
al is,

on
d
).
nd,

skips
oach,
our
erior to

maton
and
Bit-parallel(δ, γ)-matching and suffix automata✩

Maxime Crochemorea,b,1, Costas S. Iliopoulosb,
Gonzalo Navarroc,2,3,∗, Yoan J. Pinzonb,d,2, Alejandro Salingerc

a Institut Gaspard-Monge, Université de Marne-la-Vallée, France
b Department of Computer Science, King’s College, London, England, UK

c Center for Web Research, Department of Computer Science, University of Chile, Chile
d Lab. de Cómputo Especializado, Univ. Autónoma de Bucaramanga, Colombia

Abstract

(δ, γ)-matching is a string matching problem with applications to music retrieval. The go
given a patternP1...m and a textT1...n on an alphabet of integers, find the occurrencesP ′ of the pat-
tern in the text such that (i)∀1� i � m, |Pi −P ′

i
| � δ, and (ii)

∑
1�i�m |Pi −P ′

i
| � γ . The problem

makes sense forδ � γ � δm. Several techniques for(δ, γ)-matching have been proposed, based
bit-parallelism or on skipping characters. We first present an O(mn log(γ)/w) worst-case time an
O(n) average-case time bit-parallel algorithm (beingw the number of bits in the computer word
It improves the previous O(mn log(δm)/w) worst-case time algorithm of the same type. Seco
we combine our bit-parallel algorithm with suffix automata to obtain the first algorithm that
characters using bothδ andγ . This algorithm examines less characters than any previous appr
as the others do justδ-matching and check theγ -condition on the candidates. We implemented
algorithms and drew experimental results on real music, showing that our algorithms are sup
current alternatives with high values ofδ.

✩ A conference version of this paper appeared in [M. Crochemore et al., A bit-parallel suffix auto
approach for (δ,γ)-matching in music retrieval, in: Proc. 10th Internat. Symp. on String Processing
Information Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, 2003, pp. 211–223].

* Corresponding author.
E-mail addresses:mac@univ-mlv.fr(M. Crochemore),csi@dcs.kcl.ac.uk(C.S. Iliopoulos),

gnavarro@dcc.uchile.cl(G. Navarro),pinzon@dcs.kcl.ac.uk(Y.J. Pinzon),asalinge@dcc.uchile.cl(A. Salinger).
1 Partly supported by CNRS and NATO.
2 Supported by CYTED VII.19 RIBIDI Project.
3 Funded by Millennium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

http://www.elsevier.com/locate/jda
mailto:mac@univ-mlv.fr
mailto:csi@dcs.kcl.ac.uk
mailto:gnavarro@dcc.uchile.cl
mailto:pinzon@dcs.kcl.ac.uk
mailto:asalinge@dcc.uchile.cl

M. Crochemore et al.

acter
many
ining,
ticated
eing a

d as a
in the
., pitch
). It is
elody,

of
nce in

ations
pitch

ion is
fficient
ervals
oding
een the
entical
ter

ss all
s

-

s

hould

ollows:
Keywords:Bit-parallelism; Approximate string matching; MIDI music retrieval

1. Introduction

The string matching problem is to find all the occurrences of a given patternP1...m

in a large textT1...n, both being sequences of characters drawn from a finite char
set Σ . This problem is fundamental in computer science and is a basic need of
applications, such as text retrieval, music retrieval, computational biology, data m
network security, etc. Several of these applications require, however, more sophis
forms of searching, in the sense of extending the basic paradigm of the pattern b
simple sequence of characters.

In this paper we are interested in music retrieval. A musical score can be viewe
string: at a very rudimentary level, the alphabet could simply be the set of notes
chromatic or diatonic notation, or the set of intervals that appear between notes (e.g
may be represented as MIDI numbers and pitch intervals as number of semitones
known that exact matching cannot be used to find occurrences of a particular m
so one resorts to different forms ofapproximatematching, where a limited amount
differencesof diverse kinds are permitted between the search pattern and its occurre
the text.

The approximate matching problem has been used for a variety of musical applic
[6,9,15,19,20]. Most computer-aided musical applications adopt an absolute numeric
representation (most commonly MIDI pitch and pitch intervals in semitones; durat
also encoded in numeric form). The absolute pitch encoding, however, may be insu
for applications in tonal music as it disregards tonal qualities of pitches and pitch-int
(e.g., a tonal transposition from a major to a minor key results in a different enc
of the musical passage and thus exact matching cannot detect the similarity betw
two passages). One way to account for similarity between closely related but non-id
musical strings is to permit a difference of at mostδ units between the pattern charac
and its corresponding text character in an occurrence, e.g., a C-major{60,64,65,67} and
a C-minor{60,63,65,67} sequence can be matched if a toleranceδ = 1 is allowed in the
matching process. Additionally, we require that the total number of differences acro
the pattern positions does not exceedγ , in order to limit the total number of difference
while keeping sufficient flexibility at individual positions.

