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aDepto. Ing. Matemática, Ctr. Modelamiento Matemático UMR 2071, University of Chile, Correo 3,
Santiago 170-3, Chile

bDepartment of Applied Mathematics, Institute of Theoretical Computer Science (ITI),
Charles University, Malostranské nám. 25, 11800 Praha 1, Czech Republic

Abstract

We consider the lengthL of the longest common subsequence of two randomly uniformly
and independently chosenn character words over ak-ary alphabet. Subadditivity arguments
yield thatE [L] /n converges to a constant�k . We prove a conjecture of Sankoff and Mainville
from the early 1980s claiming that�k

√
k→ 2 as k→∞.

Keywords:Longest common subsequence; Longest increasing subsequence; Expectation; Sankoff–
Mainville conjecture

∗ Corresponding author.
E-mail addresses: mkiwi@dim.uchile.cl (M. Kiwi), loebl@kam.mff.cuni.cz (M. Loebl),

matousek@kam.mff.cuni.cz(J. Matoušek).
1 Gratefully acknowledges the support of ICM P01–05 and Fondecyt 1010689.
2 Gratefully acknowledges the support of ICM-P01-05. This work was done while visiting the Depto.

Ing. Matemática, U. Chile.
3 This research was done while visiting the Ctr. de Modelamiento Matemático, UMR–UChile 2071,

U. Chile, Santiago, supported by Fondap in Applied Mathematics 2001–05.

http://www.elsevier.com/locate/aim
mailto:mkiwi@dim.uchile.cl
mailto:loebl@kam.mff.cuni.cz
mailto:matousek@kam.mff.cuni.cz


M. Kiwi et al.

1. Introduction

Consider two sequences of lengthn, with letters from a sizek alphabet�, say �
and �. The longest common subsequence (LCS) problem is that of finding the largest
value L for which there are 1� i1 < i2 < · · · < iL�n and 1�j1 < j2 < · · · < jL�n
such that�it = �jt , for all t = 1,2, . . . , L.

The LCS problem has emerged more or less independently in several remarkably
disparate areas, including the comparison of versions of computer programs, crypto-
graphic snooping, and molecular biology. The biological motivation of the problem is
that long molecules such as proteins and nucleic acids like DNA can be schematically
represented as sequences from a finite alphabet. Taking an evolutionary point of view,
it is natural to compare two DNA sequences by finding their closest common ancestors.
If one assumes that these molecules evolve only through the process of inserting new
symbols in the representing strings, then ancestors are substrings of the string that rep-
resent the molecule. Thus, the length of the longest common subsequence of two strings
is a reasonable measure of how close both strings are. In the mid 1970s, Chvátal and
Sankoff [5] proved that the expected length of the LCS of two randomk-ary sequences
of length n when normalized byn converges to a constant. The value of this constant
�k is unknown although much effort has been spent in finding good upper an lower
bounds for it (see, for example,[3] and references therein). The best known upper and
lower bounds for�k do not have a closed form. There are obtained either as numeric
approximation to the solutions of a nonlinear equation or as a numeric evaluation of
some series expansion (see[6] for a survey of such results).

Although the problem of determining�k has a simple statement, it has turned out
to be a challenging mathematical endeavor. Moreover, its quite naturally motivated.
Indeed, a claim that two DNA sequences of lengthn are far apart makes sense pro-
vided their LCS differs significantly from�4n (since DNA sequence have 4 basis
elements).

We analyze the behavior of�k for k tending to infinity, and more generally, we
consider the expected length of the LCS whenk is an (arbitrarily slowly growing)
function of n and n → ∞. The focus on the case wherek grows with n is partly
inspired by the work of Kiwi and Loebl[13]. For a bipartite graphG over two sizen
totally ordered color classesA andB, they considered

L(G) = max{L : ∃a1 < · · · < aL, b1 < · · · < bL, aibi ∈ E(G), 1� i�L}

and studied its behavior whenG is uniformly chosen among all possibled-regular
bipartite graphs onA and B. They established thatL(G)/

√
dn → 2 as n → ∞

provided d = o(n1/4). Under this latter condition, any node of thed-regular bipartite
graph can potentially be matched to ad/n→ 0 fraction of the other color class nodes.
In the case of interest here, that is the LCS problem withk → ∞, it also happens
that any sequences’ character can be matched to an expected 1/k→ 0 fraction of the
other sequence’s characters. Both for this work and in[13], the vanishing fraction of
(expected) potential matches is a key issue.
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In this paper we confirm a conjecture of Sankoff and Mainville from the early
1980s[18] stating that

lim
k→∞ �k

√
k = 2 . (1)

(See [17, Section 6.8]for a discussion of work on lower and upper bounds on�k
and[15] for recent developments). The most intriguing remaining question is the deter-
mination of�2. Arratia and Steele (see discussion in[22]) observed that�2 = 2/(1+√2)
seemed to be consistent with all known computational experiences. But Lueker[15]
recently showed that this latter equality does not hold.

