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Abstract

We consider the elliptic equation−�u+u=0 in a bounded, smooth domain� in R2 subject to
the nonlinear Neumann boundary condition�u

��
=εeu. Hereε >0 is a small parameter. We prove

that any family of solutionsuε for which ε
∫
�� eu is bounded, develops up to subsequences a

finite numberm of peaks�i ∈ ��, in the sense thatεeu ⇀ 2�
∑m

k=1 ��i as ε → 0. Reciprocally,
we establish that at least two such families indeed exist for any givenm�1.
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1. Introduction

Let � be a bounded domain inR2 with smooth boundary��. This paper deals with
the analysis of solutions of the boundary value problem−�u+ u = 0 in �,

�u
��

= εeu on ��,
(1)

where� denotes outer unit normal vector to�� and ε > 0 is a small parameter.
Elliptic equations with this type of nonlinear Neumann boundary condition arise in

conformal geometry (prescribing Gaussian curvature of the domain and curvature of the
boundary), see for instance[8] and references therein, and in corrosion modelling, see
[3,6,9]. The Trudinger–Moser and trace inequalities imply the validity of the Sobolev–
Orlicz (compact) trace embedding

sup
u∈H1(�)\{0}

∫
��

exp

(
u

‖u‖H1

)
< +∞, (2)

see[6] for a proof. Note that an extremal of this inequality with‖u‖H1(�) = 1 solves
(1) for certainε > 0. Given a fixed value of the parameterε, solutions of (1) correspond
precisely to critical points inH 1(�) of the free energy functional

Jε(u) = 1

2

∫
�
|∇u|2 + u2 − ε

∫
��

eu. (3)

The maximum principle implies that solutions of (1) are automatically positive. Small-
ness of ε is necessary for existence of a solution as integration against a suitable
test function shows. On the other hand, inequality (2) implies that a (unique) local
minimizer exists near zero, provided thatε > 0 is sufficiently small. This minimizer
represents a “small” solution of Problem (1). The functional is not bounded below,
thus suggesting the presence of a second, large solution forε > 0 small. Compactness
of the trace embedding yields the sufficient PS condition for this second solution to
exist thanks to the standard mountain pass theorem. In [3,6,9], the following related
problem was analyzed: �u = 0 in �,

�u
��

= ε sinhu on ��.
(4)

Evenness of the associated energy functional

I (u) = 1

2

∫
�
|∇u|2 − ε

∫
��

coshu
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and the above-mentioned compactness makes Ljusternik–Schnirelmann theory applica-
ble to find that actually infinitely many solutions exist associated to critical values

cε1�cε2� · · · �cεk � · · · .

For each fixedk it turns out thatcεk is bounded above byCk log 1
ε

. This is shown to
imply that ε

∫
�� coshu is uniformly bounded for the associated solutions asε → 0.

Applying similar arguments as those in[6] one can show that the mountain pass solution
of (1) has a similar property, namely thatε

∫
�� euε remains bounded. Our first result

characterizes the asymptotic behavior of families of solutionsuε with ε
∫
�� euε bounded.

It turns out that, up to subsequences, there is an integerm, such thatε
∫
�� euε → 2m�.

More precisely,εeuε approaches the sum ofm Dirac masses at the boundary. The
location of these possible points of concentration may be further characterized as critical
points of a functional ofm points of the boundary which we introduce next: let us
consider the Green’s function for the Neumann problem

−�xG(x, y)+G(x, y) = 0, x ∈ �,

�G
��x

(x, y) = 2��y(x), x ∈ ��
(5)

and its regular part

H(x, y) = G(x, y)− log
1

|x − y|2 . (6)

We define�m on (��)m by

�m(�1, . . . , �m) = −
 m∑

j=1

H(�j , �j )+
∑
i �=j

G(�i , �j )

 .

Theorem 1.1. Let uε be a family of solutions to(1) with ε → 0. If ε
∫
�� euε �C for

some constant C independent ofε there exists a subsequence(denoted the same way)
and a finite collection of distinct points�i ∈ �� i = 1, . . . , m such that

uε → u∗,

whereu∗ is the solution to
−�u∗ + u∗ = 0 in �,

�u∗

��
= 2�

m∑
i=1

��i on ��.
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Moreover

ε

∫
��

euε → 2�m and εeuε ⇀ 2�
m∑
i=1

��i ,

weakly in the sense of Radon measures in��, uε → u∗ in Lp(��) andLp(�) for all
1�p < ∞ and inC1

loc(�−{�1, . . . , �m}). Additionally (�1, . . . , �m) is a critical point
of �m, that is for all k = 1, . . . , m

∇�(�k)H(�k, �k)+
∑
i �=k

∇�(�k)G(�k, �i ) = 0, (7)

where�(�k) is a tangent vector to�� at �k.

We remark that ifε
∫
�� euε is unbounded after extracting a subsequence for which

ε
∫
�� euε → ∞ we haveuε ↗ ∞ uniformly in �.
A natural question is whether families of solutions such as those described in the

previous theorem do indeed exist. It can be shown that the mountain pass large solu-
tion does correspond to one exhibiting a single spike. However, it is not clear how to
set up a Ljusternik–Schnirelmann scheme that predicts the existence of higher-energy
solutions, in particular since the functional (3) does not seem to exhibit any useful
symmetries. In this paper, we develop a completely different approach to this ques-
tion which allows us to prove an existence result, which we suspect optimal: given
any integerm�1, there are at leasttwo distinct families of solutionsuε for which
ε
∫
�� euε → 2m�.

Theorem 1.2. Let m�1. Then forε > 0 sufficiently small there exist two solutionsuε

to (1) satisfying

lim
ε→0

ε

∫
��

euε = 2�m.

The peaks of these two solutions are located near points�1, . . . , �m ∈ �� corre-
sponding to two distinct critical points of�m.

We can actually show stronger versions of this result. For instance, if�� has more
than one component, then pairs of families ofm-peak solutions on each component
happen to exist. In reality, associated to eachtopologically nontrivial critical point
situation associated to�m (for instance local maxima or saddle points possibly degen-
erate), a solution with concentration peaks at a corresponding critical point exists. We
elaborate further on these issues at the end of Section 8.
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It is important to remark the interesting analogy between these results and those
known for the Liouville-type equation{

�u+ εeu = 0 in �,

u = 0 on ��.
(8)

Asymptotic behavior of familiesuε of solutions of (8) for which ε
∫
� euε remains

uniformly bounded is well understood after the works [2,7,10]. It is known that up
to subsequences,

lim
ε→0

ε

∫
�
euε = 8m� (9)

for some integerm�1. More precisely,εeuε peaks up asmDirac masses at points of the
domain which correspond to a critical point of a functional similar to�m defined from
Green’s function of−� under Dirichlet boundary condition. The reciprocal question of
existence has been addressed among other works in[1,4,5]. In particular in [4], a result
is established which may be thought of as an analog of Theorem 2: if the domain is
not simply connected, then at least one solution withm peaks exists.

In the rest of this paper we will prove Theorems 1 and 2. Sections 2–8 are devoted to
the proof of Theorem 2. Scaling out properlyε around a single point of the boundary
leads us formally to the limiting problem�v = 0 in R2+,

�v
��

= ev on �R2+,
(10)

where R2+ denotes the upper half-plane{(x1, x2) : x2 > 0} and � the unit exterior
normal to�R2+.

A family of solutions to (10) is given by

w�,t (x1, x2) = log
2�

(x1 − t)2 + (x2 + �)2 , (11)

where t ∈ R and � > 0 are parameters. It is interesting to point out that the results in
[8,11,12] imply that any solutionv of (10) which satisfies additionally∫

R2+
ev < +∞

must be of the form (11). The solutions predicted in Theorem 2 are constructed using
as building blocks these solutions, suitably scaled and projected to make it up to a good
order for the boundary condition. Solutions are found as a small additive perturbation
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of these initial approximations. A linearization procedure leads to a finite-dimensional
reduction, where the reduced problem corresponds to that of adjusting variationally the
location of the concentration points.

Theorem 1 is established in Section 9. The point concentration behavior of the family
is established first, then Pohozaev-type identities in balls around the singularities lead
to the desired result.

2. An equation in the upper half-plane

The family of solutions (11) is invariant under translations in thex1-direction and
under the scalings �→ w(sx)+2 logs, s > 0. An important property that we will need
is the nondegeneracy of these solutions (11) except for the above natural invariances
of Eq. (10). Let us define

z0 = 1

�
− 2

x2 + �

x2
1 + (x2 + �)2

(12)

and

z1 = −2
x1

x2
1 + (x2 + �)2

. (13)

We have the following:

Proposition 2.1. Any bounded solution of


�� = 0 in R2+,
��

��
− 2�

x2
1 + �2

� = 0 on �R2+,
(14)

is a linear combination ofz0 and z1.

Proof. Let � be a solution to (14) and set

w(y) = �
(

y

|y|2 − (0,�)
)
.

The functionw is just the Kelvin transform of� about the point(0,−�). The domain
of w is the diskD = B((0, 1

2� ),
1

2� ) andw is a bounded function that satisfies�w = 0
in D,

�w
��′

= 2�w on �D\{0}, (15)
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where �′ is the exterior unit normal toD. To see this observe that the mapy �→
K(y) = y

|y|2 − (0,�) is anti-conformal (preserves angles and reverses orientation) and

maps the normal vector toD to a normal vector to�R2+. More precisely, if�′ is the
exterior unit normal vector toD then

�w
��′

= 1

|y|2
��

��
.

Thus on�D

�w
��′

= 1

|y|2 ew�,0(K(y))w

and a calculation shows that

1

|y|2 ew�,0(K(y)) = 1

|y|2
2�

y2
1

|y|4 + �2
= 2�.

Sincew is bounded, by elliptic regularity (15) holds in all�D.
By translating in they2 direction we can assume thatD is the disk centered at the

origin with radius 1
2� . We think of w as the real part of an analytic functioñw and

write

w̃(y) =
∞∑
k=0

akr
keik	

with y = rei	. Condition (15) is equivalent to

Re

( ∞∑
k=0

ak(k − 1)eik	
)
= 0 ∀	

and hencea0 = 0, ak = 0 for all k > 1. Looking at the real partw of w̃, and recalling
that we shifted in they2 direction we see that it is a linear combination of

y1 = x1

x2
1 + (x2 + �)2

and y2 − 1

2�
= x2 + �

x2
1 + (x2 + �)2

− 1

2�
. �
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3. Ansatz for the solution

We can produce a solution to

�u = 0 in R2+,
�u
��

= εeu on �R2+,

by taking

u(x) = w�(x/ε)− 2 logε = log
2�

x2
1 + (x2 + ε�)2

.

Based on this, given�j ∈ ��, �j > 0 we define

uj (x) = log
2�j

|x − �j − ε�j�(�j )|2 .

The choice of�j and �j will be made later on.
The ansatz is

U(x) =
m∑

j=1

uj (x)+Hε
j (x), (16)

whereHε
j is a correction term defined as the solution of


−�Hε

j +Hε
j = −uj in �,

�Hε
j

��
= εeuj − �uj

��
on ��.

(17)

Lemma 3.1. For any 0 < 
 < 1

Hε
j (x) = H(x, �j )− log 2�j +O(ε
) (18)

uniformly in �, where H is the regular part of Green’s function defined(6).

We will give the proof of this lemma at the end of the section.
It will be convenient to work with the scaling ofu given by

v(y) = u(εy)+ 2 logε.
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If u is a solution of (1) thenv satisfies−�v + ε2v = 2ε2 logε in �ε,

�v
��

= ev on ��ε,
(19)

where�ε = �/ε. With this scalinguj becomes

vj (y) = log
2�j

|y − �′j − �j�(�
′
j )|2

,

where�′j = �j /ε and where we will write� for the exterior normal unit vector to��
and ��ε.