The formalization of the above problem is called(δ, γ)-matching. The problem is de
fined as follows: the alphabetΣ is assumed to be a set of integer numbers,Σ ⊂ Z. Apart
from the patternP and the textT , two extra parameters,δ, γ ∈ N, are given. The goal i
to find all the occurrencesP ′ of P in T such that (i)∀1 � i � m, |Pi − P ′

i | � δ, and (ii)∑
1�i�m |Pi − P ′

i | � γ . Note that the problem makes sense forδ � γ � δm: If γ > δ then
the limit on the sum of differences is larger than the limit on any difference, so one s
setδ ← γ ; and ifγ > δm then condition (i) implies (ii) and we should setγ ← δm.

Several recent algorithms exist to solve this problem. These can be classified as f

M. Crochemore et al.

bit
in

.
s
e

e pat-

te

ing
simple

t

y
p-
e to be

-

xity
an-
w

with
of
s
pts
ifi-
revious

sults
r
the
omi-
Bit-parallel: The idea is to take advantage of the intrinsic parallelism of the
operations inside a computer word ofw bits [1], so as to pack several values
a single word and manage to update them all in one shot. In[7,8] this approach
was used to obtain SHIFT-PLUS, an O(nm log(δm)/w) worst-case time algorithm
The algorithm packsm counters whose maximum value ismδ, hence it need
m�log2(δm + 1)� bits overall and O(m log(δm)/w) computer words have to b
updated for each text character.
Occurrence heuristics:Inspired by Boyer–Moore techniques[5,21], they skip
some text characters according to the position of some characters in th
tern. In [7], several algorithms of this type were proposed forδ-matching (a re-
stricted case whereγ = δm), and they were extended to general(δ, γ)-matching
in [10]. The extension is done by checking theγ -condition on each candida
thatδ-matches the pattern. These algorithms are TUNED-BOYER–MOORE, SKIP-
SEARCH and MAXIMAL -SHIFT, each of which has a counterpart in exact str
matching. These algorithms are faster than the bit-parallel ones, as they are
and skip text characters.
Substring heuristics:Based on suffix automata[12,13], these algorithms skip tex
characters according to the position of some pattern substrings. In[10,11], three
algorithms of this type, calledδ-BM1, δ-BM2 andδ-BM3, are proposed. The
try to generalize the suffix automata toδ-matching, but they obtain only an a
proximation that accepts more occurrences than necessary, and these hav
verified later. They also verify theγ -condition over eachδ-matching candida
te.

In this paper we present two new(δ, γ)-matching algorithms:

• We improve SHIFT-PLUS in two aspects. First, we show that its worst case comple
can be reduced to O(nm log(γ)/w) by means of a more sophisticated counter m
agement scheme that needs only�1+ log2(γ + 1)� bits per counter. Second, we sho
how its average-case complexity can be reduced to O(n).

• We combine our bit-parallel algorithm with suffix automata, as already done
other string matching problems[17,18], so as to obtain the first algorithm able
skipping text characters based both onδ- andγ - conditions. All previous algorithm
skip characters using theδ-condition only. Moreover, our suffix automaton acce
exactly the suffixes of strings that(δ, γ)-match our pattern, so no candidate ver
cation is necessary at all. Our algorithm examines less characters than any p
technique.

The algorithms are very efficient and simple to implement. Our experimental re
on real music data show that they improve previous work whenδ is large (so that thei
dependence onγ rather than onδ shows up). For short patterns, of length up to 20,
character skipping algorithm is the best, otherwise our simple bit-parallel algorithm d
nates.

M. Crochemore et al.

suffix

er
ter

: “
t-
t is,
ns
rs. For

oper-
s that

nt

de-

a

-
ing
2. Basic concepts

In this section we present the concepts our paper builds on: bit-parallelism and
automata. We start by introducing some terminology.

A stringx ∈ Σ∗ is afactor (or substring) ofP if P can be writtenP = uxv, u,v ∈ Σ∗.
A factorx of P is called asuffix(prefix) of P if P = ux (P = xu), u ∈ Σ∗.