The constant 2 in (1) arises from a connection with another celebrated problem
known as the longest increasing sequence (LIS) problem. An increasing sequence of
lengthL of a permutation� of {1, . . . , n} is a sequence 1� i1 < i2 < · · · < iL�n such
that �(i1) < �(i2) < · · · < �(iL). The LIS problem concerns the determination of the
asymptotic, onn, behavior of the LIS for a randomly and uniformly chosen permutation
�. The LIS problem is also referred to as “Ulam’s problem” (e.g., in[12,4,16]). Ulam
is often credited for raising it in[23] where he mentions (without reference) a “well-
known theorem” asserting that givenn2+ 1 integers in any order, it is always possible
to find among them a monotone subsequence ofn + 1 (the theorem is due to Erd˝os
and Szekeres[7]). Monte Carlo simulations are reported in[2], where it is observed
that over the rangen�100, the limit of the LIS ofn2+ 1 randomly chosen elements,
when normalized byn, approaches 2. Hammersley[10] gave a rigorous proof of the
existence of the limit and conjectured it was equal to 2. Later, Logan and Shepp[14],
based on a result by Schensted[19], proved that��2; finally, Vershik and Kerov[24]
obtained that��2. In a major recent breakthrough due to Baik, Deift, Johansson[4]
the asymptotic distribution of the longest increasing sequence random variable has been
determined. For a detailed account of these results, history and related work see the
surveys of Aldous and Diaconis[1] and Stanley[21].

It has been speculated that the behavior of the longest strictly/weakly increasing
subsequence of a uniform random word of lengthn, with letters from� may have
“connections with the subject of sequence comparison statistics, motivated by DNA
sequence matching ...”[1]. Our work re-enforces this speculation and in fact does
more. It partly elicits the nature of the connection and the conditions under which
sequence matching statistics relate to the behavior of longest increasing sequences.

2. Statement of results and proof outline

Let A andB henceforth denote two disjoint totally ordered sets. We assume that the
elements ofA are numbered 1,2, . . . , |A| and those ofV are numbered 1,2, . . . , |B|. We
denote byr and s the size of|A| and |B|, respectively. Typically, we haver = s = n.

Now, let G be a bipartite graph with color classesA andB. Two distinct edgesab
and a′b′ of G are said to benoncrossingif a and a′ are in the same order asb and
b′; in other words, ifa < a′ and b < b′ or a′ < a and b′ < b. A matching ofG is
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calledplanar if every distinct pair of its edges is noncrossing. We letL(G) denote the
number of edges of a maximum size (largest) planar matching inG (note thatL(G)
depends on the graphG and on the ordering of its color classes).

We will focus on the following two models of random graphs:

• The random words model�(Kn,n; k): the distribution over the set of subgraphs of
Kn,n obtained by uniformly and independently assigning each node ofKn,n one
of k characters and keeping those edges whose endpoints are associated to equal
characters. Note that only disjoint unions of complete bipartite graphs may appear
in this model.

• The binomial random graph modelG(Kn,n;p): the distribution over the set of
subgraphs ofKn,n where each edge ofKn,n is included with probabilityp, and
these events are mutually independent. (This is an obvious modification of the usual
G(n, p) model for bipartite graphs with ordered color classes.)

Observe thatL(G), whenG is chosen according to�(Kn,n; k), is precisely the length
of the LCS of the two words, one for each of the color classes ofG, corresponding to
the characters associated toKn,n’s nodes. Also note that the latter words are uniformly
and independently distributed lengthn sequences of characters over ak size alphabet.
In other words, the study ofL(�(Kn,n; k)) is just a re-wording of a similar study of the
LCS of two randomly chosenn length sequences over a sizek alphabet. Nevertheless,
it will be more convenient to cast our discussion in the language of graph theory.

We now argue thatL(G) is “subadditive” and from it we draw an important con-
clusion about its expected asymptotic behavior. Let us consider two bipartite graphsG
andG′ over disjoint color classesA, B andA′, B ′, respectively. It follows immediately
that L(·) is subadditive, i.e.,L(G � G′)�L(G) + L(G′), whereG � G′ is the graph
obtained by puttingG andG′ together side by side, i.e., the color classes ofG�G′ are
A∪A′ andB∪B ′ with the natural ordering (the vertices ofA first and then the vertices
of A′ etc.), andE(G�G′) = E(G)∪E(G′). Thus, forG andG′ chosen according to
�(Kn,n; k) and �(Km,m; k), respectively, we have

E
[
L(G �G′)] �E [L(G)] + E

[
L(G′)

]
.

A standard subadditivity argument implies existence of limn→∞ E
[
L(�(Kn,n; k))/n

]
.

The same claim holds for the binomial random graph model.
In order to keep the presentation simple, we first formulate and prove the results

for the random words model. Then, in Section7, we state analogous results for the
binomial random graph model. These results’ proofs are almost identical to the case of
the random words model, and we only briefly comment on them.