We will seek a solutionv of (19) of the form

v = V + �,

where

V (y) = U(εy)+ 2 logε (20)

andU is defined by (16). Problem (19) can be stated as to find� a solution to−�� + ε2� = 0 in �ε,

��

��
= eV � +N(�)+ R on ��ε,

(21)

where the “nonlinear term” is

N(�) = eV (e� − 1− �) (22)

and the “error term” is given by

R = eV − �V
��

. (23)

At this point it is convenient to make a choice of the parameters�j , the objective
being to make the error term small. We claim that if

log 2�j = H(�j , �j )+
∑
i �=j

G(�i , �j ), (24)
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then we achieve the following behavior forR: for any 0 < 
 < 1 there existsC
independent ofε, such that

|R(y)|�Cε

m∑

j=1

1

1+ |y − �′j |
∀y ∈ �ε (25)

and for W = eV

W(y) =
m∑

j=1

2�j

|y − �′j − �j�(�
′
j )|2

(1+ 	ε(y)) ∀y ∈ �ε (26)

with 	ε satisfying the following estimate:

|	ε(y)|�Cε
 + Cε

m∑
j=1

|y − �′j | ∀y ∈ �ε.

Proof of (26).

W(y)= ε2 exp

(
m∑
i=1

ui(εy)+Hε
i (εy)

)

= ε2 exp

(
m∑
i=1

(
log

2�i

ε2|y − �′i − �i�(�
′
i )|2

+Hε
i (εy)

))
.

Let us fix a small constant� > 0 and consider this expression for|y − �′j | < �
ε

W(y)= 2�j

|y − �′j − �j�(�
′
j )|2

exp

Hε
j (εy)+

m∑
i �=j

[
log

2�i

ε2|y − �′i − �i�(�
′
i )|2

+Hε
i (εy)

] .

Using (18) and the fact thatH is C1(��2) we have

Hε
i (εy)=H(εy, �i )− log(2�i )+O(ε
) ∀y ∈ �ε

=H(�j , �i )− log(2�i )+O(ε
)+O(ε|y − �′j |) ∀y ∈ �ε.
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Hence for|y − �′j | < �
ε

Hε
j (εy)+

m∑
i �=j

(
log

2�i

ε2|y − �′i − �i�(�
′
i )|2

+Hε
i (εy)

)

= H(�j , �j )− log(2�j )+
m∑

i �=j

(
log

2�i

|�j − �i |2 +H(�j , �i )− log(2�i )

)
+O(ε
)+O(ε|y − �′j |),

= H(�j , �j )− log(2�j )+
m∑

i �=j

G(�j , �i )+O(ε
)+O(ε|y − �′j |)

= O(ε
)+O(ε|y − �′j |)

by the choice of�j , cf. (24). Therefore

W(y) = 2�j

|y − �′j − �j�(�
′
j )|2

(1+O(ε
)+O(ε|y − �′j |)) ∀|y − �′j | <
�
ε
. (27)

If |y − �′j | > �
ε

for all j = 1, . . . , m we haveW = O(ε2), and this together with (27)
implies (26). �

Proof of (25). We definedR = eV − �V
��

with V given by (20). We need to compute
�V
��

= ε �U
��

. But

�U
��

=
m∑
i=1

�ui

��
+ �Hε

i

��
= ε

m∑
i=1

eui = ε

m∑
i=1

2�i

|x − �i − ε�i�(�i )|2 .

Hence

�V
��

(y) = ε
�U
��

(εy) =
m∑
i=1

2�i

|y − �′i − �i�(�
′
i )|2

.

Thus, near�′j by the above computation and (27) we obtain

R(y) = eV − �V
��

= 2�j

|y − �′j − �j�(�
′
j )|2

(O(ε
)+O(ε|y − �′j |)), |y − �′j | <
�
ε
.
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If |y − �′j | > �
ε

for all j = 1, . . . , m then eV = O(ε2) and �V
��

= O(ε2) and (25)
follows. �

Proof of Lemma 3.1. The boundary condition satisfied byHε
j is

�Hε
j

��
= εeuj − �uj

��
= 2

ε�j + (x − �j − ε�j�(�j )) · �(x)
|x − �j − ε�j�(�j )|2

= 2ε �j

1− �(�j ) · �(x)
|x − �j − ε�j�(�j )|2 + 2

(x − �j ) · �(x)
|x − �j − ε�j�(�j )|2 .

Thus

lim
ε→0

�Hε
j

��
(x) = 2

(x − �j ) · �(x)
|x − �j |2 ∀x �= �j . (28)

The regular part of Green’s function satisfies


−�xH(x, y)+H(x, y) = − log

1

|x − y|2 , x ∈ �,

�H
��x

(x, y) = 2
(x − y) · �(x)

|x − y|2 , x ∈ ��.

For the differencezε(x) = Hε
j (x)+ log 2�j −H(x, �j ) we have


−�zε + zε = − log

1

|x − �j − ε�j�(�j )|2 + log
1

|x − �j |2 in �,

�zε
��

= �Hε
j

��
− 2

(x − y) · �(x)
|x − y|2 on ��.

We claim that for anyp > 1 there existsC > 0 such that

∥∥∥∥∥�Hε
j

��
− 2

(x − �j ) · �(x)
|x − �j |2

∥∥∥∥∥
Lp(��)

�Cε1/p. (29)

For this it will be convenient to observe first that

|1− �(�j ) · �(x)|�C|x − �j |2, |(x − �j ) · �(x)|�C|x − �j |2 ∀x ∈ ��, (30)
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which can be proved, for example, assuming that�j = 0 and that near the origin��
is the graph of a functionG : (−a, a) → R with G(0) = G′(0) = 0. Now

�Hε
j

��
− 2

(x − �j ) · �(x)
|x − �j |2 = 2ε�j

1− �(�j ) · �(x)
|x − �j − ε�j�(�j )|2

+2ε�j

(x − �j ) · �(x)(2(x − �j ) · �(�j )− ε�j )

|x − �j |2|x − �j − ε�j�(�j )|2 .

By (30) ∣∣∣∣∣�H
ε
j

��
− 2

(x − �j ) · �(x)
|x − �j |2

∣∣∣∣∣ �Cε + C
ε|2(x − �j ) · �(�j )− ε�j |

|x − �j − ε�j�(�j )|2 . (31)

Fix � > 0 small. Then∣∣∣∣∣�H
ε
j

��
− 2

(x − �j ) · �(x)
|x − �j |2

∣∣∣∣∣ �Cε ∀|x − �j |��, x ∈ ��. (32)

Now let p > 1. Changing variablesx − �j = εy we have

∫
B�(�j )∩��

∣∣∣∣∣ε|2(x − �j ) · �(�j )− ε�j |
|x − �j − ε�j�(�j )|2

∣∣∣∣∣
p

dx = Cε

∫
B�/ε(0)∩��ε

∣∣∣∣∣2y · �(0)− �j

|y − �j�(0)|2
∣∣∣∣∣
p

dy

� Cε

∫ �/ε

0

1

(1+ s)p
ds

� Cε.

Combining this with (31) and (32) we conclude that (29) holds.
For p > 1 let us estimate now∥∥∥∥∥log

1

|x − �j |2 − log
1

|x − �j − ε�j�(�j )|2
∥∥∥∥∥
p

Lp(�)

=
∫
B10ε�j (�j )∩�

· · · +
∫
�\B10ε�j (�j )

· · · = I1 + I2.

For I1 observe that

∫
B10ε�j (�j )∩�

∣∣∣∣log
1

|x − �j |2
∣∣∣∣p dx�C

∫ Cε

0
|logr|pr dr�Cε2

(
log

1

ε

)p

.
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The same bound is true for the integral of|log 1
|x−�j−ε�j �(�j )|2 |

p in B10ε�j
(�j ) ∩ �.

Hence

|I1|�Cε2
(

log
1

ε

)p

.

Let us estimateI2 as follows:∣∣∣∣∣log
1

|x − �j |2 − log
1

|x − �j − ε�j�(�j )|2
∣∣∣∣∣ � sup

0� t �1

Cε

|x − �j − tε�j�(�j )| .

But if |x − �j |�10ε�j then |x − �j |�C|x − �j − tε�j�(�j )| for any t ∈ [0,1] as can

be seen from|x− �j |� |x− �j − tε�j�(�j )| +�j ε� |x− �j − tε�j�(�j )| + 1
10|x− �j |.

Thus ∣∣∣∣∣log
1

|x − �j |2 − log
1

|x − �j − ε�j�(�j )|2
∣∣∣∣∣ � Cε

|x − �j | .

Take 1< p < 2 and integrate

|I2|�Cεp
∫ D

10�ε
r1−p dr�Cεp,

whereD is the diameter of�. In conclusion, for any 1< p < 2 we have

∥∥∥∥∥log
1

|x − �j |2 − log
1

|x − �j − ε�j�(�j )|2
∥∥∥∥∥
Lp(�)

�Cε.

By Lp theory

‖zε‖W1+s,p(�)�C

(∥∥∥∥�zε
��

∥∥∥∥
Lp(��)

+ ‖�zε‖Lp(�)

)
�Cε1/p

for any 0< s < 1
p

. By the Morrey embedding we obtain

‖zε‖C�(�)
�Cε1/p

for any 0< � < 1
2 + 1

p
. This proves the result (with
 = 1

p
). �
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Remark. The convergence (28) is not uniform in general because
�Hε

j

��
(�j ) = 0 while

the functionx �→ 2
(x−�j )·�(x)
|x−�j |2 can be extended continuously to�j with a value equal

to the curvature of�� at �j .

4. Solvability of a linear equation

The main result of this section is the solvability of the following linear problem:
given h find �, c1, . . . , cm, such that


−�� + ε2� = 0 in �ε,

��

��
−W� = h+

m∑
j=1

cjjZ1j on ��ε,∫
�ε

jZ1j� = 0 ∀j = 1, . . . , m,

(33)

whereW is a function on��ε that satisfies (26), h ∈ L∞(��ε) andZ1j , j are defined
as follows: letzij denote the functionsz0, z1 defined in (12) and (13) with parameter
� = �j (i = 0,1 j = 1, . . . , m)

z0j = 1

�j

− 2
x2 + �j

x2
1 + (x2 + �j )

2
, z1j = −2

x1

x2
1 + (x2 + �j )

2
.

Around each point�′j ∈ ��ε we consider a smooth change of variables

Fε
j (y) =

1

ε
Fj (εy), (34)

where Fj : B�(�j ) → M is a diffeomorphism andM an open neighborhood of the
origin such thatF(�∩B�(�j )) = R2+∩M, F(��∩B�(�j )) = �R2+∩M. We can select
Fj so that it preserves area. Define

Zij (y) = zij (F
ε
j (y)), i = 0,1, j = 1, . . . , m.

Next, we choose a large but fixed numberR0 and nonnegative smooth function
 : R → R so that(r) = 1 for r�R0 and (r) = 0 for r�R0 + 1, 0��1. Then
set

j (y) = (|Fε
j (y)|).

All functions above depend onε but we omit this dependence in the notation.
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Eq. (33) will be solved forh ∈ L∞(��ε), but we will be able to estimate the size
of the solution in terms of the following norm:

‖h‖∗,��ε
= sup

y∈��ε

|h(y)|
ε +∑m

j=1(1+ |y − �′j |)−1−�
, (35)

where we fix 0< � < 1 although the precise choice will be made later on.

Proposition 4.1. Let d > 0 and m a positive integer. Then there existε0 > 0, C such
that for any0 < ε < ε0, any family of points�1, . . . , �m ∈ �� with

|�i − �j |�d ∀i �= j (36)

and anyh ∈ L∞(��ε) there is a unique solution� ∈ L∞(�ε), c1, . . . , cm ∈ R to (33).
Moreover

‖�‖L∞(�ε)�C log
1

ε
‖h‖∗,��ε

.

To prove this result we shall study first the linear equation−�� + ε2� = f in �ε,

��

��
−W� = h on ��ε,

(37)

whereW satisfies (26) andf, h are in suitable weighted spaces: we consider forh the
norm defined in (35) and forf

‖f ‖∗∗,�ε
= sup

y∈�ε

|f (y)|
ε2 +∑m

j=1(1+ |y − �′j |)−2−�
.

We begin by stating an a priori estimate for solutions of (37) satisfying orthogonality
conditions with respect toZ0j and Z1j .

