Bit-parallel (§, y)-matching and suffix automata

Maxime Crochemor&®?, Costas S. lliopoulos
Gonzalo Navarré?3*, Yoan J. PinzohA%2, Alejandro Salinget

@ Institut Gaspard-Monge, Université de Marne-la-Vallée, France
b Department of Computer Science, King’s College, London, England, UK
¢ Center for Web Research, Department of Computer Science, University of Chile, Chile
d Lab. de Cémputo Especializado, Univ. Autbnoma de Bucaramanga, Colombia

Abstract

(8, y)-matching is a string matching problem with applications to music retrieval. The goal is,
given a patterrP; _,,, and a textl;_,, on an alphabet of integers, find the occurrenBésf the pat-
ternin the textsuchthat 1 <i <m, |P; — P/| <8, and (DX 1<icm 1Pi— P!| <y.The problem
makes sense fa&r < y < dm. Several techniques f@8, y)-matching have been proposed, based on
bit-parallelism or on skipping characters. We first present an/Qog(y)/w) worst-case time and
O(n) average-case time bit-parallel algorithm (beinghe number of bits in the computer word).

It improves the previous @:nlog(dm)/w) worst-case time algorithm of the same type. Second,
we combine our bit-parallel algorithm with suffix automata to obtain the first algorithm that skips
characters using bothandy . This algorithm examines less characters than any previous approach,
as the others do justmatching and check the-condition on the candidates. We implemented our
algorithms and drew experimental results on real music, showing that our algorithms are superior to
current alternatives with high values &f

Y A conference version of this paper appeared in [M. Crochemore et al., A bit-parallel suffix automaton
approach for {, y)-matching in music retrieval, in: Proc. 10th Internat. Symp. on String Processing and
Information Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, 2003, pp. 211-223].

* Corresponding author.

E-mail addressesnac@univ-mlv.fr(M. Crochemore)¢si@dcs.kcl.ac.ukC.S. lliopoulos),
gnavarro@dcc.uchile.¢G. Navarro) pinzon@dcs.kcl.ac.uy.J. Pinzon)asalinge@dcc.uchile.¢A. Salinger).

1 Partly supported by CNRS and NATO.

2 supported by CYTED VII.19 RIBIDI Project.

3 Funded by Millennium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

http://www.elsevier.com/locate/jda
mailto:mac@univ-mlv.fr
mailto:csi@dcs.kcl.ac.uk
mailto:gnavarro@dcc.uchile.cl
mailto:pinzon@dcs.kcl.ac.uk
mailto:asalinge@dcc.uchile.cl

M. Crochemoreetal.

Keywords:Bit-parallelism; Approximate string matching; MIDI music retrieval

1. Introduction

The string matching problem is to find all the occurrences of a given paRgry
in a large textTy.,, both being sequences of characters drawn from a finite character
set X. This problem is fundamental in computer science and is a basic need of many
applications, such as text retrieval, music retrieval, computational biology, data mining,
network security, etc. Several of these applications require, however, more sophisticated
forms of searching, in the sense of extending the basic paradigm of the pattern being a
simple sequence of characters.

In this paper we are interested in music retrieval. A musical score can be viewed as a
string: at a very rudimentary level, the alphabet could simply be the set of notes in the
chromatic or diatonic notation, or the set of intervals that appear between notes (e.qg., pitch
may be represented as MIDI numbers and pitch intervals as number of semitones). It is
known that exact matching cannot be used to find occurrences of a particular melody,
so one resorts to different forms approximatematching, where a limited amount of
differencesf diverse kinds are permitted between the search pattern and its occurrence in
the text.

The approximate matching problem has been used for a variety of musical applications
[6,9,15,19,20]Most computer-aided musical applications adopt an absolute numeric pitch
representation (most commonly MIDI pitch and pitch intervals in semitones; duration is
also encoded in numeric form). The absolute pitch encoding, however, may be insufficient
for applications in tonal music as it disregards tonal qualities of pitches and pitch-intervals
(e.g., a tonal transposition from a major to a minor key results in a different encoding
of the musical passage and thus exact matching cannot detect the similarity between the
two passages). One way to account for similarity between closely related but non-identical
musical strings is to permit a difference of at méainits between the pattern character
and its corresponding text character in an occurrence, e.g., a C-{68j@&4, 65, 67} and
a C-minor{60, 63, 65, 67} sequence can be matched if a tolerafieel is allowed in the
matching process. Additionally, we require that the total number of differences across all
the pattern positions does not exceedn order to limit the total number of differences
while keeping sufficient flexibility at individual positions.

The formalization of the above problem is calléd y)-matching. The problem is de-
fined as follows: the alphabél is assumed to be a set of integer numbérs; Z. Apart
from the patternP and the textT’, two extra parameters, y € N, are given. The goal is
to find all the occurrenceB’ of P in T such that (V1 <i <m, |P; — P/| <§, and (i)
> 1<i<m |Pi — P/| < y. Note that the problem makes sensedfat y < ém: If y > § then
the limit on the sum of differences is larger than the limit on any difference, so one should
sets < y; and ify > ém then condition (i) implies (ii) and we should set«— §m.

Several recent algorithms exist to solve this problem. These can be classified as follows:

M. Crochemoreetal.

Bit-parallel: The idea is to take advantage of the intrinsic parallelism of the bit
operations inside a computer word ©ofbits [1], so as to pack several values in

a single word and manage to update them all in one sh¢¥,8) this approach

was used to obtaint8FT-PLUS, an Qnm log(ém) /w) worst-case time algorithm.