Our results essentially say thatL(�(Kn,n; k)) ·
√
k/n converges to 2 ask → ∞,

provided thatn is sufficiently large in terms ofk.

Theorem 1. For everyε > 0 there existk0 and C such that for allk > k0 and all n
with n/

√
k > C we have

(1− ε) · 2n√
k

� E
[
L(�(Kn,n; k))

]
� (1+ ε) · 2n√

k
.
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Moreover, there is an exponentially small tail bound; namely, for every ε > 0 there
existsc > 0 such that for k and n as above,

P
[∣∣∣∣L(�(Kn,n; k))− 2n√

k

∣∣∣∣ �ε 2n√
k

]
�e−cn/

√
k.

Corollary 2. The limit �k = limn→∞ E
[
L(�(Kn,n; k))/n

]
exists, and

lim
k→∞ �k

√
k = 2.

In the rest of this section we informally outline the main ideas of the proof and
describe the structure of this paper.

Although we want to deal mainly with the case ofn arbitrarily large compared
to k, which is the situation in the Sankoff–Mainville conjecture, we first consider a
seemingly opposite setting: whenk is large andn is also large but considerably smaller
than k. For definiteness, here we setn = k0.7 (in the actual proof we will use a
parameter� instead of 0.7). Then we expectG to have aboutn2/k = k0.4 edges,
and most of these edges connect vertices of degree 1. If we letG′ be the subgraph
of G obtained by deleting all edges incident to vertices of degree greater than 1,
thenG′ is a matching plus some isolated vertices. The numberN of edges ofG′ is
typically very close tok0.4. The matching determines a permutation of{1,2, . . . , N},
and by a symmetry argument, it can be seen that, for a givenN, all permutations of
{1,2, . . . , N} have the same probability of being obtained in this way. Moreover, the
LIS of the permutation, henceforth denoted LISN , corresponds exactly to the largest
planar matching inG′. Therefore, up to a small error, the size of the largest planar
matching inG′ is distributed as LISN (unfortunately, the error does not seem small
enough to allow for finer investigations of the distribution). Then one can derive from
the known results about LISN that E

[
L(�(Kn,n; k))

] = (2+ o(1))n/√k holds in this
situation. For the rest of the proof, we also need tail estimates for large deviations of
L(�(Kn,n; k)), and these are conveniently obtained from Talagrand’s inequality applied
to L(�(Kn,n; k)) (we cannot directly use known tail estimates for LISN , for example
because of the vertices of degree larger than 1 inG).

Now we considern very large compared tok (and k still large). A lower bound can
be derived forE

[
L(�(Kn,n; k))

]
by a straightforward argument: We partition the color

classesA andB of G into segmentsA1, A2, . . . andB1, B2, . . . of lengthk0.7 each, and
we use the previously derived result separately for each block (theith block consists
of the subgraph induced byAi andBi). Thus, the lower bound is provided by a planar
matching that never crosses a block boundary.

An upper bound forE
[
L(�(Kn,n; k))

]
is more demanding, since the largest planar

matching need not respect any partition into blocks fixed in advance; there could be
“very skew” edges. Our strategy is to simultaneously consider many different partitions
into blocks. The blocks have upper and lower segments of size aboutk0.7, but they
can be very skew; the segment ofA starting at a positioni can form a block with a
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segment ofB starting at positionj, with i and j differing by a large amount. Supposing
that there is a planar matching with at leastm = (1+ ε)2n/√k edges, it “fits” at least
one of the block partitions, meaning that it respects its block boundaries. For each
fixed block partition and each fixed distribution of the numbers of edges of the planar
matching among the blocks, we bound above the probability that there is a planar
matching withm edges that fits that block partition; this relies on independence among
the blocks. Then we sum up over all possible block partitions and show that with high
probability, there is no planar matching withm edges at all.

The rest of the paper is organized as follows. In Section3 we state the estimate
for the LIS of a uniformly chosen permutation, Talagrand’s inequality, and a simple
lemma. The tail bounds for the largest planar matching for the case of smalln are
derived in Section3. The lower and upper bounds for largen are proved in Sections5
and 6, respectively. Section7 states the result for the other considered model of a
random graph and discusses related results from the literature.

3. Tools

A crucial ingredient in our proofs is a sufficiently precise result on the distribution
of the length of the longest increasing subsequence in a random permutation. We state
a remarkable strong result of Baik et al.[4, Eqs. (1.7) and (1.8)](our formulation
slightly weaker than theirs, in order to make the statement simpler). A much weaker
tail bound than provided by them would actually suffice for our proof (e.g., Frieze’s
LIS concentration result[8]).

Theorem 3. Let LISN be the random variable corresponding to the length of the
longest increasing subsequence of a randomly chosen permutation of{1, . . . , N}. There
are positive constantsB0, B1, and c such that for everyt�B0N

1/6

P
[
LISN �2

√
N + t

]
�B1 exp

(
−c(t/N1/6)3/5

)
and

P
[
LISN �2

√
N − t

]
�B1 exp

(
−c(t/N1/6)3

)
.