Lemma 4.2. There areR0 > 0 and ε0 > 0 so that for0 < ε < ε0 and any solution�
of (37) with the orthogonality conditions∫

�ε

Zijj � = 0 ∀i = 0,1 ∀j = 1, . . . , m, (38)

we have

‖�‖L∞(�ε)�C(‖h‖∗,��ε
+ ‖f ‖∗∗,�ε

),

where C is independent ofε.
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The idea behind this estimate comes from looking at (37) with f ≡ 0, h ≡ 0 as
ε → 0 at a fixed distance from one of the points, say�′j . After a translation and a

rotation so that�ε converges to the upper half-planeR2+ and�′j is located at the origin
this equation approaches precisely (14).

For the proof of this lemma we need to construct a suitable barrier.

Lemma 4.3. For ε > 0 small enough there existR1 > 0, and

� : �ε

∖
m⋃

j=1

BR1(�
′
j ) → R

smooth and positive so that

−�� + ε2��
m∑

j=1

1

|y − �′j |2+�
+ ε2 in �ε

∖
m⋃

j=1

BR1(�
′
j ),

��
��

−W��
m∑

j=1

1

|y − �′j |1+�
+ ε on ��ε

∖
m⋃

j=1

BR1(�
′
j ),

� > 0 in �ε

∖
m⋃

j=1

BR1(�
′
j ),

��1 on �ε ∩
 m⋃

j=1

�BR1(�
′
j )

 .

The constantsR1 > 0, c > 0 can be chosen independently ofε and � is bounded
uniformly

0 < ��C in �ε

∖
m⋃

j=1

BR1(�
′
j ) .

Proof of Lemma 4.2. We takeR0 = 2R1, R1 being the constant of Lemma 4.3. Thanks
to the barrier� of that lemma we deduce that the following maximum principle holds
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in �ε\ ∪m
j=1 BR1(�

′
j ): if � ∈ H 1(�ε\ ∪m

j=1 BR1(�
′
j )) satisfies:



−�� + ε2��0 in �ε

∖
m⋃

j=1

BR1(�
′
j ),

��

��
−W��0 on ��ε

∖
m⋃

j=1

BR1(�
′
j ),

��0 on �ε ∩
 m⋃

j=1

�BR1(�
′
j )

 ,

then ��0 in �ε\ ∪m
j=1 BR1(�

′
j ).

Let f, h be bounded and� a solution to (37) satisfying (38). Following [4] we
first claim that‖�‖L∞(�ε) can be controlled in terms of‖f ‖∗∗,�ε

, ‖h‖∗,��ε
and the

following inner norm of�:

‖�‖i = sup
�ε∩(∪m

j=1 BR1(�
′
j ))

|�|.

Indeed, set

�̃ = C1�
(
‖�‖i + ‖f ‖∗∗,�ε

+ ‖h‖∗,��ε

)
with C1 a constant independent ofε. By the above maximum principle we have���̃
and−���̃ in �ε\ ∪m

j=1 BR1(�
′
j ). Since� is uniformly bounded we deduce

‖�‖L∞(�ε)�C
(
‖�‖i + ‖f ‖∗∗,�ε

+ ‖h‖∗,��ε

)
(39)

for some constantC independent of� and ε.
We prove the lemma by contradiction. Assume that there exist a sequenceεn → 0,

points�n
1, . . . , �

n
m on �� satisfying (36) and functions�n, fn andhn with ‖�n‖L∞(�εn )= 1, ‖fn‖∗∗,�εn
→ 0, ‖hn‖∗,��εn

→ 0 so that for eachn �n solves (37) and satisfies
(38). By (39) we see that‖�n‖i stays away from zero. For one of the indices, say
j, we can assume that supBR1(�

′
j )
|�n|�c > 0 for all n. Consider�̂n(z) = �n(z − �′j )

and let us translate and rotate�εn so that �εn approaches the upper half-planeR2+
and �′j = 0. Then by elliptic estimateŝ�n converges uniformly on compact sets to a

nontrivial solution of (14). By Proposition 2.1̂� is a linear combination ofz0j andz1j .
On the other hand, we can take the limit in the orthogonality relations (38), observing
that limits of the functionsZij are just rotations and translations ofzij , and we find∫

R2+ �̂ zij = 0 for i = 1,2. This contradicts the fact that̂� �≡ 0. �
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Proof of Lemma 4.3. We take

�1j (y) =
(y − �′j ) · �(�′j )

r1+� ,

where r = |y − �′j − �j�(�
′
j )|. A computation shows that

��1j = O(r−2−�) in �ε (40)

and if � > 0 is small but fixed andR1 > 0 is large and fixed then

��1j

��
�cr−1−� for R1 < r < �/ε,

where c > 0 is fixed. To prove the last assertion we may suppose that�′j is at the
origin and assume that the normal vector at�′j is (0,−1). Hence

�1j (y) = − y2

r1+� .

Let us write��ε near�′j as the graph{(y1, y2) : y2 = Gε(y1)} with Gε(y1) = 1
ε
G(εy1)

and G a smooth function such thatG(0) = 0 andG′(0) = 0. Fix � > 0 small. Then
for R1 < r < �/ε we have thatr is comparable withy1, G′

ε(y1) = O(εr) and
Gε(y1) = O(εr2). Then

��1j

��
= 1√

G′(εy1)2 + 1

(
−(1+ �)

Gε(y1)G
′
ε(y1)y1

r3+� − 1

r1+�

+(1+ �)
Gε(y1)

2

r3+� + �j (1+ �)
Gε(y1)

r3+�

)

= 1√
G′(εy1)2 + 1

(
− 1

r1+� + O(ε2r4)

r3+� + O(�)
r2+�

)
for R1 < r < �/ε

= 1√
O(�2)+ 1

(
− 1

r1+� + O(�2)

r1+� + O(�)
r2+�

)
for R1 < r < �/ε,

from where the claim follows by taking� small enough.
Consider also

�2j (r) = 1− 1

r� .
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Then

−��2j = �2 1

r2+� (41)

and proceeding analogously as for�1j we find

��2j

��
= �

r2+�

1√
G′(εy1)2 + 1

(−y1G
′
ε(y1),Gε(y1)+ �j

)
= �

r2+�

1√
O(�2)+ 1

O(εr2) ∀R1 < r < �/ε

=O
( ε

r�

)
∀R1 < r < �/ε.

Now let

�3j = �1 + C�2j .

For C large enough (but independent ofε) using (40) and (41) we have

−��3j + ε2�3j ��2 1

r2+� ∀R1 < |y − �′j | < �/ε. (42)

Now recall thatW satisfies (26) and therefore

W(y) = O

(
1

r2

)
∀R1 < r <

�
ε
.

Thus

��3j

��
−W�3j � c

r1+� − C
1

r2 � c′

r1+� for R1 < r < �/ε (43)

with a constantc′ > 0 if we chooseR1 larger if necessary.
Let �j ∈ C∞

0 (R2) be such that 0��j ≤ 1, �j ≡ 1 in �ε ∩ B�/(2ε)(�
′
j ), �j ≡ 0 in

�ε\B�/ε(�
′
j ), |∇�j |�Cε in �ε, |��j |�Cε2 in �ε. Let �0(y) = �̃(εy) where �̃ is

the solution to −��̃ + �̃ = 1 in �,

��̃

��
= 1 on ��,
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so that−��0 + ε2�0 = ε2 in �ε and ��0
��

= ε on ��ε. In particular,�0 is uniformly
bounded in�ε. The function

� =
m∑

j=1

�j�3j + C�0

with C a sufficiently large constant meets the requirements. Indeed by (42)

−�� + ε2��
m∑

j=1

(
−��j�3j − 2∇�j∇�3j + �j

�2

r2+�
j

)
+ Cε2,

where rj = |y − �′j | and hence

−�� + ε2�� �2

r2+�
j

+ Cε2, R1 < rj <
�

2ε
.

By construction we have|∇�3j | = O( 1
r1+�
j

) and hence, choosingC large we have

−�� + ε2��O(ε2)+O

(
ε

1

r1+�
j

)
+ Cε2�cε2,

�
2ε

< rj <
�
ε

if ε is small enough, and also

−�� + ε2��c
1

r2+�
j

,
�

2ε
< rj <

�
ε
.

Finally, a similar argument using (43) yields

��

��
−W��c

1

r1+�
j

+ cε, R1 < rj <
�
ε

for all j = 1, . . . , m. �

We will establish next an a priori estimate for solutions to problem (37) that satisfy
orthogonality conditions with respect toZ1j only.

Lemma 4.4. For ε sufficiently small, if � solves−�� + ε2� = f in �ε,

��

��
−W� = h on ��ε

(44)
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and satisfies

∫
�ε

Z1jj � = 0 ∀j = 1, . . . , m, (45)

then

‖�‖L∞(�ε)�C log
1

ε
(‖h‖∗,��ε

+ ‖f ‖∗∗,�ε
), (46)

where C is independent ofε.

Proof. Let � satisfy (44) and (45). We will modify� to satisfy all orthogonality
relations in (38) and for this purpose we consider modifications with compact support
of the functionsZ0j . Let R > R0 + 1 be large and fixed. Set

Ẑ0j (y) = �Z0j (y),

where

�(y) = h̃(|Fε
j (y)|), h̃(x) = log(�/ε)− log |x|

log(�/ε)− logR

andFε
j is the change of variables defined in (34). Here� > 0 is a small fixed constant.

Note thath̃ is just the solution to


�h̃ = 0 in B�/ε(0)\BR(0),
h̃ = 1 |x| = R,

h̃ = 0 |x| = �/ε.

Let �̄1j , �̄2j be radial smooth cut-off functions onR2 so that

0� �̄1j �1, |∇�̄1j |�C in R2,

�̄1j ≡ 1 in BR(0), �̄1j ≡ 0 in R2\BR+1(0)

and

�̄2j ≡ 1 in B �
4ε
(0), �̄2j ≡ 0 in R2\B �

3ε
(0),

0� �̄2j �1, |∇�̄2j |�Cε/�, |∇2�̄2j |�Cε2/�2 in R2.
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Write

�1j (y) = �̄1j (F
ε
j (y)), �2j (x) = �̄2j (F

ε
j (y)). (47)

Now define

Z̃0j = �1jZ0j + (1− �1j )�2j Ẑ0j .

Given � satisfying (44) and (45) let

�̃ = � +
m∑

j=1

dj Z̃0j , wheredj = −
∫
�ε

Z0jj �∫
�ε

Z2
0jj

.

Estimate (46) is a direct consequence of

Claim.

|dj |�C log
1

ε

(
‖h‖∗,��ε

+ ‖f ‖∗∗,�ε

)
∀j = 1, . . . , m. (48)

We start proving this by observing, using the notationL = −� + ε2, that

L(�̃) = f +
m∑

j=1

djL(Z̃0j ) in �ε (49)

and

(
�
��

−W

)
�̃ = h+

m∑
j=1

dj

(
�
��

−W

)
Z̃0j on ��ε. (50)

Thus by Lemma4.2 we have

‖�̃‖L∞(�ε) � C

m∑
j=1

|dj |
(∥∥∥∥( �

��
−W

)
Z̃0j

∥∥∥∥∗,��ε

+ ‖L(Z̃0j )‖∗∗,�ε

)

+C‖h‖∗,��ε
+ C‖f ‖∗∗,�ε

. (51)
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Multiplying Eq. (49) by Z̃0k, integrating by parts and using (50) we find

dk

[∫
�ε

L(Z̃0k)Z̃0k +
∫
��ε

Z̃0k

(
�
��

−W

)
Z̃0k

]

= −
∫
��ε

hZ̃0k −
∫
�ε

f Z̃0k +
∫
��ε

�̃
(

�
��

−W

)
Z̃0k +

∫
�ε

�̃L(Z̃0k).