A bit maskof length r is simply a sequence of bits, denotedbr . . . b1. We use ex-
ponentiation to denote bit repetition (e.g., 031 = 0001). The length of the comput
word is w bits, so the mask of lengthr � w is stored somewhere inside the compu
word. Also, we write[x]r to denote the binary representation of numberx < 2r us-
ing r bits. We also use C-like syntax for operations on the bits of computer words|”
is the bitwise-or, “&” is the bitwise-and, and “∼” complements all the bits. The shif
left operation, “<<”, moves the bits to the left and enters zeros from the right, tha
bmbm−1 . . . b2b1 << r = bm−r . . . b2b10r . Finally, we can perform arithmetic operatio
on the bits, such as addition and subtraction, which operate the masks as numbe
instance,br . . . bx10000− 1= br . . . bx01111.

2.1. Bit-parallelism

In [2,23], a new approach to text searching was proposed. It is based onbit-parallelism
[1], a technique consisting in taking advantage of the intrinsic parallelism of the bit
ations inside a computer word. By using cleverly this fact, the number of operation
an algorithm performs can be cut down by a factor of at mostw, the number of bits in the
computer word. Since in current architecturesw is 32 or 64, the speedup is very significa
in practice.

The Shift-And algorithm[23] uses bit-parallelism to simulate the operation of a non
terministic automaton that searches the text for the pattern (seeFig. 1). A plain simulation
of that automaton takes time O(mn), and Shift-And achieves O(mn/w) worst-case time
(optimal speedup).

The algorithm first builds a tableB which for each characterc ∈ Σ stores a bit mask
B[c] = bm . . . b1, so thatbi = 1 if and only if Pi = c. The state of the search is kept in
bit maskD = dm . . . d1, wheredi = 1 whenever the state numberedi in Fig. 1 is active.
That is, after having scanned text positionj , we havedi = 1 wheneverP1...i = Tj−i+1...j .
Therefore, we report a match wheneverdm is set.

We start withD = 0m and, for each new text characterTj , updateD using the formula

D ← (
(D << 1) |0m−11

)
& B[Tj]

because each state may be activated by the previous state as long asTj matches the corre
sponding arrow. The “|0m−11” after the shift corresponds to the self-loop at the beginn

Fig. 1. A nondeterministic automaton to search a text for the patternP = "abcdefg". The initial state is 0.

M. Crochemore et al.

t

text

ost
active

pattern
s

x
at
ery

s
s
g

M,

e
acters
ffix we

s

a
a

tually
s
ause
Fig. 2. A nondeterministic suffix automaton for the patternP = "abcdefg". Dashed lines represen
ε-transitions. The initial state is I.

of the automaton (as state 0 is not represented inD). Seen another way, theith bit is set
if and only if the (i − 1)th bit was set for the previous text character and the new
character matches the pattern at positioni. In other words,Tj−i+1...j = P1...i if and only if
Tj−i+1...j−1 = P1...i−1 andTj = Pi .

The cost of this algorithm is O(n). For patterns longer than the computer word (m >

w), the algorithm uses�m/w� computer words for the simulation, with a worst-case c
of O(mn/w). By managing to update only those computer words that have some
state, an average case cost of O(n) is achieved.

It is very easy to extend Shift-And to handle classes of characters, where each
position does not match just a single character but a set thereof. IfCi is the set of character
at positioni in the pattern, then we set theith bit of B[c] for all c ∈ Ci .

2.2. Suffix automata

We describe the BDM pattern matching algorithm[12,13], which is based on a suffi
automaton. Asuffix automatonon a patternP1...m is a deterministic finite automaton th
recognizes the suffixes ofP . The nondeterministic version of this automaton has a v
regular structure (see inFig. 2).

The (deterministic) suffix automaton is well known[12]. Its size, counting both node
and edges, is O(m), and it can be built in O(m) time [12]. A very important fact is that thi
automaton can also be used to recognize the factors ofP : The automaton is active as lon
as we have read a factor ofP .

This structure is used in[12,13] to design a pattern matching algorithm called BD
which is optimal on average (O(n log|Σ |(m)/m) time on uniformly distributed text). To
search a textT for P , the suffix automaton ofP r = PmPm−1 . . . P1 (the pattern read
backwards) is built. A window of lengthm is slid along the text, from left to right. Th
algorithm reads the window right to left and feeds the suffix automaton with the char
read. During this process, if a final state is reached, this means that the window su
have traversed is a prefix ofP (because suffixes ofP r are reversed prefixes ofP). Then
we store the current window position in a variablelast, possibly overwriting its previou
value. The backward window traversal ends in two possible forms:

(1) We fail to recognize a factor, that is, we reach a characterσ that does not have
transition in the automaton (seeFig. 3). In this case the window suffix read is not
factor of P and therefore it cannot be contained in any occurrence. We can ac
shift the window to the right, aligning its starting position tolast, which correspond
to the longest prefix ofP seen in the window. We cannot miss an occurrence bec
in that case the suffix automaton would have found its prefix in the window.