We will also need a suitable version of Talagrand’s inequality; see, e.g.,
[11, Theorem 2.29].

Theorem 4 (Talagrand’s inequality). Suppose thatZ1, . . . , ZN are independent ran-
dom variables taking their values in some set�. Let X = f (Z1, . . . , ZN), where
f : �N → R is a function such that the following two conditions hold for some
number c and a function�:

(L) If z, z′ ∈ �N differ only in the kth coordinate, then |f (z)− f (z′)|�c.
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(W) If z ∈ �N and r ∈ R with f (z)�r, then there exists a witness(zj : j ∈ J ),
J ⊆ {1, . . . , N}, |J |��(r)/c2, such that for ally ∈ �N with yi = zi wheni ∈ J ,
we havef (y)�r.

Let m be a median of X. Then, for all t�0,

P[X�m+ t ] �2e−t2/4�(m+t)

and

P[X�m− t ] �2e−t2/4�(m).

We will also need the following version of Chebyshev’s inequality:

Lemma 5. Let X1, . . . , XN be random variables attaining values0 and 1, and let
X =∑N

i=1 Xi . Let � =∑i �=j E
[
XiXj

]
. Then, for all t > 0,

P[ |X − E [X]| � t ] � 1

t2
(E [X] (1− E [X])+ �) .

Proof. SinceP[|X − E [X]| � t ] �Var[X] /t2 and

Var[X] =
∑
i,j

(E
[
XiXj

]− E [Xi ] E
[
Xj
]
)

=
∑
i

E
[
X2
i

]
−
∑
i,j

E [Xi ] E
[
Xj
]+∑

i �=j
E
[
XiXj

]
,

the desired conclusion follows by additivity of expectation and the fact that sinceXi
is an indicator variable,X2

i = Xi . �

4. Small graphs

In this section we derive a result essentially saying that Theorem1 holds if k is
sufficiently large in terms ofn. For technical reasons, we also need to consider bipartite
graphs with color classes of unequal sizes.

Proposition 6. For every� > 0, there exists a(large) positive constant C such that:

(i) If rs�Ck and (r + s)√rs��k3/2/6, then withmu = mu(r, s) = 2(1+ �)
√
rs/k,

for all t�0,

P
[
L(�(Kr,s; k))�mu + t

]
�2e−t2/8(mu+t) .
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(ii) If rs�Ck and r + s��k/6, then withmu as above andml = ml(r, s) = 2(1−
�)
√
rs/k, for all t�0,

P
[
L(�(Kr,s; k))�ml − t

]
�2e−t2/8mu .

Let G be a random bipartite graph generated according to the random words model
�(Kr,s; k). The idea of the proof is simple: we show that (ignoring degree 0 nodes)
G is “almost” a matching, and the size of the largest planar matching in a random
matching corresponds precisely to the length of the longest increasing sequence in a
random permutation of the appropriate size.

We have to deal with the (usually few) vertices of degree larger than one. To this
end, we define a graphG′ obtained fromG by removing all edges incident to nodes
of degree at least 2. Throughout,E andE′ denoteE(G) andE(G′), respectively.

Ignoring degree 0 nodes,G′ is a matching on its end-points. Equivalently it is a
permutation of{1, . . . , |E′|}. Theorem3 thus gives us an estimation ofL(G′) in terms
of |E′| = |E|−|E\E′|. But L(G′)�L(G)�L(G′)+|E\E′|. Hence, good estimates on
|E| and |E \E′| coupled with the aforementioned estimate ofL(G′) yields the sought
after bounds onL(G).

We clearly haveE [|E|] = rs/k. We will need a tail bound for large deviation from
the expectation; a simple second-moment argument (Chebyshev’s inequality) suffices.

Lemma 7. For every� > 0,

P
[∣∣∣|E| − rs

k

∣∣∣ �� · rs
k

]
� 1

�2(rs/k)
.

Proof. For e ∈ E(Kr,s) let Xe be the indicator of the evente ∈ E. Furthermore,
let X = |E| = ∑

e∈E Xe. The Xe’s are indicator random variables with expectation
1/k. Moreover, sinceE

[
XeXf

] = 1/k2 for e �= f , we have
∑
e �=f E

[
XeXf

] =
rs(rs − 1)/k2 = (E [X])2− E [X] /k. Thus, Lemma5 yields

P
[|X − E [X] |��E [X]

]
� 1

�2E [X]

(
1− 1

k

)
.

The desired conclusion follows immediately.�

Now we bound above the expectation of|E \ E′|.

Lemma 8.