The algorithm packs: counters whose maximum valuesss, hence it needs
m[log,(§m + 1)] bits overall and @nlog(ém)/w) computer words have to be
updated for each text character.

Occurrence heuristicsinspired by Boyer—Moore techniqués,21], they skip

some text characters according to the position of some characters in the pat-
tern. In[7], several algorithms of this type were proposed&anatching (a re-
stricted case wherg = §m), and they were extended to genefaly)-matching

in [10]. The extension is done by checking thecondition on each candidate
thats-matches the pattern. These algorithms ave#d-BoYER—MOORE, SKIP-
SEARCH and MAXIMAL -SHIFT, each of which has a counterpart in exact string
matching. These algorithms are faster than the bit-parallel ones, as they are simple
and skip text characters.

Substring heuristics:Based on suffix automafé2,13], these algorithms skip text
characters according to the position of some pattern substringB0 h1] three
algorithms of this type, called-BM1, §-BM2 and §-BM3, are proposed. They

try to generalize the suffix automata dematching, but they obtain only an ap-
proximation that accepts more occurrences than necessary, and these have to be
verified later. They also verify thg-condition over eacld-matching candida-

te.

In this paper we present two n&¥, y)-matching algorithms:

o We improve $1IFT-PLUS in two aspects. First, we show that its worst case complexity
can be reduced to @m log(y)/w) by means of a more sophisticated counter man-
agement scheme that needs offly+ log,(y + 1)] bits per counter. Second, we show
how its average-case complexity can be reduced(tn O

o We combine our bit-parallel algorithm with suffix automata, as already done with
other string matching probleni47,18] so as to obtain the first algorithm able of
skipping text characters based both&randy - conditions. All previous algorithms
skip characters using th&condition only. Moreover, our suffix automaton accepts
exactly the suffixes of strings thag, y)-match our pattern, so no candidate verifi-
cation is necessary at all. Our algorithm examines less characters than any previous
technique.

The algorithms are very efficient and simple to implement. Our experimental results
on real music data show that they improve previous work whénlarge (so that their
dependence op rather than or§ shows up). For short patterns, of length up to 20, the
character skipping algorithm is the best, otherwise our simple bit-parallel algorithm domi-
nates.

M. Crochemoreetal.

2. Basic concepts

In this section we present the concepts our paper builds on: bit-parallelism and suffix
automata. We start by introducing some terminology.

A string x € X* is afactor (or substring) ofP if P can be writtenP = uxv, u,v € ¥*.

A factor x of P is called asuffix(prefiX) of P if P =ux (P =xu), u € X*.

A bit maskof lengthr is simply a sequence of bits, denotégd...b1. We use ex-
ponentiation to denote bit repetition (e.g310= 0001). The length of the computer
word is w bits, so the mask of length < w is stored somewhere inside the computer
word. Also, we write[x], to denote the binary representation of numbet 2" us-
ing r bits. We also use C-like syntax for operations on the bits of computer wolds: “
is the bitwise-or, “&” is the bitwise-and, and~" complements all the bits. The shift-
left operation, <<”, moves the bits to the left and enters zeros from the right, that is,
buby—1...bob1 <<r1r =b,_,...bob10". Finally, we can perform arithmetic operations
on the bits, such as addition and subtraction, which operate the masks as numbers. For
instancep, ...»,10000— 1=5,...b,01111.

2.1. Bit-parallelism

In [2,23], a new approach to text searching was proposed. It is baskit-parallelism
[1], a technigue consisting in taking advantage of the intrinsic parallelism of the bit oper-
ations inside a computer word. By using cleverly this fact, the number of operations that
an algorithm performs can be cut down by a factor of at mgghe number of bits in the
computer word. Since in current architectusess 32 or 64, the speedup is very significant
in practice.

The Shift-And algorithnj23] uses bit-parallelism to simulate the operation of a nonde-
terministic automaton that searches the text for the patterr=ige&). A plain simulation
of that automaton takes time(@n), and Shift-And achieves @:n/w) worst-case time
(optimal speedup).

The algorithm first builds a tabl8 which for each charactere X stores a bit mask
Blc] =b,,...b1, so thath; = 1 if and only if P; = c¢. The state of the search is kept in a
bit maskD = d,, ...d1, whered; = 1 whenever the state numbereth Fig. 1is active.

That is, after having scanned text positipnwe haved; = 1 wheneverPy ; =Tj_i11.. ;.
Therefore, we report a match whenewgris set.
We start withD = 0™ and, for each new text charactgy, updateD using the formula

D < ((D <<1)|0"11)& B[T}]

because each state may be activated by the previous state as [Bnmathes the corre-
sponding arrow. The|'0”~11” after the shift corresponds to the self-loop at the beginning

z

m ; b c d e f
D000 -2

Fig. 1. A nondeterministic automaton to search a text for the paesn" abcdef g" . The initial state is 0.

M. Crochemoreetal.

LU S0 I S0
Fig. 2. A nondeterministic suffix automaton for the pattePh= "abcdef g". Dashed lines represent
e-transitions. The initial state is I.

of the automaton (as state 0 is not representel})inSeen another way, thi¢h bit is set
if and only if the (i — 1)th bit was set for the previous text character and the new text
character matches the pattern at positiolm other words7;_;y1...; = P1..; if and only if
T/ i+1..j— 1=P1 - landT =F.