This combined with (51) yields

dk

[∫
�ε

L(Z̃0k)Z̃0k +
∫
��ε

Z̃0k

(
�
��

−W

)
Z̃0k

]

�C‖h‖∗,�� + C‖f ‖∗∗,�ε
+ ‖�̃‖L∞

∥∥∥∥( �
��

−W

)
Z̃0k

∥∥∥∥∗,��ε

+‖�̃‖L∞‖L(Z̃0k)‖∗∗,�ε

�(C‖h‖∗,�� + ‖f ‖∗∗,�ε
)

(
1+

∥∥∥∥( �
��

−W

)
Z̃0k

∥∥∥∥∗,��ε

+ ‖L(Z̃0k)‖∗∗,�ε

)

+C

m∑
j=1

|dj |
(∥∥∥∥( �

��
−W

)
Z̃0j

∥∥∥∥2

∗,��ε

+ ‖L(Z̃0j )‖2
∗∗,�ε

)
.

We will achieve (48) proving the following estimates: for some constantC > 0
independent ofε we have

∫
�ε

L(Z̃0j )Z̃0j +
∫
��ε

Z̃0j

(
�
��

−W

)
Z̃0j � 1

C log 1
ε

, (52)

‖L(Z̃0j )‖∗∗,�ε
� C

log 1
ε

, (53)

∥∥∥∥( �
��

−W

)
Z̃0j

∥∥∥∥∗,��ε

� C

log 1
ε

. (54)

Proof of (52). We write

∫
�ε

L(Z̃0j )Z̃0j = I0 + I1 + I2 + I3,
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where Il = ∫
Rl

L(Z̃0j )Z̃0j and the regionsR0, . . . , R3 are defined in terms of the

change of variablesFε
j defined in (34) as follows. Writex = (F ε

j )
−1(y), r = |x| and

define the following subsets of�ε:

R0 = (F ε
j )

−1({r < R} ∩ R2+), R1 = (F ε
j )

−1({R < r < R + 1} ∩ R2+),

R2 = (F ε
j )

−1
({

R + 1 < r <
�

4ε

}
∩ R2+

)
, R3 = (F ε

j )
−1
({

�
4ε

< r <
�

3ε

}
∩ R2+

)
.

We will prove that

I1� c̄

log �
ε

with c̄ > 0 independent ofε, � and R while the other termsI0, I2, I3 and
∫
��ε

Z̃0j (
�
��

−W)Z̃0j can be made small compared to1
log 1

ε

by choosing� > 0 small and

R > 0 large, but fixed independently ofε.
Estimate of I1: We change variablesx = Fε

j (y) and recall that this map preserves
area, so

I1 =
∫
{R<r<R+1}∩R2+

L̃(̃z0j )̃z0j ,

z̃0j (x) = Z̃0j ((F
ε
j )

−1(x)) = �̄1j z0j + (1− �̄1j )h̃(x)z0j (55)

and L̃ is a linear operator, which thanks to the definitionFε
j (y) = 1

ε
F (εy), has the

expansion

L̃ = −� +O(ε|x|)∇2 +O(ε)∇ + ε2. (56)

Therefore

I1 = −
∫
{R<r<R+1}∩R2+

�(z̃0j ) z̃0j +O(Rε).

Using thatz0j is harmonic and that in the regionR < r < R+ 1 we have�̄2j ≡ 1 we
compute

�z̃0j =�(�̄1j z0j + (1− �̄1j )h̃z0j ) = ��̄1j (1− h̃)z0j + 2∇�̄1j∇((1− h̃)z0j )

+ (1− �̄1j )�(h̃z0j ), R < r < R + 1.



J. Dávila et al.

Since�h̃ = 0, �z0j = 0 for the last term in the expression above, we have

�(h̃z0j ) = 2∇h̃∇z0j , R < r < R + 1.

But

�z0j

�x1
(x1, x2) = 4

x1(x2 + �j )

(x2
1 + (x2 + �j )

2)2
,

�z0j

�x2
(x1, x2) = 2

(x2 + �j )
2 − x2

1

(x2
1 + (x2 + �j )

2)2
.

Thus

∇h̃∇z0j = − 2

|x|2(log(�/ε)− logR)

x2(x
2
1 + (x2 + �j )

2)+ 2x2
1�j

(x2
1 + (x2 + �j )

2)2
�0,

so that

�(�̄1j z0j + (1− �̄1j )h̃z0j )���̄1j (1− h̃)z0j + 2∇�̄1j∇((1− h̃)z0j ),

R < r < R + 1.

It follows that

I1 � −
∫
{R<r<R+1}∩R2+

��̄1j (1− h̃)z0j z̃0j + 2
∫
{R<r<R+1}∩R2+

∇�̄1j∇h̃z0j z̃0j

−2
∫
{R<r<R+1}∩R2+

∇�̄1j∇z0j (1− h̃)z̃0j +O(Rε).

We integrate by parts the first term on the right-hand side above

I1 �
∫
{R<r<R+1}∩R2+

∇�̄1j∇h̃z0j z̃0j −
∫
{R<r<R+1}∩R2+

∇�̄1j∇z0j (1− h̃)z̃0j

+
∫
{R<r<R+1}∩R2+

∇�̄1j∇ z̃0j (1− h̃)z0j +O(Rε), (57)

observing that the boundary term on�R2+ ∩ {R < r < R + 1} is zero becausē�1j is
radial.

The second term on the right-hand side above is bounded by

∫
{R<r<R+1}∩R2+

|∇�̄1j∇z0j (1− h̃)z̃0j |�C

∫
{R<r<R+1}∩R2+

|h̃− 1||∇z0j |.
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But in the regionR < r < R+1 we have|h̃−1|� C

log �
ε

, and |∇z0j |� C
R2 which yields

∫
{R<r<R+1}∩R2+

|∇�̄1j∇z0j (1− h̃)z̃0j |� C

R log �
ε

. (58)

The third term on the right-hand side of (57) is similar since in the regionR < r < R+1
we have|∇h̃|� C

R log �
ε

and hence

|∇ z̃0j | = |∇(�̄1j (1− h̃)z0j )+ h̃z0j |
= |∇�̄1j (1− h̃)z0j − �̄1j∇h̃z0j + �̄1j (1− h̃)∇z0j + ∇h̃z0j + h̃∇z0j |

� C

log �
ε

+ C

R2 , R < r < R + 1.

Integrating

∫
{R<r<R+1}∩R2+

|∇�̄1j∇ z̃0j (1− h̃)z0j |� CR

log2 �
ε

+ C

R log �
ε

. (59)

Thus from (57)–(59) we obtain

I1�
∫
{R<r<R+1}∩R2+

∇�̄1j∇h̃z0j z̃0j +O(Rε)+O

(
R

log2 �
ε

)
+O

(
1

R log �
ε

)
.

In the first integral abovez0j and z̃0j have a lower bound independent ofε, �, R and
|∇h̃| = (|x|(log(�/ε)− logR))−1. Hence

I1� c̄

log �
ε

+O(Rε)+O

(
R

log2 �
ε

)
+O

(
1

R log �
ε

)
(60)

with c̄ > 0 independent ofε, �, R.
Estimate of I0: By (56) and since�z0j = 0 we have

L̃(z̃0j ) = O(ε), r < R (61)

and this implies

I0 = O(Rε). (62)
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Estimate of I2: Changing variables as before

I2 =
∫
{R+1<r< �

4ε }∩R2+
L̃(z̃0j )z̃0j .

In the regionR + 1 < r < �
4ε we havez̃0j = h̃z0j and therefore

|�̃z0j | = 2|∇h̃∇z0j |� C

r3 log �
ε

, R + 1 < r <
�

4ε
.

For the other terms we find

|∇2z̃0j | � |∇2h̃|z0j + 2|∇h̃∇z0j | + h̃|∇2z0j |

= O

(
1

r2 log �
ε

)
+O

(
1

r3 log �
ε

)
+O

(
1

r3

)
, R + 1 < r <

�
4ε

,

so

O(ε|x|)|∇2z̃0j | = O

(
ε

r log �
ε

)
+O

( ε

r2

)
, R + 1 < r <

�
4ε

.

Also

|∇ z̃0j |� |∇h̃|z0j + h̃|∇z0j | = O

(
1

r log �
ε

)
+O

(
1

r2

)
, R + 1 < r <

�
4ε

.

Hence

L̃(z̃0j ) = O

(
1

r3 log �
ε

)
+O

(
ε

r log �
ε

)
+O

( ε

r2

)
+ε2z0j , R + 1 < r <

�
4ε

. (63)

This yields

∫
{R+1<r< �

4ε }∩R2+
L̃(z̃0j )z̃0j =O

(
1

R log �
ε

)
+O

(
�

log �
ε

)

+O(ε2)

∫
{R+1<r< �

4ε }∩R2+
z̃2

0j .
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We estimate the last integral using the fact that in the regionR+1 < r < �
4ε z̃0j = h̃z0j

and z0j is bounded, thus

∫
{R+1<r<

�
4ε }∩R2+

z̃2
0j �C

∫ �
4ε

R+1

(
log �

ε
− logr

log �
ε
− logR

)2

r dr�C
�2

ε2 log2 �
ε

.

This and the previous estimate show that

I2 = O

(
1

R log �
ε

)
+O

(
�

log �
ε

)
. (64)

Estimate ofI3: In the region �
4ε < r < �

3ε the definition ofz̃0j is z̃0j = �̄2j h̃z0j . We

will estimate each term of (56) using the facts that∇�̄2j = O(ε� ), |∇2�̄2j | = O(ε
2

�2 )

and that in the considered regionh̃ = O( 1

log �
ε

) which implies alsoz̃0j = O( 1

log �
ε

). We

obtain

�z̃0j =��̄2j h̃z0j + 2∇�̄2j∇(h̃z0j )+ �̄2j�(h̃z0j )

=��̄2j h̃z0j + 2∇�̄2j∇h̃z0j + 2∇�̄2j∇z0j h̃+ 2�̄2j∇h̃∇z0j

=O

(
ε2

�2 log �
ε

)
+O

(
ε

r� log �
ε

)
+O

(
ε

r2� log �
ε

)
+O

(
1

r3 log �
ε

)

=O

(
ε2

�2 log �
ε

)
,

�
4ε

< r <
�

3ε
.

Next

∇2z̃0j = ∇2�̄2j h̃z0j + 2∇�̄2j∇(h̃z0j )+ �̄2j∇2(h̃z0j ),
�

4ε
< r <

�
3ε

and by the above computations

∇2z̃0j =O

(
ε2

�2 log �
ε

)
+ �̄2j (∇2h̃z̃0j + 2∇h̃∇ z̃0j + h̃∇2z̃0j )

=O

(
ε2

�2 log �
ε

)
,

�
4ε

< r <
�

3ε
.
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Similarly

∇ z̃0j =∇�̄2j h̃z0j + �̄2j∇h̃z0j + �̄2j h̃∇z0j

=O

(
ε

� log �
ε

)
,

�
4ε

< r <
�

3ε
.

This shows that

L̃(z̃0j ) = O

(
ε2

�2 log �
ε

)
,

�
4ε

< r <
�

3ε
. (65)

and integrating

I3 = O

(
1

log2 �
ε

)
. (66)

Estimate of
∫
��ε

Z̃0j (
�
��

−W)Z̃0j : We change variables through the mapFε
j :

∫
��ε

Z̃0j

(
�
��

−W

)
Z̃0j =

∫
�R2+

z̃0j (B(z̃0j )− W̃ z̃0j )b(x),

wherez̃0j is defined in (55), W̃ (x) = W((F ε
j )

−1(x)) andb is a positive function arising
from the change of variables bounded uniformly inε. B is a differential operator of
order one on�R2+. Rotating�ε so that∇Fε

j (�
′
j ) = I we find the following expansion

for B

B = − �
�x2

+O(ε|x|)∇.

Let us estimate first the integral in the region|x| < R, where z̃0j = z0j . Then

B(z̃0j ) = −�z0j

�x2
+O(ε), |x| < R, x ∈ �R2+.