E
[|E \ E′|] �(r + s) rs

k2 .
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Proof. Let Yw equal the degree ofw if it is at least 2 and 0 otherwise. Define
Y = ∑

w∈V (G) Yw. Note that |E \ E′|�Y (equality does not necessarily hold since
both endpoints of an edge might be incident on nodes of degree at least 2). LetPd
be the probability that a vertex in color classA has exactlyd incident edges. For any
nodea in color classA,

E [Ya ] =
s∑

d=2

dPd = E
[
degG(a)

]− P1 = s

k
− s

k

(
1− 1

k

)s−1

�
( s
k

)2

(using (1− x)h�1− hx). Similarly E [Yb] �(r/k)2 for all nodesb in color classB,
and so

E
[|E \ E′|] �E [Y ] �(r + s) rs

k2 . �

Proof of Proposition 6. Changing one of the characters associated to a vertex of a
bipartite graphG changes the value ofL(G) by at most 1. HenceL(G) is 1-Lipschitz.
Furthermore, the characters associated to 2	 nodes ofG suffice to certify the existence
of 	 noncrossing edges (and thusL(G)�	). So Talagrand’s inequality applies and,
with m denoting a median ofL(G), yields

P[L(G)�m+ t ] �2e−t2/8(m+t) and P[L(G)�m− t ] �2e−t2/8m.

The proposition will follow once we show thatml�m�mu. To prove thatm�mu, it
suffices to verify that

P[L(G)�mu] � 1

2
. (2)

Let � > 0 be a suitable real parameter which we will specify later. We observe that
since |E′|� |E| andL(G)− L(G′)� |E \ E′|,

P[L(G)�mu] � P
[
|E|�(1+ �)

rs

k

]
+P

[
|E \ E′|��

√
rs

k

]

+P
[
L(G′) > (2+ �)

√
rs

k
, |E′| < (1+ �)

rs

k

]
.
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We bound the terms one by one. By Lemma8 and Markov’s inequality,

P
[
|E \ E′|��

√
rs

k

]
� r + s

�k

√
rs

k
� 1

6
. (3)

Taking N = (1+ �)rs/k and

t = (2+ �)

√
rs

k
− 2
√
N =

(
2+ �− 2

√
1+ �

)√ rs
k

in Theorem3 and estimating 2+�−2
√

1+ ��2+�−2(1+�/2) = �−�, we get that

P
[
L(G′)�(2+ �)

√
rs

k
, |E′| < (1+ �)

rs

k

]
�B1 exp

(
−c(t/N1/6)3/5

)
�B1 exp

(
−(c/2)(�− �)3/5(rs/k)1/5

)
. (4)

From Lemma7, (3), and (4) it follows that

P[L(G)�mu] � 1

�2(rs/k)
+ 1

6
+ B1 exp

(
−(c/2)(�− �)3/5(rs/k)1/5

)
.

So (2) follows by taking, say,� = √6/C and usingrs�Ck.
To establish thatml�m, we proceed as before, i.e., we show that

P[L(G)�ml ] � 1

2
. (5)

Indeed, observe that since|E′| = |E| − |E \ E′| andL(G′)�L(G),

P[L(G)�ml ] � P
[
|E|� (1− �)

rs

k

]
+P

[
|E \ E′|�� · rs

k

]
+P

[
L(G′)�2(1− �)

√
rs

k
, |E′| > (1− �− �)

rs

k

]
.
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We again bound the terms one by one, applying as done above Lemma8, Markov’s
inequality and Theorem3, respectively. For a suitable real value� > 0 we apply
Theorem3 with N = (1− �− �)(rs/k),

t = 2
√
N − 2(1− �)

√
rs

k
=
(
2
√

1− �− �− 2+ 2�
)√ rs

k

obtaining

P[L(G)�ml ] � 1

�2(rs/k)
+ 1

6
+ B1 exp

(
−c(t/N1/6)3

)
� 1

�2(rs/k)
+ 1

6
+ B1 exp

(
−c(2�/3− 4�/3)3(rs/k)

)
,

where we estimated 2
√

1− �− �−2+2�� 2
3�− 4

3� using the inequality
√

1− x�1− 2
3x

valid for all sufficiently small positivex. So (5) follows by taking again� = √6/C
and usingrs�Ck. Proposition6 is proved. �

5. The lower bound in Theorem 1

In this section we establish the lower bound on the expectation ofL(�(Kn,n; k)) and
the lower tail bound for its distribution (the bound for the expectation is very simple
to derive from Proposition6, so we prove it separately, although it is an immediate
consequence of the tail bound).

Given ε, let � > 0 be such that(1− 2�)2 = 1− ε, and letC = C(�) be as in
Proposition6. Fix C̃�

√
C large enough so that

exp

(
− �2

4(1+ �)
· C̃
)

�� .

Let ñ(k) = ñ = ��k/12�. Proposition 6 applies for k�k0 where k0 is such that
ñ(k0)�C̃

√
k0. It follows that

E
[
L(�(Kñ,ñ; k)

]
� (1− 2�) · 2ñ√

k
· P
[
L(G)�2(1− 2�)

ñ√
k

]

� (1− 2�) · 2ñ√
k

(
1− 2 exp

(
− �2

4(1+ �)
· ñ√

k

))

� (1− ε) · 2ñ√
k
.
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The desired lower bound on the expectation follows since by subadditivity,(1/n) ·
E
[
L(�(Kn,n; k)

]
is nondecreasing.