The cost of this algorithm is @). For patterns longer than the computer ward >
w), the algorithm use$m /w] computer words for the simulation, with a worst-case cost
of O(mn/w). By managing to update only those computer words that have some active
state, an average case cost @¢fiDis achieved.

It is very easy to extend Shift-And to handle classes of characters, where each pattern
position does not match just a single character but a set ther&bfidthe set of characters
at position: in the pattern, then we set thth bit of B[c] for all ¢ € C;.

2.2. Suffix automata

We describe the BDM pattern matching algoritfiti2,13], which is based on a suffix
automaton. Asuffix automatomn a patternP;_, is a deterministic finite automaton that
recognizes the suffixes @f. The nondeterministic version of this automaton has a very
regular structure (see ig. 2).

The (deterministic) suffix automaton is well knoji?]. Its size, counting both nodes
and edges, is @), and it can be built in On) time[12]. A very important fact is that this
automaton can also be used to recognize the factoPs he automaton is active as long
as we have read a factor &f.

This structure is used if12,13]to design a pattern matching algorithm called BDM,
which is optimal on average (@log, 5;|(m)/m) time on uniformly distributed text). To
search a tex@ for P, the suffix automaton of” = P, P,_1... P1 (the pattern read
backwards) is built. A window of length: is slid along the text, from left to right. The
algorithm reads the window right to left and feeds the suffix automaton with the characters
read. During this process, if a final state is reached, this means that the window suffix we
have traversed is a prefix df (because suffixes aP” are reversed prefixes df). Then
we store the current window position in a varialdst, possibly overwriting its previous
value. The backward window traversal ends in two possible forms:

(1) We fail to recognize a factor, that is, we reach a charatcténat does not have a
transition in the automaton (séég. 3). In this case the window suffix read is not a
factor of P and therefore it cannot be contained in any occurrence. We can actually
shift the window to the right, aligning its starting positionlé&st, which corresponds
to the longest prefix oP seen in the window. We cannot miss an occurrence because
in that case the suffix automaton would have found its prefix in the window.

M. Crochemoreetal.

Window
LTI T T I ITT] [T TTTTTTITT]
Search for g factor with the suffix automaton
LITTTTTTITTT [o - [TTTTTTTITT]

Fail to recognize a factor at o.

New sehrch

LI e T L[]

-
Safe shift

New window

Fig. 3. Basic search with the suffix automaton.

(2) We reach the beginning of the window, therefore recognizing the pattee report
the occurrence, and shift the window exactly as in the previous case (we have the
previouslast value).

It is possible to simulate the suffix automaton in nondeterministic form by using bit-
parallelism[17,18], so as to obtain very efficient and simple algorithms.

3. Improving the bit-parallel algorithm

First of all, notice thas-matching is trivial under the bit-parallel approach, as it can be
accommodated using the ability to search for classes of characters. We define that pattern
character matches text characters-§...c+68. Hence, ifB[c] = b,, ... b1, we seth; =1
if and only if | P; —c| < 8. The rest of the algorithm is unchanged and the same complexities
are obtained.

The real challenge is to d@, y)-matching. The solution we present is an improvement
over that off7,8] and it has some resemblances with thgBpffor Hamming distance.

Let us focus for a moment gn-matching alone. Instead of storing just onedito tell
whetherPy ; matchesT;_; 1. j, we store a counter; to record the sum of the absolute
differences between the corresponding characters. That is

ci= Y |P—Tj il 1)

1<k<i

and we wish to report text positions whetg < y.
The next lemma shows how to update th@alues for a new text position, and suggests
an Qimn) time y -matching algorithm.

M. Crochemoreetal.

Lemma 1. Assume that we want to compute the counters. ¢, according to Eq(1) for
text positionj, and have computed .. . c;, for positionj — 1. Thec; values satisfy

= > IP—Tjiskl=cj 1+ |P = Tj|
1<k<i

assuming: = 0.
Proof. Immediate by substitution af _, according to Eq(1). O

The update technique given lremma 1is good for a bit-parallel approach. Let us
assume that eact) counter will be represented usidgbits, where? will be specified
later. Hence the state of the search will be expressed using the bit mask

= [emlelem—1le . .. [c2]elc1le. 2

We precompute a mask[c] of countergb,,]; ... [b1]¢, SO thath; = | P; — ¢|. Then, the
following lemma establishes the bit-parallel formula to update

Lemma 2. Assume that we want to compute bit maskaccording to Eq.(2) for text
position j, and have computed’ for positionj — 1. Then

D = (D' <<)+ B[Tj]. 3)

Proof. Theith counter ofD’ is c;. After the shift-left (“<<") the ith counter becomes
c;_,- Theith counter ofB[T7}]is | P; — T;|. Hence theth counter of the right hand side of
the equality is;_; 4 |P; — T;|. According toLemma 1 thisisc;. O

This gives us a solution fgr-matching. Start wittD = ([y + 1]¢)" (to avoid matching
before readind’;,) and update it according to E(B). Every time we have,, < y, report
the last text position processed as the end of an occurrence.

In order to includes-matching in the picture, we change slightly the definitiorBjé].
The goal is that if, at any position, it hold®; — 7;| > §, then we ensure that the
corresponding occurrence is discarded. For this sake, it is enough to redé¢fine-
[bim]e - .. [b1]e as follows:

bi=if|P,-—c|<5then|Pi—c|elsey+1. (4)

The next lemma establishes the suitability of the above formula@fer) matching.

