not using the optimum setup is noticea
only for a very close to 1.

As a sample of the results, Fig. 2 shows
caseD = 8. Again, these results become better
largerD. As it can be seen, our method gives by
the tightest lower and upper bounds for the cases w
a is not very close to 1 (up to 0.8 in the caseD = 8).

Again, we remark that there exists previous wo
on binary coding for exponential (or geometric) dist
butions [8], which is out of our scope (D > 2).

7. Conclusions

We have presented a new method to lower and
per bound the redundancy of aD-ary optimal code.
The method is based on analyzing the performanc
a Dense code, which is a less efficient variant of Hu
man, yet much simpler to analyze. By changing
parameters of the Dense codes, we get lower and
per bounds onD-ary optimal codes.

The technique is useful for deriving analytic
bounds for distribution families where an analytic
(and possibly parametric) expression exists for
probabilities. We have demonstrated the technique
applying it to Zipfian and exponential distribution
showing that our technique usually obtains lower a



G. Navarro, N. Brisaboa

be

el-
use
or
pa-

5]
ds
].

hat

ncod

n,

n-
tring
c-

03,

,

un-
fer-

PhD

ns.

eo-
e-

:
4,

be
0)

-
and

ite
84.
fix
he-

ff-
4–

nd
In-

ell

rt,
upper bounds that are by far better than what can
obtained with previous analytical methods, forD-ary
codes. The results on Zipf models is particularly r
evant to compressed text databases, as it can be
to estimate the size of the compressed collection
the performance of search algorithms based on a
rameterized Zipfian model of the text distribution [1
A recent followup to this work obtains similar boun
for the more general Zipf–Mandelbrot distribution [6
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