M. Crochemore et al.

ve the

bit-

be
pattern

xities

ent

te

sts
Fig. 3. Basic search with the suffix automaton.

(2) We reach the beginning of the window, therefore recognizing the patternP . We report
the occurrence, and shift the window exactly as in the previous case (we ha
previouslast value).

It is possible to simulate the suffix automaton in nondeterministic form by using
parallelism[17,18], so as to obtain very efficient and simple algorithms.

3. Improving the bit-parallel algorithm

First of all, notice thatδ-matching is trivial under the bit-parallel approach, as it can
accommodated using the ability to search for classes of characters. We define that
characterc matches text charactersc− δ . . . c+ δ. Hence, ifB[c] = bm . . . b1, we setbi = 1
if and only if |Pi −c| � δ. The rest of the algorithm is unchanged and the same comple
are obtained.

The real challenge is to do(δ, γ)-matching. The solution we present is an improvem
over that of[7,8] and it has some resemblances with that of[3] for Hamming distance.

Let us focus for a moment onγ -matching alone. Instead of storing just one bitdi to tell
whetherP1...i matchesTj−i+1...j , we store a counterci to record the sum of the absolu
differences between the corresponding characters. That is

(1)ci =
∑

1�k�i

|Pk − Tj−i+k|

and we wish to report text positions wherecm � γ .
The next lemma shows how to update theci values for a new text position, and sugge

an O(mn) timeγ -matching algorithm.

M. Crochemore et al.

us

s
f

e

n

Lemma 1. Assume that we want to compute the countersc1 . . . cm according to Eq.(1) for
text positionj , and have computedc′

1 . . . c′
m for positionj − 1. Theci values satisfy

ci =
∑

1�k�i

|Pk − Tj−i+k| = c′
i−1 + |Pi − Tj |

assumingc′
0 = 0.

Proof. Immediate by substitution ofc′
i−1 according to Eq.(1). �

The update technique given inLemma 1is good for a bit-parallel approach. Let
assume that eachci counter will be represented using� bits, where� will be specified
later. Hence the state of the search will be expressed using the bit mask

(2)D = [cm]�[cm−1]� . . . [c2]�[c1]�.
We precompute a maskB[c] of counters[bm]� . . . [b1]�, so thatbi = |Pi − c|. Then, the

following lemma establishes the bit-parallel formula to updateD.

Lemma 2. Assume that we want to compute bit maskD according to Eq.(2) for text
positionj , and have computedD′ for positionj − 1. Then

(3)D = (D′ << �) + B[Tj].

Proof. The ith counter ofD′ is c′
i . After the shift-left (“<<”) the ith counter become

c′
i−1. Theith counter ofB[Tj] is |Pi − Tj |. Hence theith counter of the right hand side o

the equality isc′
i−1 + |Pi − Tj |. According toLemma 1, this isci . �

This gives us a solution forγ -matching. Start withD = ([γ + 1]�)m (to avoid matching
before readingTm) and update it according to Eq.(3). Every time we havecm � γ , report
the last text position processed as the end of an occurrence.

In order to includeδ-matching in the picture, we change slightly the definition ofB[c].
The goal is that if, at any position, it holds|Pi − Tj | > δ, then we ensure that th
corresponding occurrence is discarded. For this sake, it is enough to redefineB[c] =
[bm]� . . . [b1]� as follows:

(4)bi = if |Pi − c| � δ then |Pi − c| else γ + 1.

The next lemma establishes the suitability of the above formulas for(δ, γ) matching.

Lemma 3. If the update formula of Eq.(3) is applied andB[c] is defined according to
Eq. (4), then after processing text positionj it holds thatcm � γ if and only ifTj−m+1...j

(δ, γ)-matchesP .