Lemma 3. If the update formula of E((3) is applied andB]c] is defined according to
Eq. (4), then after processing text positignit holds thatc,, < y ifand only if 7;_,, 1. ;
(8, y)-matchesP.

Proof. By Lemmas 1 and 2and Eq.(1) we have that, if the original definitioby = | P; —

c| is used, ther,,, = Zl<k<m |Px — Tj_myk| after processing text posmon The only
difference if the definition of Eq4) is used is that, if any of thePy — T, _,,,1«x| was larger
thang, thenb, > y for B[T;_,+«], and therefore;, > y after processing text position

M. Crochemoreetal.

Jj —m + k. Since counters only increase as they get shifted and added i(BEdhat
countercy at positionj —m + k will become countet,, at position;, without decreasing.
Thusc,, > y after processing text position Thereforec,, <y if and only if 7;_,, 41 ;
(8, y)-matchesP. O

Let us consider now thé value. In principle, usind3[c] as in Eq.(4), counterc,, can
be as large as(y + 1), sinceb; < y + 1 (recall thats < y). However, recall that counter
values never decrease as they get shifted Bverhis means that, once they become larger
thany, we do not need to know how larger they are. Thus, instead of storing the; real
value, we would rather store mi, y + 1), and then need onljlog,(y + 2)] bits per
counter.

In principle, whenever; exceedsy, we storey + 1 for it. The problem is how to
restore this invariant after addirgjc] to the counters, and also how to avoid overflows in
that summation. We show now that we can handle both problems by using the following
number of bits per counter:

¢=1+Tlogy(y + D] (5)

Thus, our bit maskD needsmf = m(1 + [logy,(y + 1)) bits and our simulation needs
O(mlog(y)/w) computer words.
Instead of representing countgras|c;]¢, we represent it as

¢ — [ei+2 =+ D], (6)

This guarantees that the highest bit of the counter will be set if and on)yify + 1, as
its representation will bez 261,

Before addingB[T;], we will record all those highest bits in a bit magk =
D & (10~ and clear those highest bits frol. Once its highest bit is cleared, every
counter representation is smaller thdn2and we can safely adel without overflowing
the counters, since the resulting valueisatmést2 1+ (y + 1) =214y <2y +1
because of Eq(5). And again because of E5), a counter can hold up to value
2(y +1) —1=2y + 1. After addingB[T;] we restore those highest bits setin

Note that it is not strictly true that we maintain ndif, y + 1), but it is true that the
highest bit of the representation @fis set if and only ifc; > y, and this is enough for the
correctness of the algorithm. The next Lemma establishes this correctness.

Lemma 4. Assume that; is represented as in E) if ¢; < y, and as[2¢~1 + x], other-
wise, for some > 0. Then, if the update formula dfemma2 is applied with the exception
that the highest bits set in the counters are removed before and restored after &jdirig
then it holds that the representation is maintained after procesBjng

Proof. If ¢; already exceedeg before addingp;, it will exceedy after addingp;. In

this case, the representatione@fwas 2~ + x and thus it already had its highest bit set.
This bit will be restored after addingy. Thus, regardless of which value actually stores,
the representation will correctly maintain its highest bit set, that is, it will be of the form
2t=1 4 x for somex > 0.

M. Crochemoreetal.

Forward-Scan (P1. ., T1..n5 8, V)
1. Preprocessing

2. £ <1+ [logy(y + 1)1

3. for ce ¥ do

4. Blc] < ([01)™

5. foriem...1do

6. if |c — P;| < & then

7. Blc] < (Blcl << €) | (lc — P;])
8. dse Blc] < (Blc]l << &) | (y +1)
9. Search

10. D <« (10~ Lym

11 for jel...ndo

12, if D&10"™~1 ="t then

13 Report an occurrence at j—m+1
14, D« (D<<0| 21— +1)

15. H < D& (10°~1ym

16. D« (D& ~H)+ B[T;]) | H

Fig. 4. Bit-parallel algorithm foxs, y)-matching. Constant values are precomputed.

On the other hand, if; did not exceed’ before adding;, then its representation was
ci + 271 — (y + 1) and the highest bit was not set. Thus the manipulation of highest bits
will not affect its result. After the summation the representation will hiplg b; + 261 —
(y + 1). This is a correct representation for the new vatue- b;, either if¢; + b; < y
orif ¢; + b; > y, as in the latter case the representation is of the fornt 2 x, where
x=c¢i+bi—(y+1)>0. O

Fig. 4 depicts the algorithm. It is calleBorward-Scanto distinguish it from our next
algorithms that scan windows backward. The preprocessing consists of compaiing
cording to Eq.(5) and tableB according to Eq(4). PatternP is processed backwards so
as to arrange[c] in the right ordefb,,], ... [b1]¢. Line 10 initializes the search by setting
¢i =y +1in D, according to the representation of Ef). Occurrences are reported in
lines 12—-13, whenevey, < y, that is, the highest bit of the representation,pfis not set.

Line 14 is the equivalent t® < D << ¢, except that the countep = O that is moved

to the position of; must be represented as2 — (y + 1) according to Eq(6). Line 15
computesH as explained, to record the highest bits. Line 16 completes the computation
of Eq. (3), by removing bits set itf from D and restoring them after the summation with
B[T;].