Now we establish the lower tail bound. Letñ = �C√k � and q = �n/ñ�. Moreover,
let G be chosen according to�(Kn,n; k) and letGi be the subgraph induced inG by
the vertices(i−1) · ñ+ 1, . . . , i · ñ in each color class,i = 1, . . . , q. We observe that
L(G1), . . . , L(Gq) are independent identically distributed with distribution�(Kñ,ñ; k)
and L(G)�L(G1) + · · · + L(Gq). Let � = E [L(Gi)] and t = ε(2n/

√
k). Since

n�(q + 1)ñ, the lower bound on� proved above yields that

P
[
L(G)�(1− 3ε) · 2n√

k

]
�P

[
q∑
i=1

L(Gi)�q�− t + (�− t)
]
.

An argument similar to the one used above to derive the bound��(1− ε)2ñ/√k can
be used to obtain��(1 + ε)2ñ/

√
k from Proposition6. Let n be large enough so

that n� ñ(1+ 2ε)/ε. Thus, q�(1+ ε)/ε and t�εq�/(1+ ε)��. Hence, a standard
Chernoff bound[11, Theorem 2.1]implies that

P
[
L(G)�(1− 3ε) · 2n√

k

]
� P

[
q∑
i=1

L(Gi)�q�− t
]

� exp

(
− t2

2q�

)

� exp

(
− ε2

2(1+ ε) ·
2n√
k

)
.

6. The upper bound in Theorem 1

We will only discuss the tail bound sinceL(�(Kn,n; k))�n always, and so the
claimed estimate for the expectation follows from the tail bound.

Let ε > 0 be fixed. We choose a sufficiently small� = �(ε) > 0, much smaller than
ε. Requirements on� will be apparent from the subsequent proof.

Henceforth, we fix constants 1/2 < 
 < � < 3/4 (any choice of
 and � in the
specified range would suffice for our purposes). In this section, we will always assume
that k�k0 for a sufficiently large integerk0 = k0(ε), and thatn is sufficiently large
compared tok: n�k�, say. Note that forn�k� (andk sufficiently large), the tail bound
of Theorem1 follows from Proposition6.

Below we first introduce the notion of a block partition associated to a “large” planar
matching. We then classify block partitions into different types. Finally, we show that
there are not too many different types, and that there is a very small probability that
a random graph chosen according toL(�(Kn,n; k)) is of a given fixed type. A bound
on the probability of a “large” planar matching occurring immediately follows. This
provides us with the sought after upper tail bound.
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6.1. Block partitions

Let us write

mmax= (1+ ε) · 2n√
k

for the upper bound on the expected size of a planar matching as in Theorem1. We
also define an auxiliary parameter

/ = k
 .

This is a somewhat arbitrary choice (but given by a simple formula). The essential
requirements on/ are that/ be much larger than

√
k and much smaller thank3/4. We

note thatn// is large by our assumptionn�k�.
Let M be a planar matching withmmax edges on the setsA andB, |A| = |B| = n.

We define a partition ofM into blocks of consecutive edges. There will be roughly
n// blocks, each of them containing at most

emax=
⌊

1

�
· /
n
·mmax

⌋

edges ofM. So emax is of order//
√
k, which by our assumptions can be assumed to

be larger than any prescribed constant. Moreover, we require that no block is “spread”
over more than/ consecutive nodes inA or in B.

Formally, the ith block of the partition will be specified by nodesai, a′i ∈ A and
bi, b

′
i ∈ B; aibi ∈ M is the first edge in the block anda′ib′i ∈ M is the last edge (the

block may contain only one edge, and soaibi = a′ib′i is possible). The edgea1b1 is
the first edge ofM, andai+1bi+1 is the edge ofM immediately followinga′ib′i . Finally,
given aibi , the edgea′ib′i is taken as the rightmost edge ofM such that

• the ith block has at mostemax edges ofM, and
• a′i − ai�/ and b′i − bi�/ (here and in the sequel, with a little abuse of notation,

we regard the nodes inA and those inB as natural numbers 1,2, . . . , n, although
of course, the nodes inA are distinct from those ofB).

Let q denote the number of blocks obtained in this way. It is easily seen thatq =
O(n//).

A block partition is schematically illustrated in Fig.1.

6.2. Counting the types

Let ei be the number of edges ofM in the ith block. Let us call the 5q-tuple
T = (a1, a

′
1, b1, b

′
1, e1, . . . , aq, a

′
q, bq, b

′
q, eq) the type of the block partition ofM, and
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A

B
b'1b1

a'1a1

b'2b2 b'4b4

a'2a2 a'4a4

b3     =  b'3

a3     =a'3

l

Fig. 1. A block partition.

let us writeT = T (M). Let T denote the set of all possible types of block partitions
of planar matchings as above.

Lemma 9. We have

|T |� exp
(
C1
n

/
log/

)
with a suitable absolute constantC1.