On the other hand recall (26), that is

W(y) = 2�j

|y − �′j − �j�(�
′
j )|2

(1+O(ε
(1+ |y|))).
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Since we have the expansion(F ε
j )

−1(x) = �′j + x +O(ε|x|) we find

W̃ (x)=W((F ε
j )

−1(x)) = W(�′j + x +O(ε|x|))

= 2�j

x2
1 + �2

j

+O

(
ε
(1+ |x|)

1+ |x|2
)
, x = (x1,0), |x| < �

ε
. (67)

Thus

B(z̃0j )− W̃ z̃0j = O(ε
), x ∈ �R2+, |x| < R (68)

and therefore ∫
�R2+∩{|x|<R}

z̃0j (B(z̃0j )− W̃ z̃0j )b(x) = O(Rε
).

Next, in the regionR < |x| < R + 1 we have

∇ z̃0j =∇(�̄1j (1− h̃)z0j + h̃z0j )

=∇�̄1j (1− h̃)z0j − �̄1j∇h̃z0j + �̄1j (1− h̃)∇z0j + ∇h̃z0j + h̃∇z0j

=O

(
1

log �
ε

)
+ �̄1j (1− h̃)∇z0j + h̃∇z0j .

Since h̃ is radial this implies

B(z̃0j ) = −h̃
�z0j

�x2
+O

(
1

R2 log �
ε

)
+O

(
Rε

log �
ε

)
, R < |x| < R + 1, x ∈ �R2+.

Using (67) we see that

B(z̃0j )− W̃ z̃0j = O

(
1

R2 log �
ε

)
+O

(
Rε

log �
ε

)
, R < |x| < R + 1, x ∈ �R2+. (69)

It follows that

∫
�R2+∩{R<|x|<R+1}

z̃0j (B(z̃0j )− W̃ z̃0j )b(x) = O

(
1

R2 log �
ε

)
+O

(
Rε

log �
ε

)
.
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Using the fact that̃h has zero normal derivative on�R2+ we deduce

B(h̃z0j )=−h̃
�z0j

�x2
+O(εr)(∇h̃z0j + h̃∇z0j )

=−h̃
�z0j

�x2
+O

(
ε

log �
ε

)
+O

(ε
r

)
, R + 1 < r <

�
ε
. (70)

On the other hand, using (67) we have

B(z̃0j )− W̃ z̃0j = O

(
ε

log �
ε

)
+O

(
ε


r

)
and we conclude∫

�R2+∩{R+1<r< �
4ε }

z̃0j (B(z̃0j )− W̃ z̃0j )b(x) = O

(
�

log �
ε

)
.

Finally we consider �
4ε < r < �

3ε . Here we havẽz0j = �̄2j h̃z0j and h̃, z0j = O( 1

log �
ε

),

∇�̄2j = O(ε� ). Using these facts, estimate (70) and that̄�2j has zero normal derivative
we find

B(̃z0j )=B(�̄2j )h̃z0j + �̄2jB(h̃z0j )

=O

(
ε2r

� log �
ε

)
+O

(
1

r2

)
+O

(
ε

log �
ε

)
+O

(ε
r

)
,

�
4ε

< r <
�

3ε
.

(71)

Integrating we have

∫
�R2+∩{ �

4ε <r< �
3ε }

z̃0jB(z̃0j )b(x) = O

(
1

log2 �
ε

)
.

From (67) we have

W̃ = O

(
ε


r

)
,

�
4ε

< r <
�
ε

(72)

and this implies ∫
�R2+∩{ �

4ε <r< �
3ε }

W̃ z̃2
0j b(x) = O

(
ε
 log

�
ε

)
.
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Thus

∫
�R2+∩{ �

4ε <r< �
3ε }

z̃0j (B(z̃0j )− W̃ z̃0j )b(x) = O

(
1

log2 �
ε

)
+O

(
ε
 log

�
ε

)

and therefore

∫
��ε

Z̃0j

(
�
��

−W

)
Z̃0j = O

(
1

R2 log �
ε

)
+O

(
�

log �
ε

)
. (73)

Combining (60), (62), (64), (66) and (73) we obtain

∫
�ε

L(Z̃0j )Z0j � c̄

log �
ε

+O

(
1

R log �
ε

)
+O

(
�

log �
ε

)
.

Choosing� > 0 small andR > 0 large (fixed independently ofε) we conclude that
(52) holds forε > 0 small enough.

Proof of (53). By (61) we deduce

L(Z̃0) = O(ε), r < R. (74)

Also (63) implies

L(Z̃0j ) = O

(
1

r3 log �
ε

)
+O

(
ε

r log �
ε

)
+O

( ε

r2

)
+ ε2Z̃0j ,

R + 1 < r <
�

4ε
(75)

and from (65) we obtain

L(Z̃0j ) = O

(
ε2

�2 log �
ε

)
,

�
4ε

< r <
�

3ε
. (76)

Thus, we only need to estimate the size ofL(Z̃0j ) in the regionR < r < R + 1. In
this region we havẽZ0j = �1jZ0j + (1− �1j )�Z0j and hence

�Z̃0j =��1j (1− �)Z0j − 2∇�1j∇�Z0j + 2∇�1j∇Z0j (1− �)+ �1j�Z0j
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+ (1− �1j )�(�Z0j )

=O

(
1

log �
ε

)
+ �1j�Z0j + (1− �1j )�(�Z0j ), R < r < R + 1.

Using the change of variablesx = Fε
j (y) and recalling the definitions ofZ0j and �

we have

�yZ0j = �xz0j +O(ε) = O(ε), R < r < R + 1

and

�y(�Z0j )=�x(h̃z0j )+O(ε)

= 2∇h̃∇z0j +O(ε), R < r < R + 1

=O

(
1

log �
ε

)
+O(ε), R < r < R + 1.

Thus

L(Z̃0j ) = O

(
1

log �
ε

)
, R < r < R + 1.

This bounds and (74)–(76) imply (53).

Proof of (54). By (68) we see that

�Z̃0j

��
−WZ̃0j = O(ε), y ∈ ��ε, |y| < R.

From (69) we also obtain

�Z̃0j

��
−WZ̃0j = O

(
εr

log �
ε

)
+O(ε
), y ∈ ��ε, R < |y| < R + 1.

Finally using (70), (72) and (71) we also see that

�Z̃0j

��
−WZ̃0j = O

(
ε2r

� log �
ε

)
+O

(
1

r2

)
+O

(
ε

log �
ε

)
+O

(ε
r

)
,

y ∈ ��ε, R + 1 < |y| < �
3ε

.

These inequalities readily imply (54). �
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Proof of Proposition 4.1. To prove the solvability of (33) we consider first a related
problem: that of givenh ∈ L∞(��ε) find � ∈ L∞(�ε) andd1, . . . , dm ∈ R, such that



−�� + ε2� =
m∑

j=1

djjZ1j in �ε,

��

��
−W� = h on ��ε,∫

�ε
jZ1j� = 0 ∀ j = 1, . . . , m.

(77)

First we prove that for any�, d1, . . . , dm solution to (77) the bound

‖�‖L∞(�ε)�C log
1

ε
‖h‖∗,��ε

(78)

holds. Indeed, by Lemma4.4 we have

‖�‖L∞(�ε)�C log
1

ε

‖h‖∗,��ε
+

m∑
j=1

|dj |
 (79)

and therefore it is enough to prove that|dj |�C‖h‖∗,��ε
.

Let �2j be the cut-off function defined in (47) and multiply Eq. (77) by�2kZ1k.
Integrating by parts we find

dk

∫
�ε

kZ
2
1k =−

∫
��ε

h�2kZ1k +
∫
��ε

�
��2k

��
Z1k +

∫
��ε

��2k

(
�Z1k

��
−WZ1k

)
+
∫
�ε

�(−�(�2kZ1k)+ ε2�2kZ1k). (80)

But Z1j = O( 1
1+r

) and ∇�2j = O(ε) so | ∫��ε
���2k

��
Z1k|�Cε log 1

ε
. Also, using (67)

and proceeding similarly as with (68) we obtain

�Z1j

��
−WZ1j = O

(
ε

1+ r

)
+O

(
ε


1+ r2

)
, |y| < �

ε
, y ∈ ��ε

and this implies

∫
��ε

∣∣∣∣�Z1j

��
−WZ1j

∣∣∣∣ = O(ε
). (81)
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We also compute

�(�2jZ1j )=��2jZ1j + 2∇�2j∇Z1j + �2j�Z1j

=O

(
ε2

1+ r

)
+O

(
ε

1+ r2

)
+ �2j�Z1j .

But −�Z1j + ε2Z1j = L̃(z1j ) where L̃ is the linear operator (56). Thus

−�Z1j + ε2Z1j = O

(
ε

1+ r2

)
+O

(
ε2

1+ r

)
and this readily implies∫

�ε

| − �(�2jZ1j )+ ε2�2jZ1j | = O

(
ε log

1

ε

)
. (82)

Combining (80)–(82) we conclude that

dk

∫
�ε

kZ
2
1k �C‖h‖∗,��ε

+ Cε
‖�‖L∞(�ε)

and this combined with (79) yields

|dk|�C

‖h‖∗,��ε
+ Cε
log

1

ε

m∑
j=1

|dj |
 .

This implies

|dk|�C‖h‖∗,��ε
(83)

which proves (78).
Now consider the Hilbert space

H =
{
� ∈ H 1(�ε) :

∫
�ε

jZ1j� = 0 ∀j = 1, . . . , m

}

with the norm‖�‖2
H1 = ∫�ε

|∇�|2 + ε2�2. Eq. (77) is equivalent to find� ∈ H , such
that ∫

�ε

(∇�∇� + ε2��)−
∫
��ε

W�� =
∫
��ε

h� ∀� ∈ H.
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By Fredholm’s alternative this is equivalent to the uniqueness of solutions to this
problem, which is guaranteed by (78).

To show solvability of (33) letYi ∈ L∞(�ε), dij ∈ R be the solution to (77) with
h = iZ1i , that is



−�Yi + ε2Yi =
m∑

j=1

dijjZ1j in �ε,

�Yi

��
−WYi = iZ1i on ��ε,∫

�ε
jZ1j Yi = 0 ∀ j = 1, . . . , m.

(84)

By the previous argument there is a uniqueYi ∈ L∞(�ε) solution to this equation, and
moreover we have the estimates

‖Yi‖L∞(�ε)�C log
1

ε
, |dij |�C (85)

for some constantC independent ofε. We shall show that

dij = A�ij +O

(
ε
 log

1

ε

)
, (86)

whereA > 0 is independent ofε and�ii = 1 and�ij = 0 if i �= j is Kronecker’s delta.
Assuming this for a moment, we see that the matrixD with entriesdij is invertible
for small ε and ‖D−1‖�C uniformly in ε. Then, givenh ∈ L∞(��ε) we find �1,
d1, . . . , dm the solution to (77) and define

� = �1 +
m∑
i=1

ciYi,

whereci is such that
∑m

i=1 cidij = −dj ∀j = 1, . . . , m. Then� satisfies (33) and we
have the estimate

‖�‖L∞(�ε) � ‖�1‖L∞(�ε) + log
1

ε

m∑
i=1

|ci |�C log
1

ε
‖h‖∗,��ε

+ log
1

ε

m∑
i=1

|di |

� C log
1

ε
‖h‖∗,��ε

,

by (83).
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To prove (86) we multiply (84) by�2jZ1j and integrate by parts

dij

∫
�ε

jZ
2
1j + �ij

∫
��ε

jZ
2
1j =

∫
��ε

(
�Z1j

��
−WZ1j

)
�2j Yi +

∫
��ε

��2j

��
Z1j Yi

+
∫
�ε

Yi(−�(�2jZ1j )+ ε2�2jZ1j )

=O

(
ε
 log

1

ε

)
,

using (81), (82) and (85). �

Remark. A slight modification of the proof above also shows that for anyh ∈ L∞(��ε)

and f ∈ L∞(�ε) the equation
−�� + ε2� = f in �ε,

��

��
−W� = h+

m∑
j=1

cjjZ1j on ��ε,∫
�ε

jZ1j� = 0 ∀j = 1, . . . , m

has a unique solution�, c1, . . . , cm and that the estimates

‖�‖L∞(�ε) � C log
1

ε
(‖h‖∗,��ε

+ ‖f ‖∗∗,�ε
),

|cj | � C(‖h‖∗,��ε
+ ‖f ‖∗∗,�ε

) ∀j = 1, . . . , m

hold with C independent ofε.