Assuming that the bit masks fit in a computer word, thatig,< w, the algorithm
complexity is Qm|X| + n). If several computer words are needed, the search complexity
becomes Qnnlog(y)/w). However, we defer the details of handling longer bit masks to
Section5, as it is possible to obtain @) search time on average.

4. Using suffix automata

As demonstrated ifil7,18] the suffix automaton approach of Sect@i2 can be ex-
tended to search for more complex patterns by combining it with bit-parallelism. In this

M. Crochemoreetal.

section we combine our bit-parallel approach of Sec8arith the suffix automaton con-
cept to obtain an algorithm that does not inspect all the text characters.

Imagine that we process a text winddps; 1...post-m right to left. Our goal is that, after
having processedos; j, we have computed

— r

ci= Y 1P jyix — Toostm—k|
0<km—j

= Z | Pom41—i—j—k — Tpostm—k| (7)
0<k<m—j

form — j+1<i < m.This can be obtained by initializing = 0 before starting processing
the window and then updating tlevalues according to the following lemma.

Lemma 5. Assume that we have valuescomputed forTpoes; 11 according to Eq(7).
Then values; for Tpes; Satisfy

ci=cj_q+ P — Tpost;l.
Proof. Itis immediate by rewriting’;_; according to Eq(7). O

If we maintain values; computed according to E7), then, after processinfjos; ;,

@) if ¢y <y, thenzogkgm_j | Prym—j—k — Tpostm—k| <y, thatis,Py _,,— ;11 y-matches
window suffix Tposy j...postm; (i) if ¢; >y forallm — j + 1< i < m, then the window
Suffix Tpostj...postm dOES Noty-match any pattern substrin®, —; 1. (n—i+1)+m—;, and
therefore no occurrence can contd@fasy ;... posm-

Therefore, a BDM-like algorithm would be as follows. Process text window
Tpos+1...postm Dy reading it right to left and maintaining values. Every time:, < y,
mark the current window positiolast so as to remember the last time a window suffix
y-matched a pattern prefix. If, at some moment; y for all i, then shift the window to
start at positiodast and restart. If all the window is traversed and stjll < y, then report
the window as an occurrence and also shift it to start at poditisn The correctness of
this scheme should be obvious from Secth

A bit-parallel computation of the; values is very similar to the one developed in Sec-
tion 3, as the update formulas bémmas 1 and are so close. In order to work o, we
simply storeB|[c] in reverse fashion. Vectes is initialized atc; = 0 according to Eq(7).

To determine whether,, <y we simply test the highest bit of its representation. To deter-
mine whether; > y for all i we test all highest bits simultaneously. To account also for
8-matching we change the preprocessin@@f] just as in Eq(4).

Fig. 5depicts the algorithm, called “backward-scanning” because of the way windows
are processed. The preprocessing is identickigo4 except that the pattern is processed
left to right. D is initialized in line 13 withc; = 0 considering the representation of Eg).

Line 14 continues processing the window as long;as y for somei. The update tad>

is as inFig. 4, except that the first shift left € <”) of each window is omitted to avoid
losing the firstc1 value. Conditiorc,, < y is tested in line 18. When it holds, we update
last unless we have processed all the window, in which case it means that we found an
occurrence and also must maintain the previagsvalue. Line 21 shift®) and introduces

M. Crochemoreetal.

Backwar d-Scan (PL.m>T1.0,8,7)
1. Preprocessing

2. £ < 1+ [logy(y + 1)1

3. for ce ¥ do

4. Blc] < ([01)™

5. foriel...mdo

6. if |c — P;| < 8 then

7. Blc] < (Blcl << €) | (Ic — P;])
8. dse Blc] < (Blc]l <<)| (y +1)
9. Search

10. pos<0

11 while pos< n —m do

12 Jj < m,last<—m

13 D« (21— (y + D™

14, while D & (10°=1ym £ (10f=1ym do
15. H < D& (10t=1ym

16. D« (D& ~H)+B[Tj])|H

17. j—j-1

18, if D&10"™~1 ="t then

19. if j >0thenlast<« j

20. elseReport an occurrence at pos+1
21 D« (D <<¢)| 1071

22. pos< pos+ last

Fig. 5. Backward scanning algorithm f@t, y)-matching. Constant values are precomputed.

valuesy + 1 from the right, to ensure that the relevanilues aren — j + 1 <i <m and
that the loop will terminate aften iterations. Finally, the window is shifted bBgst

Note that, given the invariants we maintain, we can report occurrences without any
further verification. Moreover, we shift the window as soon as the window suffix read
does not(s, y)-match a pattern substring. This is the first character-skipping algorithm
with these properties. Previous ones only approximate this property and require verifying
candidate occurrences. Consequently, we inspect less characters than previous algorithms.

5. Handling longer patterns

Both algorithms presented are limited by the length of the computer word. They work
for m(1+ Tlog(y + 1)1) < w. However, in most cases this condition is not fulfilled, so we
must handle longer patterns.