Proof. By Lemmas 1 and 2and Eq.(1) we have that, if the original definitionbi = |Pi −
c| is used, thencm = ∑

1�k�m |Pk − Tj−m+k| after processing text positionj . The only
difference if the definition of Eq.(4) is used is that, if any of the|Pk − Tj−m+k| was larger
than δ, thenbk > γ for B[Tj−m+k], and thereforeck > γ after processing text positio

M. Crochemore et al.

.

r
ger
eal

in
owing

s

ry

e

e

n

et.
es,
orm
j − m + k. Since counters only increase as they get shifted and added in Eq.(3), that
counterck at positionj −m+ k will become countercm at positionj , without decreasing
Thuscm > γ after processing text positionj . Thereforecm � γ if and only if Tj−m+1...j

(δ, γ)-matchesP . �
Let us consider now the� value. In principle, usingB[c] as in Eq.(4), countercm can

be as large asm(γ + 1), sincebi � γ + 1 (recall thatδ � γ). However, recall that counte
values never decrease as they get shifted overD. This means that, once they become lar
thanγ , we do not need to know how larger they are. Thus, instead of storing the rci

value, we would rather store min(ci, γ + 1), and then need only�log2(γ + 2)� bits per
counter.

In principle, wheneverci exceedsγ , we storeγ + 1 for it. The problem is how to
restore this invariant after addingB[c] to the counters, and also how to avoid overflows
that summation. We show now that we can handle both problems by using the foll
number of bits per counter:

(5)� = 1+ ⌈
log2(γ + 1)

⌉
.

Thus, our bit maskD needsm� = m(1 + �log2(γ + 1)�) bits and our simulation need
O(m log(γ)/w) computer words.

Instead of representing counterci as[ci]�, we represent it as

(6)ci −→ [
ci + 2�−1 − (γ + 1)

]
�
.

This guarantees that the highest bit of the counter will be set if and only ifci � γ + 1, as
its representation will be� 2�−1.

Before addingB[Tj], we will record all those highest bits in a bit maskH =
D & (10�−1)m, and clear those highest bits fromD. Once its highest bit is cleared, eve
counter representation is smaller than 2�−1 and we can safely addbi without overflowing
the counters, since the resulting value is at most 2�−1 − 1+ (γ + 1) = 2�−1 + γ � 2γ + 1
because of Eq.(5). And again because of Eq.(5), a counter can hold up to valu
2(γ + 1) − 1 = 2γ + 1. After addingB[Tj] we restore those highest bits set inH .

Note that it is not strictly true that we maintain min(ci, γ + 1), but it is true that the
highest bit of the representation ofci is set if and only ifci > γ , and this is enough for th
correctness of the algorithm. The next Lemma establishes this correctness.

Lemma 4. Assume thatci is represented as in Eq.(6) if ci � γ , and as[2�−1 + x]� other-
wise, for somex � 0. Then, if the update formula ofLemma2 is applied with the exceptio
that the highest bits set in the counters are removed before and restored after addingB[Tj],
then it holds that the representation is maintained after processingTj .

Proof. If ci already exceededγ before addingbi , it will exceedγ after addingbi . In
this case, the representation ofci was 2�−1 + x and thus it already had its highest bit s
This bit will be restored after addingbi . Thus, regardless of which value actually stor
the representation will correctly maintain its highest bit set, that is, it will be of the f
2�−1 + x for somex � 0.

M. Crochemore et al.

s
t bits

t

so
g
in

tation
ith

exity
s to

this
Forward-Scan (P1...m,T1...n, δ, γ)

1. Preprocessing
2. � ← 1+ �log2(γ + 1)�
3. for c ∈ Σ do
4. B[c] ← ([0]�)m
5. for i ∈ m. . .1 do
6. if |c − Pi | � δ then
7. B[c] ← (B[c] << �) | (|c − Pi |)
8. else B[c] ← (B[c] << �) | (γ + 1)

9. Search
10. D ← (10�−1)m

11. for j ∈ 1. . . n do
12. if D &10m�−1 = 0m� then
13. Report an occurrence at j − m + 1
14. D ← (D << �) | (2�−1 − (γ + 1))

15. H ← D & (10�−1)m

16. D ← ((D & ∼ H) + B[Tj]) | H

Fig. 4. Bit-parallel algorithm for(δ, γ)-matching. Constant values are precomputed.