The result of Proposition 4.1 implies that the unique solution� = T (h) of (33)
defines a continuous linear map from the Banach spaceC∗ of all functionsh in L∞
for which ‖h‖∗,��ε

< ∞, into L∞.
It is important for later purposes to understand the differentiability of the operator

T with respect to the variables�′i . Fix h ∈ C∗ and let� = T (h). We want to compute
derivatives of� with respect to, say,�′k. Formally, Z = ��′k� should satisfy in�ε the
equation

−�Z + ε2Z = 0 in �ε

and on��ε the boundary condition

�Z
��

−WZ = −��′k (W)� + ck ��′k (Z1kk) +
∑
j

dj Zjj ,
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where (still formally)dj = ��′k (cj ). The orthogonality conditions now become∫
�ε

Z1jjZ = 0 if j �= k,∫
�ε

Z1kkZ = −
∫
�ε

��′k (Z1kk)�.

Let us write Z̃ = Z + bkkZ1k where

bk

∫
�ε

2
k|Z1k|2 ≡

∫
�ε

� ��′k (kZ1k).

Hence
∫
�ε

Z̃jZ1j = 0 for all j,

−�Z̃ + ε2Z̃ = a in �ε

and

�Z̃
��

−WZ̃ = b +
∑
j

dj Zjj ,

where

a = bk(−�(kZ1k)+ ε2kZ1k)

and

b = −��′k (W)� + ck ��′k (Z1kk) + �(kZ1k)

��
−WkZ1k

with

‖b‖∗,��ε
�C log

1

ε
‖h‖∗,��ε

, ‖a‖∗∗,�ε
�C log

1

ε
‖h‖∗,��ε

.

The remark above gives

‖��′k�‖L∞(�ε)�C

(
log

1

ε

)2

‖h‖∗,��ε
. (87)
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5. The nonlinear problem

Consider the nonlinear equation


−�� + ε2� = 0 in �ε,

��

��
−W� = R +N(�)+

m∑
j=1

cjjZ1j on ��ε,∫
�ε

jZ1j� = 0 ∀j = 1, . . . , m,

(88)

whereW is as in (26) andN, R are defined in (22) and (23), respectively.

Lemma 5.1. Let m > 0, d > 0. Then there existε0 > 0, C > 0, such that for
0 < ε < ε0 and any�1, . . . , �m ∈ �� satisfying

|�i − �j |�d ∀i �= j,

the problem(88) admits a unique solution�, c1, . . . , cm such that

‖�‖L∞(�ε)�Cε
|logε|, (89)

where
 is any number in the interval(0,1). Furthermore, the function�′ → �(�′) ∈
C(�̄ε) is C1 and

‖D�′�‖L∞(�ε)�C ε
|logε|2. (90)

Proof. In terms of the operatorT defined in the previous section, problem (88) becomes

� = T (N(�)+ R) ≡ A(�) . (91)

For a given number� > 0, let us consider the region

F� ≡ {� ∈ C(�̄ε) : ‖�‖L∞(�ε)�� ε
|logε|}.

From Proposition4.1, we get

‖A(�)‖L∞(�ε)�C|logε|
[
‖N(�)‖∗,��ε

+ ‖R‖∗,��ε

]
.

Estimate (25) implies that‖R‖∗,��ε
�Cε
′ , for any 
′ ∈ (0,1). Also, the definition of

N in (22) immediately yields‖N(�)‖∗,��ε
�C ‖�‖2

L∞(�ε)
. It is also immediate thatN
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satisfies, for�1,�2 ∈ F�,

‖N(�1)−N(�2)‖∗,��ε
�C�ε
|logε| ‖�1 − �2‖L∞(�ε),

whereC is independent of�. Hence we get

‖A(�)‖L∞(�ε) � Cε
|logε|
[
�2 ε
|logε|2 + 1

]
,

‖A(�1)− A(�2)‖L∞(�ε) � C � ε
|logε| ‖�1 − �2‖L∞(�ε) .

It follows that for all sufficiently smallε we get thatA is a contraction mapping of
F�, and therefore a unique fixed point ofA exists in this region.

Let us now discuss the differentiability of�. SinceR depends continuously (in the
*-norm) on them-tuple

�′ = (�′1, . . . , �
′
m),

the fixed point characterization obviously yields so for the map�′ �→ �. Then, formally,

−��′kN(�) = ��′kW(e� − � − 1)+W [e� − 1]��′k � .

Since‖��′kW‖∗,��ε
is uniformly bounded, we conclude

‖��′kN(�)‖∗,��ε
� C

[
‖�‖L∞(�ε) + ‖��′k�‖L∞(�ε)

]
‖�‖L∞(�ε)

� C
[
ε
|logε| + ‖��′k�‖L∞(�ε)

]
ε
|logε| .

Also observe that we have

��′k� = (��′k T )
(−(N(�)+ R)

)+ T
(
−��′k

[
N(�)+ R

])
,

so that, using (87),

‖��′k�‖L∞(�ε) � C |logε|
[
|logε|‖(N(�)+ R)‖∗,��ε

+‖��′kN(�)‖∗,��ε
+ ‖��′kR‖∗,��ε

)
]
.

Since it is also easily checked that‖��′kR‖∗,��ε
�Cε
′ for any 
′ ∈ (0,1), we conclude

from the above computation that

‖��′k�‖L∞(�ε)�C ε
|logε|2 for all k.
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The above computation can be made rigorous by using the implicit function theorem
and the fixed point representation (91) which guaranteesC1 regularity in �′. �

6. Variational reduction

In view of Lemma 5.1, given� = (�1, . . . , �m) ∈ ��m satisfying|�i−�j |�d ∀i �= j ,
we define�(�) and cj (�) to be the unique solution to (88) satisfying the bound (89).

Given � = (�1, . . . , �m) ∈ ��m we write

U(�) =
m∑

j=1

(
uj (x)+Hε

j (x)
)
,

the ansatz defined in (16). Set

Fε(�) = Jε(U(�)+ �̃(�)), (92)

whereJε is the functional defined in (3) and

�̃(�)(x) = �(�)
(x
ε

)
, x ∈ �. (93)

Lemma 6.1. If � = (�1, . . . , �m) ∈ (��)m satisfying(36) is a critical point ofFε then
u = U(�)+ �̃(�) is a critical point of Jε, that is, a solution to(1).

Proof. Let

Iε(v) = 1

2

∫
�ε

|∇v|2 + ε2v2 −
∫
��ε

ev.

Then Fε(�) = Jε(U(�)+ �̃(�)) = Iε(V (�′)+ �(�′)), where�′ = �/ε. Therefore

�Fε

��k

= 1

ε

�Iε(V (�′)+ �(�′))
��′k

= 1

ε
DIε(V (�′)+ �(�′))

[�V (�′)
��′k

+ ��(�′)
��′k

]
.

Sincev = V (�′)+ �(�′) solves (88)

�Fε

��k

= 1

ε

m∑
i=1

ci

∫
��ε

iZ1i

[�V (�′)
��′k

+ ��(�′)
��′k

]
.
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Let us assume thatDF(�) = 0. From the previous equation we conclude that

m∑
i=1

ci

∫
��ε

iZ1i

[�V (�′)
��′k

+ ��(�′)
��′k

]
= 0 ∀k = 1, . . . , m.

Since ‖��(�′)
��′k

‖L∞(�ε)�Cε
|logε|2 and �V (�′)
��′k

= ±Z1k + o(1) where o(1) is in the

L∞ norm, it follows that

m∑
i=1

ci

∫
��ε

iZ1i (±Z1k + o(1)) = 0 ∀k = 1, . . . , m,

which is a strictly diagonal dominant system. This implies thatci=0 ∀i=1, . . . , m. �

In order to solve for critical points of the functionF, a key step is its expected
closeness to the functionJε(U), which we will analyze in the next section.

Lemma 6.2. The following expansion holds:

Fε(�) = Jε(U)+ 	ε(�),

where

|	ε| + |∇	ε| → 0,

uniformly on points satisfying the constraints(36).

Proof. Let 	̃ε(�
′) = Iε(V + �) − Iε(V ). In order to get the proof of this lemma, we

need to show that

|	̃ε| + ε−1|∇�′ 	̃ε| = o(1).

Taking into accountDIε(V + �)[�] = 0, a Taylor expansion and an integration by
parts give

Iε(V + �)− Iε(V )

=
∫ 1

0
D2Iε(V + t�)[�]2 (1− t) dt

=
∫ 1

0

(∫
��ε

[N(�)+ R]� +
∫
��ε

eV [1− et�]�2
)

(1− t) dt, (94)
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so we get

Iε(V + �)− Iε(V ) = 	̃ε = O(ε2
|logε|3) .

taking into account that‖�‖L∞(�ε)�Cε
|logε|. Let us differentiate with respect
to �′k

��′k [Iε(V + �)− Iε(V )] =
∫ 1

0

(∫
��ε

��′k [(N(�)+ R)�]

+
∫
��ε

��′k [eV [1− et�]�2]
)
(1− t) dt .

Using the fact that‖��′�‖∗�C ε
|logε|2 and the estimates of the previous sections
we get

��′kl [Iε(V + �)− Iε(V )] = ��′kl 	̃ε = O(ε2
|logε|4) .

The continuity in� of all these expressions is inherited from that of� and its derivatives
in � in the L∞ norm. The proof is complete. �

7. Expansion of the energy

Lemma 7.1. Let �j be given by(24). Then for any0 < 
 < 1

Jε(U)=m(� − 2� + 2� log 2)+ 2�m log
1

ε
− �

m∑
j=1

H(�j , �j )+
∑
i �=j

G(�i , �j )


+O(ε
),

where

� =
∫ ∞

−∞
1

1+ x2 log
1

1+ x2 dx.

Proof. Define

Uj(x) = uj (x)+Hε
j (x),
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so we may rewrite (16) in equivalent formU =∑m
j=1 Uj . Then

Jε(U)= 1

2

∫
�

∣∣∣∣∣∣
m∑

j=1

∇Uj

∣∣∣∣∣∣
2

+ 1

2

∫
�

 m∑
j=1

Uj

2

− ε

∫
��

exp

 m∑
j=1

Uj


=

m∑
j=1

∫
�
(|∇Uj |2 + U2

j )+
m∑

i �=j

∫
�
(∇Ui∇Uj + UiUj )− ε

∫
��

exp

 m∑
j=1

Uj


= IA + IB + IC.

Let us analyze the behavior ofIA. We have∫
�
|∇Uj |2+U2

j =
∫
�
|∇uj |2+

∫
�
u2
j+
∫
�
|∇Hε

j |2+
∫
�
(Hε

j )
2+2

∫
�
∇uj∇Hε

j

(95)

+2
∫
�
ujH

ε
j . (96)

Multiplying (17) by Hε
j yields

∫
�
|∇Hε

j |2 + (Hε
j )

2 =−
∫
�
ujH

ε
j +

∫
��

�Hε
j

��
Hε

j

=−
∫
�
ujH

ε
j + ε

∫
��

eujHε
j −

∫
��

�uj

��
Hε

j

and replacing in (95) we obtain∫
�
|∇Uj |2 + U2

j =
∫
�
|∇uj |2 +

∫
�
u2
j + 2

∫
�
∇uj∇Hε

j +
∫
�
ujH

ε
j (97)

+ ε

∫
��

eujHε
j −

∫
��

�uj

��
Hε

j . (98)

Multiplying (17) by uj and integrating we find

∫
�
u2
j +

∫
�
Hε

j uj = −
∫
�
∇Hε

j ∇uj + ε

∫
��

euj uj −
∫
��

�uj

��
uj .

Combining this and (97) we arrive at∫
�
|∇Uj |2 + U2

j = ε

∫
��

euj (uj +Hε
j ),
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where we have used

∫
�
∇ui∇uj =

∫
��

�ui

��
uj ,

∫
�
∇ui∇Hε

j =
∫
��

�ui

��
Hε

j (99)

with i = j . Let us find the asymptotic behavior of the expression:

∫
�
|∇Uj |2 + U2

j = ε

∫
��

2�j

|x − �j − ε�j�(�j )|2
(

log
1

|x − �j − ε�j�(�j )|2

+H(x, �j )+O(ε
)

)
.