5.1. Active computer words

The first idea is just to use as many computer words as needed to repPedargach
computer word we store the maximum amount of counters that fully fitintoits. So
we keepk = |w/£] counters in each word (except the last one, that may be underfilled),
needing[m/|w/¢]] words to represend. Each time we updat® we have to process all
the words simulating the bit-parallel operations. With this approach, the forward scanning

M. Crochemoreetal.

takes time @Qnum log(y)/w). We remark that previous forward scanning algoritims]
required @nm log(md)/w) time, which is strictly worse than our complexity. The differ-
ence is that we have managed to keep the counters bélow 2) instead of letting them
grow up tomsé. This alternative is called simply “Forward” in the experiments.

A key improvement can be made to the forward scanning algorithm by noticing that it
is not necessary to update all the computer words at each iteration. As cousteres
the sum of all the differences between characfars and their corresponding characters
in the text (Eq.(1)), depending on the values #fandy and on the size of the alphabet,
most of the time the highest counters will have surpagse@nce a counter surpasses
we only require that it stays larger than(recall Sectior8 andLemma 4, so it is not even
necessary to update it. Let us say that a computer woadtise when at least one of its
counters stores some < y. The improvement works as follows:

o At each iteration of the algorithm we update the computer words only until the one we
have marked as the last active word.

e As we update each word we check whether it is active or not, remembering the new
last active word.

o Finally, we check if the last counter of the last active wordig . In that case, the
word that follows the last active word must be the new last active word, as in the next
iteration its first counter may become less thar- 1, and hence we may need to
process it.

This algorithm has the same worst-case complexity of the basic one, but the average
case is significantly improved. Consider a random text and pattern following a zero-order
model (that is, character probabilities are independent of the neighbor characters). Say
that p; is the probability of thesth character of the alphabet. Then the probability that
P; §-matches a random text characterrjs= ZPI,_KXQ[M ps. The probability ofPy_;
8-matchingT;_;1...; for a random text position is w; = Ty ki k.

The first computer word will be always active; the second will be active onB if,
matchesT;_, ;1. j; the third will be active only ifP; . matchesl’;_».41..;; and so on.
Hence the average number of computer words active at a random text position is at most

1+wK+sz+--~=ZwiK
i>0

and this is Q1) providedr = max¢;<n 7 < 1, as in this case); < 7' and the average
number of active words i§"; 5 g wix < Y507 =1/(1—)4

Hence, as we update(D computer words on average, the average search timé:is O
Note that this holds even without consideringwhich in practice reduces the constant fac-
tor. The lower the values éfandy are, the better the performance will be. This alternative
is called “Forward last” in the experiments.

Yet another improvement can be made to this algorithm by combining it with the basic
single-word algorithm. We store the first word used to repreBeinta register and run the

4 This holds also if there are O(1)values such that; = 1.

M. Crochemoreetal.

algorithm using just this word, as long as this one is the only active word. Whenever the
second word becomes active, we switch to the multiple word algorithm. We switch back
to the basic algorithm whenever the first word becomes the last active word. The use of a
register to store the first word yields a better performance, as we have to make less memory
accesses. The more time the first word is the only active word, the more significant is the
improvement. This alternative is called “Forward register” in the experiments.
Unfortunately this idea cannot be applied to the backward-scanning algorithm, as in
this one we will have counters y uniformly distributed across all the computer words.
This happens becausg< y after readindlpostj if Prn—it+1..n—i+1)+m—; (8, y)-matches
Tpostj...postm (EQ- (7)), and this probability does not necessarily decrease iniglctually
it is independent of on a uniform distribution). The plain multi-word backward scanning
algorithm is called simply “Backward” in the experiments.

5.2. Pattern partitioning

Another idea to handle long patterns is to partition them into pieces short enough to
be handled with the basic algorithm. Notice tharif(s, y)-matchesT;_,,11...;, and we
partition P into j disjoint pieces of lengthm /j| and[m/j], then at least one piece has
to (8, y')-match its corresponding substringBf_,,+1...;, wherey’ = |y /j]. The reason
is that, otherwise, each piece adds up at lgdst 1 differences, and the total is at least
J&'+D=j(y/jl+1 > j(y/j) =y, and theny-matching is not possible.

Hence we runj (8, y’)-searches for shorter patterns and check every match of a piece
for a complete occurrence. The check is simple and does not even need bit parallelism.
Note that if§ > y’, we can actually dgy’, y')-matching.

We must choose the largessuch that

[m/j1(1+ [logy(Ly/jl+1)]) <w

and hence we perforni = O(mlog(y)/w) searches. For forward scanning, each such
search costs @). Piece verification cost is negligible on average. Hence the average
search time of this approach is(#n log(y)/w), which is not attractive compared to the
worst-case search time of the basic approach. However, each of these searches can be made
using registers foD, so in practice it could be relevant. It could be also relevant for back-
ward matching, where using in registers is not possible for long patterns.

Furthermore, the pieces can be grouped and searched for together using so-called “su-
perimposition”[4,16]. By making groups of pieces each, we perforifiy/r] searches.
For each search, countgr of B[c] will store the minimum difference betweerand the
ith character of any piece in the group,dr- 1 if none of these differences is smaller than
y' + 1. Every time we find a match of the whole group we check the occurrence of each of
the substrings forming that group. For all the pieces that matched we check the occurrence
of the whole pattern at the corresponding position. The greait®rthe less searches we
perform, but the more time we spend checking occurrences. The time spent in checking
occurrences also increases witlindy . Because of this, the optimumdepends o1, y
andm.

These algorithms are called “Forward superp” and “Backward superp” in the experi-
ments. These include the case- 1, where no superimposition is done.