On the other hand, ifci did not exceedγ before addingbi , then its representation wa
ci + 2�−1 − (γ + 1) and the highest bit was not set. Thus the manipulation of highes
will not affect its result. After the summation the representation will holdci + bi + 2�−1 −
(γ + 1). This is a correct representation for the new valueci + bi , either if ci + bi � γ

or if ci + bi > γ , as in the latter case the representation is of the form 2�−1 + x, where
x = ci + bi − (γ + 1) � 0. �

Fig. 4 depicts the algorithm. It is calledForward-Scanto distinguish it from our nex
algorithms that scan windows backward. The preprocessing consists of computing� ac-
cording to Eq.(5) and tableB according to Eq.(4). PatternP is processed backwards
as to arrangeB[c] in the right order[bm]� . . . [b1]�. Line 10 initializes the search by settin
ci = γ + 1 in D, according to the representation of Eq.(6). Occurrences are reported
lines 12–13, whenevercm � γ , that is, the highest bit of the representation ofcm is not set.
Line 14 is the equivalent toD ← D << �, except that the counterc0 = 0 that is moved
to the position ofc1 must be represented as 2�−1 − (γ + 1) according to Eq.(6). Line 15
computesH as explained, to record the highest bits. Line 16 completes the compu
of Eq.(3), by removing bits set inH from D and restoring them after the summation w
B[Tj].

Assuming that the bit masks fit in a computer word, that is,m� � w, the algorithm
complexity is O(m|Σ | + n). If several computer words are needed, the search compl
becomes O(mn log(γ)/w). However, we defer the details of handling longer bit mask
Section5, as it is possible to obtain O(n) search time on average.

4. Using suffix automata

As demonstrated in[17,18], the suffix automaton approach of Section2.2 can be ex-
tended to search for more complex patterns by combining it with bit-parallelism. In

M. Crochemore et al.

-

r

g

ow

ffix

f

ec-

ter-
for

dows
ed

te
nd an
section we combine our bit-parallel approach of Section3 with the suffix automaton con
cept to obtain an algorithm that does not inspect all the text characters.

Imagine that we process a text windowTpos+1...pos+m right to left. Our goal is that, afte
having processedTpos+j , we have computed

ci =
∑

0�k�m−j

|P r
i−(m−j)+k − Tpos+m−k|

(7)=
∑

0�k�m−j

|P2m+1−i−j−k − Tpos+m−k|

for m−j +1� i � m. This can be obtained by initializingci = 0 before starting processin
the window and then updating theci values according to the following lemma.

Lemma 5. Assume that we have valuesc′
i computed forTpos+j+1 according to Eq.(7).

Then valuesci for Tpos+j satisfy

ci = c′
i−1 + |P r

i − Tpos+j |.

Proof. It is immediate by rewritingc′
i−1 according to Eq.(7). �

If we maintain valuesci computed according to Eq.(7), then, after processingTpos+j ,
(i) if cm � γ , then

∑
0�k�m−j |P1+m−j−k −Tpos+m−k| � γ , that is,P1...m−j+1 γ -matches

window suffix Tpos+j ...pos+m; (ii) if ci > γ for all m − j + 1 � i � m, then the window
suffix Tpos+j ...pos+m does notγ -match any pattern substringPm−i+1...(m−i+1)+m−j , and
therefore no occurrence can containTpos+j ...pos+m.

Therefore, a BDM-like algorithm would be as follows. Process text wind
Tpos+1...pos+m by reading it right to left and maintainingci values. Every timecm � γ ,
mark the current window positionlast so as to remember the last time a window su
γ -matched a pattern prefix. If, at some moment,ci > γ for all i, then shift the window to
start at positionlast and restart. If all the window is traversed and stillcm � γ , then report
the window as an occurrence and also shift it to start at positionlast. The correctness o
this scheme should be obvious from Section2.2.

A bit-parallel computation of theci values is very similar to the one developed in S
tion 3, as the update formulas ofLemmas 1 and 5are so close. In order to work onP r , we
simply storeB[c] in reverse fashion. Vectorci is initialized atci = 0 according to Eq.(7).
To determine whethercm � γ we simply test the highest bit of its representation. To de
mine whetherci > γ for all i we test all highest bits simultaneously. To account also
δ-matching we change the preprocessing ofB[c] just as in Eq.(4).

Fig. 5depicts the algorithm, called “backward-scanning” because of the way win
are processed. The preprocessing is identical toFig. 4except that the pattern is process
left to right.D is initialized in line 13 withci = 0 considering the representation of Eq.(6).
Line 14 continues processing the window as long asci � γ for somei. The update toD
is as inFig. 4, except that the first shift left (“<<”) of each window is omitted to avoid
losing the firstc1 value. Conditioncm � γ is tested in line 18. When it holds, we upda
last unless we have processed all the window, in which case it means that we fou
occurrence and also must maintain the previouslastvalue. Line 21 shiftsD and introduces

M. Crochemore et al.

t any
read
ithm
rifying
orithms.

work
we

lled),
ll
nning
Backward-Scan (P1...m,T1...n, δ, γ)