Proof. The number of choices fora1, . . . , aq is at most the number of ways of
choosingq elements out ofn, i.e.,

(
n
q

)
. Sincemmax�n, the number of choices for

the ei is no larger than the number of partitions ofn into q positive summands,
which is

(
n
q

)
. Grossly overestimating, for a fixedq we can thus bound the number

of types by
(
n
q

)5. Using the standard estimate
(
n
q

)
� (en/q)q and q = O(n//), we get

log |T | = O((n//) log/) as claimed. �

6.3. The probability of a matching with a given type of block partition

Next we show that for every fixed typeT, the probability that our random graph
contains a planar matching of sizemmax with that type of block partition is very small.

Lemma 10. Let n and k be as above. For any given typeT ∈ T , the probabilitypT
that the random graph�(Kn,n; k) contains a planar matching M withmmax edges and
with T (M) = T satisfies

pT � exp

(
−cε2� · n√

k

)

with a suitable absolute constantc > 0.
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Proof. Let Gi denote the subgraph of the considered random graph�(Kn,n; k) induced
by the nodesai, ai + 1, . . . , a′i and bi, bi + 1, . . . , b′i . We note that the distribution of
Gi is the same as that of�(Kri ,si ; k), whereri = a′i − ai + 1 and si = b′i − bi + 1.

A necessary condition for the existence of a planar matchingM with T (M) = T is
L(Gi)�ei for all i = 1,2, . . . , q. Crucially for the proof, the eventsL(Gi)�ei are
independent for distincti, and so we have

pT �
q∏
i=1

P
[
L(�(Kri ,si ; k))�ei

]
.

The plan is to apply Proposition6(i) for each i. The construction of the block partition
guarantees thatri, si�/, and so the condition(ri + si)√risi��k3/2/6 in Proposition6
is satisfied. However, the conditionrisi�Ck may fail. To remedy this, we artificially
enlarge the blocks; clearly, this can only increase the probability that a planar matching
of size ei is present.

Let us call theith block short if it is the last block, i.e.,i = q, or if ei = emax. Let
S ⊆ [q] denote the set of all indices of short blocks. We have(|S| − 1)emax�mmax,
and sinceemax� 1

� · /n ·mmax− 1, we obtain|S|�2�n//.
The blocks that are not short are calledregular, and we writeR = [q] \ S. For a

regular blocki, we have max(ai+1− ai, bi+1− bi)�/ by the construction of the block
partition.

Now we define the sizes of the artificially enlarged graphs, which will replace the
Gi in the subsequent calculation. Namely, for a short block (i ∈ S), we set

r̄i = s̄i = /.

For a regular block (i ∈ R), we distinguish two cases. Ifai+1 − ai�/, we setr̄i = /

and s̄i = max(�/, si). Otherwise, we set̄ri = max(�/, ri) and s̄i = /.
In the first case above, we havēri�ai+1 − ai and s̄i − si��/, and similarly for

the second case. Therefore,
∑
i∈R r̄i�n + �/ · |R| = (1+ O(�))n, with an absolute

constant in theO(·) notation, and similarly
∑
i∈R s̄i = (1+O(�))n. For i ∈ S we find∑

i∈S r̄i ,
∑
i∈S s̄i� |S| · /�2�n. Altogether

q∑
i=1

r̄i�(1+O(�))n,
q∑
i=1

s̄i�(1+O(�))n. (6)

Now r̄i and s̄i already satisfy the requirements of Proposition6(i), since we have
r̄i s̄i��/2 = �k2
 > Ck and (r̄i + s̄i )√r̄i s̄i�2/2 = 2k2
 < �k3/2/6. We thus have, by
Proposition6,

P[L(�(Kr̄i, s̄i; k))�ei ] �2e−(ei−mu(r̄i ,s̄i ))2/8ei
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for all i such thatei�mu(r̄i , s̄i ), wheremu(r, s) = (1+ �)2
√
rs/k. In the denominator

of the exponent, we estimateei�emax. We thus have

pT �
q∏
i=1

2e−max(0,ei−mu(r̄i ,s̄i ))2/8emax

(note that the factors fori with ei < mu(r̄i , s̄i ) equal 1). We consider the loga-
rithm of pT , we use the Cauchy–Schwarz inequality, and the inequality max(0, x) +
max(0, y)� max(0, x + y):

− lnpT � 1

8emax

q∑
i=1

max(0, ei −mu(r̄i , s̄i ))2− q ln 2

� 1

8emax
· 1

q
·
(

q∑
i=1

max(0, ei −mu(r̄i , s̄i ))
)2

− q ln 2

� �(1) · 1

emax
· /
n

(
q∑
i=1

ei −
q∑
i=1

mu(r̄i , s̄i )

)2

− q ln 2

� �

(
�
√
k

n

)(
(1+ ε) 2n√

k
− 2(1+ �)√

k

q∑
i=1

√
r̄i s̄i

)2

− q ln 2.