M. Crochemoreetal.

6. Experimental results

In this section we show experimental evidence comparing the different versions of our
algorithms against-BM2 [10,11] which is the most efficient alternatiyé, y)-matching
algorithm.

The tests were performed using a Pentium 1V, 2 GHz, 512 Mb RAM and 512 Kb cache
running Suse Linux withw = 32. We used the GNlgcc compiler version 2.95.3. Each
data point represents the median of 100 trials.

We ran our experiments using real music data obtained from a database of MIDI files
of classic music, totalizing 10.5Mb of absolute pitches. We focused on typical parameter
values for music searching, namely 2—4 §od.5m—2.0m for y, and 10-200 fom.

The results for forward algorithms are shownFig. 6. The variants are called “For-
ward” (plain multiword forward), “Forward last” (same but updating only up to the last
relevant word), “Forward register” (same but switching to single-word mode when pos-
sible), and “Forward superp” (partition plus superimposing in the way that gives the best
results).

0.25 0.25
Forward —— Forward ——
Forward last —«— Forward last ——
Forward register —»— Forward register —=—
./ Forward superp —=— | | 0.2 Forward superp —s— | |

0.2

A W
/.

|
A e s

[
F

0.05

0.05 -

o

0 0
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
m m
(a) 0 =2 and y=1.5m (b) 6 =4 and y=1.5m
0.25 0.25

Forward —— Forward ——
Forward last —— Forward last ——
Forward register —»— Forward register —»=—
0.2 Forward superp —e— || g | - / Forward superp —e— | |
0.15 /f 0.15
//\ ARBANAR RaRanan T SVEUIVEVIVIVAS BVIN g % Né H
0.1 1 N/ 0.1 f . _
0.05 A 0.05
0 0 L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
m m
(c) 6 =2 and y=2m (d) 6 =4 and y=2m

Fig. 6. Timing figures for forward algorithms, in seconds per megabyte.

M. Crochemoreetal.

As expected, Forward and Forward-superp are the slowest and their cost grows linearly
with m. Forward-superp shows a better constant factor and it is attractive for very short
patterns, but soon its linear dependence withenders it useless. Superimposition allevi-
ates this only partially, as the optimum was to superimpose 2 to 7 patterfis=farand 2
to 5 for § = 4. These numbers grow slowly asincreases and stay at a maximum of 5
or 6, making the whole scheme linearinanyway.

Forward-last and Forward-register, on the other hand, display their &erage case
time, independent of. As expected, Forward-register is by far the best. We will consider
only this alternative to compare against backward algorithms.

Fig. 7 compares backward algorithms (which includes the relevant competing alterna-
tives), and Forward-register. The backward algorithm only has variants “Backward” (plain
single- or multi-word, as needed) and “Backward superp” (partition plus superimposing in
the best possible wayj-BM?2 is the best existing alternative algorithm.

We observe that partitioning (including superimposition) is also a bad choice for back-
ward scanning. The reasons are the same as for the forward version. In general, backward
searching does not behave competitively when many computer words are involved. Back-
ward was better than Forward-register when the whole (superimposed) representation fit

0.2 0.2
Forward register —— Forward register ——
Backward —— Backward ——
Backward superp —»— Backward superp —»—
BM2 —=— BM2 —=—
0.15 / 0.15 :
04 04 bt 3 N R SRR N SR SO S
0.05 0.05 . R s S (5%
0 0
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
m m
(a) 0 =2 and y=1.5m (b) 6 =4 and y=1.5m
0.2 . . — . 0.2 . . — :
Forward register —+— Forward register —+—
Backward —— Backward ——
Backward superp —»— Backward superp —=—
BM2 —e— BM2 —e—
0.15 / 0.15
0.1 0.1
JRIPUIIVIVEG SUINIVESPRVING SRR St e /\9" |
/. Lok fz G e .)\""‘]
0.05 pj % N 0.05 Ly
0 0 L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

m

(¢) § =2 and y=2m

Fig. 7. Timing figures for backward algorithms and the best forward algorithm, in seconds per megabyte.

m

(d) 6 =4 and y=2m

M. Crochemoreetal.

in a single computer word. As more than a single word is necessary, Forward-register be-
comes superior. The reason is that backward searching needs to effectively update all its
computer words, while the forward versions do so only for a few active computer words.
With respect to the competing algorithm, it can be seendH22 is faster than ours
for small § = 2, but as we use a largér= 4 it becomes not competitive, as it can be
expected from its only-filtration scheme. Our algorithms are the only ones that can filter
usings andy simultaneously.
Finally, we notice that the dependencesos significant to the extent that it can double
the time it takes by going froh= 2 to § = 4. The dependence gn on the other hand, is
not much significant. We note, however, that Forward-register is rather insensitive t both
andy, becoming a strong and stable choice for genégl)-matching.

7. Conclusions

We have presented new bit-parallel algorithms@ry)-matching, an extended string
matching problem with applications in music retrieval. Our new algorithms make use
of bit-parallelism and suffix automata and has several advantages over the previous ap-
proaches: they make better use of the bits of the computer word, they inspects less text
characters, they are simple, extendible, and robust.

Especially important is that our algorithms are the first tri@#lyy) character-skipping
algorithms, as they skip characters using both criteria. Existing approaches db just
matching and check the candidates for theondition. This makes our algorithms a
stronger and more stable choice for this problem.