1. Preprocessing
2. � ← 1+ �log2(γ + 1)�
3. for c ∈ Σ do
4. B[c] ← ([0]�)m
5. for i ∈ 1. . .m do
6. if |c − Pi | � δ then
7. B[c] ← (B[c] << �) | (|c − Pi |)
8. else B[c] ← (B[c] << �) | (γ + 1)

9. Search
10. pos← 0
11. while pos� n − m do
12. j ← m, last← m

13. D ← ([2�−1 − (γ + 1)]�)m
14. while D & (10�−1)m �= (10�−1)m do
15. H ← D & (10�−1)m

16. D ← ((D & ∼ H) + B[Tj]) | H
17. j ← j − 1
18. if D &10m�−1 = 0m� then
19. if j > 0 then last← j

20. else Report an occurrence at pos+ 1
21. D ← (D << �) | 10�−1

22. pos← pos+ last

Fig. 5. Backward scanning algorithm for(δ, γ)-matching. Constant values are precomputed.

valuesγ + 1 from the right, to ensure that the relevanti values arem − j + 1� i � m and
that the loop will terminate afterm iterations. Finally, the window is shifted bylast.

Note that, given the invariants we maintain, we can report occurrences withou
further verification. Moreover, we shift the window as soon as the window suffix
does not(δ, γ)-match a pattern substring. This is the first character-skipping algor
with these properties. Previous ones only approximate this property and require ve
candidate occurrences. Consequently, we inspect less characters than previous alg

5. Handling longer patterns

Both algorithms presented are limited by the length of the computer word. They
for m(1+ �log(γ + 1)�) � w. However, in most cases this condition is not fulfilled, so
must handle longer patterns.

5.1. Active computer words

The first idea is just to use as many computer words as needed to representD. In each
computer word we store the maximum amount of counters that fully fit intow bits. So
we keepκ = �w/�
 counters in each word (except the last one, that may be underfi
needing�m/�w/�
� words to representD. Each time we updateD we have to process a
the words simulating the bit-parallel operations. With this approach, the forward sca

M. Crochemore et al.

r-

hat it

rs
t,

s

e we

e new

next
to

verage
-order
s). Say
hat

most

e

ac-
tive

basic
e

takes time O(nm log(γ)/w). We remark that previous forward scanning algorithms[7,8]
required O(nm log(mδ)/w) time, which is strictly worse than our complexity. The diffe
ence is that we have managed to keep the counters below 2(γ + 1) instead of letting them
grow up tomδ. This alternative is called simply “Forward” in the experiments.

A key improvement can be made to the forward scanning algorithm by noticing t
is not necessary to update all the computer words at each iteration. As counterci stores
the sum of all the differences between charactersP1...i and their corresponding characte
in the text (Eq.(1)), depending on the values ofδ andγ and on the size of the alphabe
most of the time the highest counters will have surpassedγ . Once a counter surpassesγ

we only require that it stays larger thanγ (recall Section3 andLemma 4), so it is not even
necessary to update it. Let us say that a computer word isactivewhen at least one of it
counters stores someci � γ . The improvement works as follows:

• At each iteration of the algorithm we update the computer words only until the on
have marked as the last active word.

• As we update each word we check whether it is active or not, remembering th
last active word.

• Finally, we check if the last counter of the last active word is� γ . In that case, the
word that follows the last active word must be the new last active word, as in the
iteration its first counter may become less thanγ + 1, and hence we may need
process it.

This algorithm has the same worst-case complexity of the basic one, but the a
case is significantly improved. Consider a random text and pattern following a zero
model (that is, character probabilities are independent of the neighbor character
that ps is the probability of thesth character of the alphabet. Then the probability t
Pi δ-matches a random text character isπi = ∑

Pi−δ�s�Pi+δ ps . The probability ofP1...i

δ-matchingTj−i+1...j for a random text positionj is wi = 	1�k�iπk .
The first computer word will be always active; the second will be active only ifP1...κ

matchesTj−κ+1...j ; the third will be active only ifP1...2κ matchesTj−2κ+1...j ; and so on.
Hence the average number of computer words active at a random text position is at

1+ wκ + w2κ + · · · =
∑

i�0

wiκ

and this is O(1) providedπ = max1�i�m πi < 1, as in this casewi � πi and the averag
number of active words is

∑
i�0 wiκ �

∑
i�0 πiκ = 1/(1− πκ).4

Hence, as we update O(1) computer words on average, the average search time is O(n).
Note that this holds even without consideringγ , which in practice reduces the constant f
tor. The lower the values ofδ andγ are, the better the performance will be. This alterna
is called “Forward last” in the experiments.