The function (x, y) �→ √
xy is subadditive:

√
xy + √x′y′�√(x + x′)(y + y′). Thus,

using (6), we have

q∑
i=1

√
r̄i s̄i�(1+O(�))n

and so, sinceq = O(n/l) and l�
√
k,

− lnpT ��

(
�
√
k

n

)(
(1+ ε) 2n√

k
− (1+O(�)) 2n√

k

)2

− q ln 2= �

(
ε2� · n√

k

)
.

Lemma10 is proved. �

Proof of Theorem 1. We have

P
[
L(�(Kn,n; k))�mmax

]
�
∑
T ∈T

pT � |T | ·max
T

pT .
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The sought after estimate

P
[
L(�(Kn,n; k))�mmax

]
� exp

(
−�(ε2�n/

√
k )
)
,

follows from Lemmas9 and 10. �

7. Extensions

Similarly one can prove results for the Erd˝os model analogous to those obtained in
previous sections (essentially,k is now replaced by 1/p):

Theorem 11. For every ε > 0 there exist constantsp0 ∈ (0,1) and C such that for
all p < p0 and all n with n

√
p > C we have

(1− ε) · 2n · √p�E
[
L(G(Kn,n;p))

]
�(1+ ε) · 2n · √p .

Moreover, there is an exponentially small tail bound; namely, for every ε > 0 there
existsc > 0 such that for p and n as above,

P
[∣∣L(G(Kn,n;p))− 2n

√
p
∣∣ �ε2n√p] �e−cn

√
p .

Subadditivity arguments yield thatE
[
L(G(Kn,n;p))

]
/n converges to a constant�p

as n→∞. The previous theorem thus implies that�p/
√
p→ 2 asp→ 0.

Also, similar results hold for theG(Kr,s;p) model as those derived for�(Kr,s; k).
Specifically:

Proposition 12. For every� > 0, there exists a(large) positive constant C such that:

(i) If rs�C/p and (r + s)√rs��/6p3/2, then withmu = mu(r, s) = 2(1+ �)
√
rsp,

for all t�0.

P
[
L(G(Kr,s;p))�mu + t

]
�2e−t2/8(mu+t) .

(ii) If rs�C/p and r + s��/6p, then withmu as above andml = ml(r, s) = 2(1−
�)
√
rsp, for all t�0

P
[
L(G(Kr,s;p))�ml − t

]
�2e−t2/8mu .

Gravner et al.[9] consider processes associated to random(0,1)–matrices where each
entry takes the value 1 with probabilityp, independent of the values of other matrix
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entries. In particular they study a process calledoriented digital boiling (ODB) and
analyze the behavior of a so-calledheight functionH(Mn({0,1});p) which equals,
in distribution, the length of the longest sequence{(il, jl)}l of positions of 1’s in
a random(0,1)–matrix of sizen × n such that theil ’s are increasing and thejl ’s
are nondecreasing. In contrast,L(G(Kn,n;p)) equals in distribution the longest such
sequence with bothil ’s and jl ’s increasing. This latter model is referred to asstrict
oriented digital boiling in [9]. Seppäläinen[20] had studied it through an embedding
into an interacting particle system and established what amounts to saying that for all
0< p < 1

lim
n→∞

1

n
· E [L(G(Kn,n;p))] = 2

1+√1/p
. (7)

Also noteworthy is the fact that in[9] the exact limiting distribution of the height
function H(Mn({0,1});p) is obtained. To the best of our knowledge, no such lim-
iting distribution result is know for strict ODB, i.e., the asymptotic distribution of
L(G(Kn,n;p)) is unknown.

The results of[9, Section 3(1)]imply that for anyp < 1/2,

lim
n→∞

1

n
· E [H(Mn({0,1});p)] = 2

√
p(1− p) . (8)

Clearly, an ODB process dominates that of a strict ODB process. Hence, both (7)
and (8) imply that lim supp→0 �p/

√
p�2. Nevertheless, our derivation of this latter

limit value is elementary in comparison with the highly technical nature of[9] and
unrelated to that of[20].

Acknowledgments

We thank Ricardo Baeza–Yates for calling to our attention Ref.[18].

References

[1] D. Aldous, P. Diaconis, Longest increasing subsequences: from patience sorting to the
Baik–Deift–Johansson theorem, Bull. Amer. Math. Soc. 36 (4) (1999) 413–432.

[2] R. Baer, P. Brock, Natural sorting over permutation spaces, Math. Comput. (1967) 385–410.
[3] R. Baeza-Yates, G. Navarro, R. Gavaldá, R. Schehing, Bounding the expected length of the longest

common subsequences and forests, Theory Comput. Systems 32 (4) (1999) 435–452.
[4] J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longest increasing subsequence

of random permutations, J. Amer. Math. Soc. 12 (1999) 1119–1178.
[5] V. Chvátal, D. Sankoff, Longest common subsequences of two random sequences, J. Appl. Probab.

12 (1975) 306–315.
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