Changing variablesε�j y = x − �j∫
�
|∇Uj |2 + U2

j =
∫
��ε�j

2

|y − �(0)|2
(

log
1

|y − �(0)|2 +H(�j + ε�j y, �j )

− 2 log(ε�j )

)
+O(ε
).

But∫
��ε�j

2

|y − �(0)|2 = � +O(ε),

∫
��ε�j

2

|y − �(0)|2 log
1

|y − �(0)|2 = � +O(ε
).

and for 0< 
 < 1∫
��ε�j

2

|y − �(0)|2 (H(ε�j y, �j )−H(�j , �j ))=
∫
��ε�j

2

|y − �(0)|2O(ε
|y|
)

=O(ε
).

Therefore∫
�
|∇Uj |2 + U2

j = 2� + 2�H(�j , �j )− 4� log(ε�j )

+
∫
��ε�j

2

|y − �(0)|2 (H(ε�j y, �j )−H(�j , �j ))+O(ε
)

= 2� + 2�H(�j , �j )− 4� log(ε�j )+O(ε
).
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Thus

IA = m� + 2�m log
1

ε
+ �

m∑
j=1

[
H(�j , �j )− 2 log(ε�j )

]
+O(ε
). (100)

We consider now

IB =
m∑

i �=j

∫
�
∇Ui∇Uj + UiUj

=
m∑

i �=j

∫
�
∇ui∇uj + 2

∫
�
∇ui∇Hε

j +
∫
�
∇Hε

i ∇Hε
j +

∫
�
uiuj + 2

∫
�
uiH

ε
j

+
∫
�
Hε

i H
ε
j .

Multiplying Eq. (17) by Hε
i and integrating we find

∫
�
∇Hε

j ∇Hε
i +

∫
�
Hε

j H
ε
i = −

∫
�
ujH

ε
i + ε

∫
��

eujHε
i −

∫
��

�uj

��
Hε

i .

Hence

IB =
m∑

i �=j

∫
�
∇ui∇uj + 2

∫
�
∇ui∇Hε

j +
∫
�
uiuj +

∫
�
uiH

ε
j + ε

∫
��

eujHε
i

−
∫
��

�uj

��
Hε

i .

Multiplication of (17) by ui and integration by parts yields

∫
�
ujui +

∫
�
Hε

j ui = −
∫
�
∇Hε

j ∇ui + ε

∫
��

euj ui −
∫
��

�uj

��
ui.

Replacing in the expression above and using (99) we find

IB = ε

2

m∑
i �=j

∫
�
eui (uj +Hε

j ).
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A similar argument as forIA shows that

IB = �
m∑

i �=j

G(�i , �j )+O(ε
). (101)

Regarding the expressionIC we have

IC = −ε

∫
��

e
∑m

j=1 Uj = −ε

m∑
k=1

∫
��

e
∑m

j=1 uj+Hε
j .

Using the definition ofuj and (18) for each term we have

ε

∫
��

e
∑m

j=1 uj+Hε
j = ε

∫
��

eH(x,�j )+O(ε
)

|x − �j − ε�j�(�j )|2Ej(x),

where

Ej(x) = exp

∑
i �=j

log
1

|x − �i − ε�i�(�i )|2 +H(x, �i )+O(ε
)

 .

Changing variablesε�j y = x − �j we have

eH(�j+ε�j y,�j )+O(ε
) = eH(�j ,�j ) +O(ε
|y|
)

and

Ej(�j + ε�j y, �j )= exp

∑
i �=j

log
1

|�j − �i + ε�j y − ε�i�(�i )|2

+H(�j + ε�j y, �i )+O(ε
)



= exp

∑
i �=j

log
1

|�i − �j |2 +H(�j , �i )

+O(ε
|y|
)

= exp

∑
i �=j

G(�j .�i )

+O(ε
|y|
).
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Therefore, by the definition of�j in (24)

ε

∫
��

e
∑m

j=1 uj+Hε
j = 1

�j

�eH(�j ,�j )+
∑

i �=j G(�j ,�i ) +O(ε
)

= 2� +O(ε
).

Thus

IC = −2�m+O(ε
). (102)

Thanks to (100)–(102) we have

Jε(U)= (m� − 2�)+ 2�m log
1

ε
+ �

m∑
j=1

− 2 log(�j )+H(�j , �j )

+
∑
i �=j

G(�i , �j )

+O(ε
).

Employing again (24) we have

Jε(U)=m(� − 2�)+ 2�m log
1

ε
+ 2�m log 2− �

m∑
j=1

H(�j , �j )+
∑
i �=j

G(�i , �j )


+O(ε
). �

8. Proof of Theorem 1.2

Let �̂m = (��)m\D, whereD denotes the diagonal. Namely,

�̂m = {(�1, . . . , �m) ∈ (��)m : �i �= �j if i �= j}.

Proof. According to Lemma 6.2, the functionU(�)+�̃(�), whereU and�̃ are defined,
respectively, by (16) and (93), is a solution of Problem (1) if we adjust� so that it is a
critical point of Fε(�) = Jε(U(�)+ �̃(�)) defined by (92). This is obviously equivalent
to finding a critical point of

F̃ε(�) = 1

�

(
Fε(�)−m� + 2�m(1− log 2)+ 2�m logε

)
.
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On the other hand, from Lemmas6.2 and 7.1, we have that for� ∈ �̂m, such that its
components satisfy|�i − �j |�d,

F̃ε(�) = �m(�)+ ε
�ε(�), (103)

where�ε and∇��ε are uniformly bounded in the considered region asε → 0.
Given one componentC0 of ��, let � : S1 → C0 be a continuous bijective function

that parametrizesC0. We call �̃m the region inCm
0 \D, where |�i − �j | > d and we

show that�m has at least two distinct critical points iñ�m.
The function�m is C1, bounded from above in̂�m (and hence in�̃m) and such

that

�m(�1, . . . , �m) → −∞ as |�i − �j | → 0 for somei �= j.

Hence, sinced is arbitrarily small,�m has an absolute maximumM in �̃m.
On the other hand, the Ljusternik–Schnirelmann theory is applicable in our setting

so that the number of critical points for�m can be estimate from below by cat(�̃m),
the Ljusternik–Schnirelmann category of�̃m relative to�̃m. Let us recall that cat(�̃m)

is the minimal number of closed and contractible in�̃m sets whose union covers̃�m.
Observe that cat(�̃m) > 1. Indeed, by contradiction, assume that cat(�̃m) = 1. This

means that�̃m is contractible in itself, namely there exist a point�0 ∈ �̃m and a
continuous function� : [0,1] × �̃m → �̃m, such that, for all� ∈ �̃m,

�(0, �) = �, �(1, �) = �0.

Define f : S1 → �̃m to be the continuous function given by

f (�1) = (�(�1),�(e2�i 1
m �1), . . . ,�(e2�i m−1

m �1)).

Let � : [0,1] × S1 → S1 be the well defined continuous map given by

�(t, �1) = �−1 ◦ �1 ◦ �(t, f (�1)),

where�1 denotes the projection on the first component. The function� is a contraction
of S1 to a point and this gives a contradiction.

Thus we conclude that cat(�̃m)�2, for anym�1. Hence, if we define

� = {C ⊂ �̃m : C closed and cat(C)�2}
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and

c = sup
C∈�

inf
�̄∈C

�m(�̄), (104)

Ljusternik–Schnirelmann theory gives thatc is a critical level.
If c �= M, we conclude that there are at least two distinct critical points for�m in

�̃m. If c = M, hence (104) implies that there is at least one setC, with cat(C)�2,
where the function�m reaches its absolute maximum. In this case we conclude that
there are infinitely many critical points for�m in �̃m.

These critical points persist under smallC0-perturbation of the function. For this
reason, from (103) we can conclude that also the functionF̃ε, which isC0 close to�m

in �̃m, has at least two distinct critical points iñ�m. Sinced is arbitrarily small,F̃ε

has at least two critical points in̂�m and hence problem (1) has at least two distinct
solutions. �

Remark 8.1. As mentioned in the introduction, one can get a stronger result than
Theorem1.2 under the assumption that the function�m has, in addition to the ones
described in the proof of Theorem 1.2, some other critical points in�̂m with the prop-
erty of beingtopologically nontrivial, for instance (possibly degenerate) local minima
or maxima, or saddle points.

Let us define what we mean bytopologically nontrivialcritical point for �m.
Let � be an open set compactly contained in�̂m with smooth boundary. We recall

that �m links in � at critical level C relative to B andB0 if B and B0 are closed
subsets of�̄ with B connected andB0 ⊂ B such that the following conditions hold:
let us set� to be the class of all maps� ∈ C(B,�) with the property that there exists
a function	 ∈ C([0,1] × B,�), such that

	(0, ·) = IdB, 	(1, ·) = �, 	(t, ·)|B0 = IdB0 for all t ∈ [0,1].

We assume

sup
y∈B0

�m(y) < C ≡ inf
�∈�

sup
y∈B

�m(�(y)) (105)

and for all y ∈ ��, such that�m(y) = C, there exists a vector�y tangent to�� at y
such that

∇�m(y) · �y �= 0 . (106)

Under these conditions a critical pointȳ ∈ � of �m with �m(ȳ) = C exists. Not
only this: any functionC1 close to�m inherits such critical point.



J. Dávila et al.

Going back to our problem, Lemma6.2 and 7.1 yield that, if�m has a topologically
nontrivial critical point� = (�1, . . . , �m) in �̂m which satisfies (36), thenFε itself has
a critical point�ε = (�ε

1, . . . , �
ε
m), close to� for ε small, such that

∇�m(�
ε
1, . . . , �

ε
m) → 0, �m(�

ε
1, . . . , �

ε
m) → C.

Hence Lemma6.1 guarantees the existence of a solutionuε for (1). Furthermore,
from the ansatz (16), we get that, asε → 0, uε remains uniformly bounded on
�\⋃m

j=1 B�(�
ε
i ), and

sup
B�(�

ε
i )

uε → +∞

for any � > 0.

9. Blow up behavior as� → 0

In this section we give a proof of Theorem1.1, but before we need a couple of
preliminaries.

Consider the linear equation

−�u+ u = 0 in �,

�u
��

= h on ��
(107)

with h ∈ L1(��).
The next result is a variant of an estimate of Brezis and Merle[2].

Lemma 9.1. For any 0 < k < � there is a constant C depending on k and� such
that for anyh ∈ L1(��) and u the solution of(107) we have

∫
��

exp

(
k |u(x)|
‖h‖L1(��)

)
dx�C.

Proof. We have the representation formula

u(x) =
∫
��

G(x, y)h(y) dy, (108)
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whereG = 1
2�G andG is Green’s function defined in (5). Hence

∫
��

exp

(
k|u(x)|

‖h‖L1(��)

)
dx�

∫
��

exp

(
k

∫
��

|G(x, y)| |h(y)|
‖h‖L1(��)

dy

)
dx.

Using Jensen’s inequality we find

∫
��

exp

(
k|u(x)|

‖h‖L1(��)

)
dx�

∫
��

∫
��

exp
(
k|G(x, y)|) |h(y)|

‖h‖L1(��)

dy dx.

But |G(x, y)|� |log |x − y||/� + C so

exp(k|G(x, y)|)� C′

|x − y|k/�

for all x, y since we are in a bounded domain. Therefore

∫
��

exp

(
k|u(x)|

‖h‖L1(��)

)
dx � C′

∫
��

∫
��

1

|x − y|k/� ds(x)
|h(y)|

‖h‖L1(��)

dy

� C′′ 1

1− k/�
. �

We also need the following “strong maximum principle”.