We have also presented several ideas to handle longer patterns, as the algorithms are
limited by the length of the computer word. The fastest choice is an algorithm that uses
several computer words and updates only those that hold relevant values, switching to
single-word mode when possible.

We have shown that our algorithms are the best choice in practice fvisemot small
enough to make up a good filter by itself. In this case, the ability of our algorithms to filter
with y at the same time becomes crucial.

We plan to investigate further on more sophisticated matching problems that arise in
music retrieval. For example, it would be good to extéfid’)-matching in order to per-
mit insertions and deletions of symbols, as well as transposition invariance. Bit-parallel
approaches handling those options, albeit @0y)-matching at the same time, have re-
cently appearefl 4].

Another challenging problem is to consider text indexing, that is, preprocessing the
musical strings to speed up searches later. A simple solution is the use of a suffix tree of
the text combined with backtracking, which yields search times which are exponential on
the pattern length but independent of the text leng).

References

[1] R. Baeza-Yates, Text retrieval: Theory and practice, in: 12th IFIP World Computer Congress, vol. |, Elsevier
Science, 1992, pp. 465-476.

M. Crochemoreetal.

[2] R. Baeza-Yates, G. Gonnet, A new approach to text searching, Comm. ACM 35 (10) (1992) 74-82.

[3] R. Baeza-Yates, G. Gonnet, Fast string matching with mismatches, Inform. and Comput. 108 (2) (1994)
187-199.

[4] R. Baeza-Yates, G. Navarro, Faster approximate string matching, Algorithmica 23 (2) (1999) 127-158.

[5] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (10) (1977) 762-772.

[6] E. Cambouropoulos, T. Crawford, C. lliopoulos, Pattern processing in melodic sequences: Challenges,
caveats and prospects, in: Proc. Atrtificial Intelligence and Simulation of Behaviour (AISB’99) Convention,
1999, pp. 42-47.

[7] E. Cambouropoulos, M. Crochemore, C. lliopoulos, L. Mouchard, Y.J. Pinzon, Algorithms for computing
approximate repetitions in musical sequences, in: Proc. 10th Australasian Workshop on Combinatorial Al-
gorithms (AWOCA'99), 1999, pp. 129-144.

[8] E. Cambouropoulos, M. Crochemore, C.S. lliopoulos, L. Mouchard, Y.J. Pinzon, Algorithms for computing
approximate repetitions in musical sequences, Internat. J. Comput. Math. 79 (11) (2002) 1135-1148.

[9] T. Crawford, C. lliopoulos, R. Raman, String matching techniques for musical similarity and melodic recog-
nition, Computing in Musicology 11 (1998) 73-100.

[10] M. Crochemore, C. lliopoulos, T. Lecroq, Y.J. Pinzon, W. Plandowski, W. Rytter, Occurrence and substring
heuristics fors-matching, Fundamenta Informaticae 55 (2003) 1-15.

[11] M. Crochemore, C. lliopoulos, T. Lecrog, W. Plandowski, W. Rytter, Three heuristiésrfatching:s-BM
algorithms, in: Proc. 13th Ann. Symp. on Combinatorial Pattern Matching (CPM’02), in: Lecture Notes in
Comput. Sci., vol. 2373, 2002, pp. 178-189.

[12] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1994.

[13] A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, T. Lecrog, W. Plandowski, W. Rytter, Speeding up
two string-matching algorithms, Algorithmica 12 (1994) 247-267.

[14] K. Lemstrom, G. Navarro, Flexible and efficient bit-parallel techniques for transposition invariant approx-
imate matching in music retrieval, in: Proc. 10th Internat. Symp. on String Processing and Information
Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, 2003, pp. 224-237.

[15] P. McGettrick, MIDIMatch: Musical pattern matching in real time, MSc Dissertation, York University, UK,
1997.

[16] G. Navarro, R. Baeza-Yates, Improving an algorithm for approximate string matching, Algorithmica 30 (4)
(2001) 473-502.

[17] G. Navarro, M. Raffinot, Fast and flexible string matching by combining bit-parallelism and suffix automata,
ACM J. Experimental Algorithmics (JEA) 5 (4) (2000).

[18] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings—Practical On-line Search Algorithms for
Texts and Biological Sequences, Cambridge University Press, 2002.

[19] P. Roland, J. Ganascia, Musical pattern extraction and similarity assessment, in: E. Miranda (Ed.), Readings
in Music and Artificial Intelligence, Harwood Academic Publishers, 2000, pp. 115-144.

[20] L.A. Smith, E.F. Chiu, B.L. Scott, A speech interface for building musical score collections, in: Proc. 5th
ACM Conference on Digital Libraries, ACM Press, 2000, pp. 165-173.

[21] D. Sunday, A very fast substring searching algorithm, Comm. ACM 33 (8) (1990) 132-142.

[22] E. Ukkonen, Approximate string matching over suffix trees, in: Proc. 4th Ann. Symp. on Combinatorial
Pattern Matching (CPM’93), 1993, pp. 228-242.

[23] S. Wu, U. Manber, Fast text searching allowing errors, Comm. ACM 35 (10) (1992) 83-91.

	Bit-parallel (delta,gamma)-matching and suffix automata
	Introduction
	Basic concepts
	Bit-parallelism
	Suffix automata

	Improving the bit-parallel algorithm
	Using suffix automata
	Handling longer patterns
	Active computer words
	Pattern partitioning

	Experimental results
	Conclusions
	References