Lemma 9.2. There exists a constantc > 0 such that for allh ∈ L1(��) with h�0,
the solution u of(107) satisfies

u(x)�c

∫
��

h ds a.e. �

Proof. First note thatG�0 and by the classical strong maximum principle, for each
y ∈ �� G(·, y) cannot attain its minimum in�. Also, by the Hopf lemma ifG(x, y) =
0 for somex, y ∈ ��, x �= y then the normal derivative�G��x

(x, y) is negative, which

is impossible. Therefore, for eachy ∈ �� we haveG(·, y) > 0 in �.
By a compactness argument we can find a constantc > 0 such that

G(x, y)�c
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for all y ∈ �� and all x ∈ �. If h ∈ L1(��), h�0, from the representation formula
(108) we see that the conclusion holds.�

Let uε be family of solutions to (1). Ifεeuε is unbounded inL1(��) then by
Lemma 9.2 we see that for a subsequenceuε ↗ ∞ uniformly in �.

Proof of Theorem 1.1. The first part of this proof is an adaptation of the argument
used in [2]. Since we assume thatεeuε is bounded inL1(��) we can select a sequence
εj → 0 and a Radon measure��0 in �� such thatεj euj ⇀ � weakly in the sense of
Radon measures in�� where

uj = uεj .

We keep this notation throughout the rest of this section.

Claim. There is a constant�0 > 0, such that if for somex ∈ �� we have

�({x})��0

then there existsR > 0 so that

lim sup
j

‖uj‖L∞(�∩BR(x)) < ∞. (109)

Indeed, fix somep > 1 and choose�0 = �
4p . Let BR(x) denote the open ball with

center atx and radiusR > 0. Note that�(BR(x)) → �({x}) as R → 0+ so we can
selectR > 0 so that

�(B2R(x))�2�0

and from now on we fix thisR > 0 depending only onx.
By standard properties of the weak convergence of Radon measures

lim sup
j

εj

∫
��∩BR(x)

euj ds��(BR(x))�2�0. (110)

Let aj = εj e
uj BR(x) and vj be the solution of

−�vj + vj = 0 in �,

�vj
��

= aj on ��.
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Let alsobj = εj e
uj − aj and wj = uj − vj . Note thatbj ≡ 0 in BR(x) therefore by

elliptic estimates

‖wj‖L∞(BR/2(x))�C‖wj‖L1(BR(x))�C.

Therefore ∫
��∩BR/2(x)

(
εj e

uj
)p = ε

p
j

∫
��∩BR/2(x)

epwj epvj

� C ε
p
j

∫
��∩BR/2(x)

epvj

� C ε
p
j

∫
��

exp

(
kj

vj

‖aj‖L1(��)

)
, (111)

wherekj = p‖aj‖L1(��). But observe that by (110) and the definition ofaj we have

lim sup
j

kj = lim sup
j

p‖aj‖L1(��)�2p�0 < �.

Hence from (111) and Lemma 9.1 we find∫
��∩BR/2(x)

(
εj e

uj
)p

ds�Cε
p
j → 0.

This inequality and elliptic estimates imply that

lim sup
j

‖uj‖L∞(�∩BR/4(x)) < ∞

which is the desired conclusion.
Let S denote the set

S = { x ∈ �� | �({x}) > �0 }.

ThenS is finite and for everyx ∈ ��\S we have thatuj is bounded in a neighborhood
of x. Thereforeuj is bounded in compact subsets of��\S and soεj euj → 0 uniformly
on compact subsets of��\S. This shows that the support ofm is contained inS and
therefore we can write

� =
m∑

j=1

aj��j ,
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whereaj > 0 and�j ∈ ��. From the preceding remarks we see thatuj → u∗ andu∗
satisfies


−�u∗ + u∗ = 0 in �,

�u∗

��
=

m∑
j=1

aj��j on ��.

From this it follows that

u∗(x) = 1

2�

m∑
j=1

ajG(x, �j ). (112)

We shall now prove (7) through Pohozaev-type identities in balls around the singu-
larities. Let us concentrate on�1 and assume that it is located in the origin. For the
computations we will make a change of variables to flatten the boundary of� around
0. Pick some radiusR0 small enough and consider a map	 : H ∩ BR0 → � ∩ Br ,
whereH = { (y1, y2) | y2 > 0}. We can choose	 to be a conformal diffeomorphism,
C3 up �H ∩BR0, and such that	(0) = 0 andD	(0) = I (after rotation of�). Define

ũj (y) = uj (	(y)), y ∈ H ∩ BR0.

Then ũj satisfies

−�ũj + b(y)ũj = 0 in H ∩ BR0,

�ũj

��
= εjh(y)e

ũj on �H ∩ BR0,
(113)

whereb and h are smooth functions, given by

b(y)= |detD	(y)|,
h(y)= |D	(y)e1|

and e1 = (1,0). Note, since we assumeD	(0) = I we can drop the absolute values
in b and h.

For simplicity we will drop the indexj in ũj and we write the partial derivative
�

�yk
with a subscript(·)yk , e.g. �ũi

�y1
= ũy1. We use the convention of summation over

repeated indices, and denote by� the exterior normal vector to�(H ∩ BR). �1 and �2

are the components of� and we write a partial derivative with respect to� as �ũ
��

= ũ�.
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Take now 0< R < R0 and multiply the equation in (113) by ũy1 and integrate on
H ∩ BR to find ∫

H∩BR

−ũyiyi ũy1 + b(y)ũũy1 = 0.

Integrating by parts, and using the boundary condition in (113) we get

ε

∫
�H∩BR

heũũy1 +
∫
�BR∩H

ũ�ũy1

=
∫
H∩BR

ũyi ũyiy1 + bũũy1 =
∫
H∩BR

1

2
(ũ2

yi
)y1 +

1

2
b (ũ2)y1

= 1

2

∫
�BR∩H

(|∇ũ|2 + bũ2)�1 − 1

2

∫
H∩BR

by1ũ
2. (114)

Integrating by parts the first term in (114) we find∫
�H∩BR

heũũy1 = heũ
∣∣∣R−R −

∫
�H∩BR

h′eũ

and substituting in (114) we obtain

εheũ
∣∣∣R−R − ε

∫
�H∩BR

h′eũ +
∫
�BR∩H

ũ�ũy1 =
1

2

∫
�BR∩H

(|∇ũ|2 + bũ2)�1

− 1

2

∫
H∩BR

by1ũ
2. (115)

Before we take the limit asj → ∞ we recall that	 : H ∩BR0 → � is a conformal
map, smooth up to�H ∩BR0, and that we assumed	(0) = 0 andD	(0) = I . Using
complex variablesz = y1 + iy2, and expanding	 in its Taylor series, we have

	(z) = z+ c

2
z2 +O(z3), (116)

whereO(z3) denotes a quantity which is bounded by|z|3 for z in a fixed neighborhood
of the origin. Let 
, � ∈ R denote the real and imaginary parts ofc = 	′′(0) that
is c = 
 + i�. Then � is the curvature of the�� at 0 and
 is curvature at 0 of
t �→ 	(0, t) which is a curve transverse to��. We can modify	 to prescribe this
number. Indeed, consider a change of variables

z = 1

�
(e�w − 1),
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where w is in a neighborhood of the origin. For� ∈ R this map restricted to a
neighborhood of the origin sends the upper half-plane in itself, the real line into the
real line, and the lower half-plane into itself again. A computation shows that the
expansion of	 in the variablew is

	(w) = w + 1
2(c + �)w2 +O(w3).

Let ũ∗(y) = u∗(	(y)) denote the limit function in they coordinates, and observe that

ũj → ũ∗ in C1
loc(H ∩ BR − {0}).

Taking the limit in (115) we get

−
a1 +
∫
�BR∩H

ũ∗� ũ∗y1
= 1

2

∫
�BR∩H

|∇ũ∗|2�1 + 1

2

∫
�BR∩H

b ũ∗2�1

− 1

2

∫
H∩BR

by1ũ
∗2. (117)

We rewrite now (112) into a singular and a regular part near the origin

u∗ = s + w,

where

s(x) = a1

�
log

1

|x| and w(x) = a1

2�
H(x,0)+ 1

2�

m∑
j=2

ajG(x, �j ).

We define then the corresponding functions in the new coordinates

s̃(y) = s(	(y)), w̃(y) = w(	(y)), y ∈ H ∩ BR0.

Using this decomposition (117) takes the form

−
a1 +
∫
�BR∩H

s̃�s̃y1 + s̃�w̃y1 + s̃y1w̃� + w̃�w̃y1

=
∫
�BR∩H

(
1

2
|∇ s̃|2 + ∇ s̃∇w̃ + 1

2
|∇w̃|2

)
�1

+
∫
�BR∩H

b

(
1

2
s̃2 + s̃w̃ + 1

2
w̃2
)

�1

−
∫
H∩BR

by1

(
1

2
s̃2 + s̃w̃ + 1

2
w̃2
)
. (118)
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Sincew satisfies−�w + w = − a1
� log 1

|x| in � we find for w̃

−�w̃ + b(y)w̃ = −a1

�
m(y) in H ∩ BR0,

where

m(y) = b(y) log
1

|	(y)| .

Multiplying this equation by�w̃
�y1

= w̃y1 and integrating onH ∩ BR (similarly as forũ)∫
�BR∩H

w̃�w̃y1 −
∫
�H∩BR

w̃y2w̃y1 =
1

2

∫
�BR∩H

(|∇w̃|2 + bw̃2)�1 − 1

2

∫
H∩BR

by1w̃
2

− a1

�

∫
BR∩H

m(y)w̃y1.

Solving for
∫
�BR∩H w̃�w̃y1 in this equation and replacing in (118) we obtain

−
a1 +
∫
�BR∩H

s̃�s̃y1 + s̃�w̃y1 + s̃y1w̃�

=
∫
�BR∩H

(
1

2
|∇ s̃|2 + ∇ s̃∇w̃

)
�1 +

∫
�BR∩H

b

(
1

2
s̃2 + s̃w̃

)
�1

−
∫
�H∩BR

by1

(
1

2
s̃2 + s̃w̃

)
−
∫
�H∩BR

w̃y2w̃y1

+a1

�

∫
BR∩H

m(y)w̃y1. (119)

Now we take the limit in this relation asR → 0.

Lemma 9.3. Recall thatc = �′′(0) = 
 + i�. We have

lim
R→0

∫
�BR∩H

s̃�s̃y1 =
3

4�

a2
1,

lim
R→0

∫
�BR∩H

s̃�w̃y1 =−a1w̃y1(0),

lim
R→0

1

2

∫
�BR∩H

|∇ s̃|2�1 = 

4�

a2
1,

lim
R→0

∫
�BR∩H

∇ s̃∇w̃�1 =−a1

2
w̃y1(0) (120)

and all other terms in(119) have limit zero asR → 0.
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We prove this lemma later on.

Proof of (7) completed. Using this lemma together with (119) we obtain

−
a1 + 3

4�

a2
1 − a1w̃y1(0) =



4�

a2
1 − a1

2
w̃y1(0)

that is


a1

( a1

2�
− 1
)
= 1

2
a1w̃y1(0). (121)

But a1 �= 0 and 
 can be taken to be any real number, soa1 = 2� and w̃y1(0) = 0,
which is equivalent to∇�w(0) = 0, where� is tangent to�� at 0. �

Proof of Lemma 9.3. We present a proof of (120) only, the others being analogous.
Recall that

s̃(y) = s(	(y)), s(x) = a1

�
log

1

|x| .

Using the expansion (116) for 	 we have

∇ s̃(y) = −a1

�

(
y

|y|2 + 1

2
(
,−�)

)
+O(|y|), (122)

where we recall thatc = 
 + i� = 	′′(0). One way to see this is to consider the
complex valued function log	, and express the expansion of its derivative in terms of
z = y1 + iy2. Using (122) we have∫

�BR∩H
s̃�s̃y1 =

a2
1

�2

∫
�BR∩H

(
1

R
+ 1

2
(
�1 − ��2)+O(R)

)(
�1

R
+ 1

2

 +O(R)

)
ds

= a2
1

�2

∫
�BR∩H

�1

R2 + 1

2R
(
(1+ �2

1)− ��1�2)+O(1) ds

= a2
1

�2

3

4
�
 +O(R). �
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