Yet another improvement can be made to this algorithm by combining it with the
single-word algorithm. We store the first word used to representD in a register and run th

4 This holds also if there are O(1)i values such thatπi = 1.

M. Crochemore et al.

er the
back

se of a
emory
is the

as in
ds.

ing

gh to

as

st

piece
llelism.

uch
rage
e
be made

ack-

led “su-
.

an
ch of
rrence
e

ecking

peri-
algorithm using just this word, as long as this one is the only active word. Whenev
second word becomes active, we switch to the multiple word algorithm. We switch
to the basic algorithm whenever the first word becomes the last active word. The u
register to store the first word yields a better performance, as we have to make less m
accesses. The more time the first word is the only active word, the more significant
improvement. This alternative is called “Forward register” in the experiments.

Unfortunately this idea cannot be applied to the backward-scanning algorithm,
this one we will have counters� γ uniformly distributed across all the computer wor
This happens becauseci � γ after readingTpos+j if Pm−i+1...(m−i+1)+m−j (δ, γ)-matches
Tpos+j ...pos+m (Eq. (7)), and this probability does not necessarily decrease withi (actually
it is independent ofi on a uniform distribution). The plain multi-word backward scann
algorithm is called simply “Backward” in the experiments.

5.2. Pattern partitioning

Another idea to handle long patterns is to partition them into pieces short enou
be handled with the basic algorithm. Notice that ifP (δ, γ)-matchesTj−m+1...j , and we
partitionP into j disjoint pieces of length�m/j
 and�m/j�, then at least one piece h
to (δ, γ ′)-match its corresponding substring ofTj−m+1...j , whereγ ′ = �γ /j
. The reason
is that, otherwise, each piece adds up at leastγ ′ + 1 differences, and the total is at lea
j (γ ′ + 1) = j (�γ /j
 + 1) > j (γ /j) = γ , and thenγ -matching is not possible.

Hence we runj (δ, γ ′)-searches for shorter patterns and check every match of a
for a complete occurrence. The check is simple and does not even need bit para
Note that ifδ > γ ′, we can actually do(γ ′, γ ′)-matching.

We must choose the largestj such that

�m/j�(1+ ⌈
log2

(�γ /j
 + 1
)⌉)

� w

and hence we performj = O(m log(γ)/w) searches. For forward scanning, each s
search costs O(n). Piece verification cost is negligible on average. Hence the ave
search time of this approach is O(nm log(γ)/w), which is not attractive compared to th
worst-case search time of the basic approach. However, each of these searches can
using registers forD, so in practice it could be relevant. It could be also relevant for b
ward matching, where usingD in registers is not possible for long patterns.

Furthermore, the pieces can be grouped and searched for together using so-cal
perimposition”[4,16]. By making groups ofr pieces each, we perform�j/r� searches
For each search, counterbi of B[c] will store the minimum difference betweenc and the
ith character of any piece in the group, orγ ′ +1 if none of these differences is smaller th
γ ′ + 1. Every time we find a match of the whole group we check the occurrence of ea
the substrings forming that group. For all the pieces that matched we check the occu
of the whole pattern at the corresponding position. The greaterr is, the less searches w
perform, but the more time we spend checking occurrences. The time spent in ch
occurrences also increases withδ andγ . Because of this, the optimumr depends onδ, γ
andm.

These algorithms are called “Forward superp” and “Backward superp” in the ex
ments. These include the caser = 1, where no superimposition is done.

M. Crochemore et al.

of our

ache
h

I files
meter

r-
last
pos-
best
6. Experimental results

In this section we show experimental evidence comparing the different versions
algorithms againstδ-BM2 [10,11], which is the most efficient alternative(δ, γ)-matching
algorithm.

The tests were performed using a Pentium IV, 2 GHz, 512 Mb RAM and 512 Kb c
running Suse Linux withw = 32. We used the GNUgcc compiler version 2.95.3. Eac
data point represents the median of 100 trials.

We ran our experiments using real music data obtained from a database of MID
of classic music, totalizing 10.5Mb of absolute pitches. We focused on typical para
values for music searching, namely 2–4 forδ, 1.5m–2.0m for γ , and 10–200 form.

The results for forward algorithms are shown inFig. 6. The variants are called “Fo
ward” (plain multiword forward), “Forward last” (same but updating only up to the
relevant word), “Forward register” (same but switching to single-word mode when
sible), and “Forward superp” (partition plus superimposing in the way that gives the
results).

Fig. 6. Timing figures for forward algorithms, in seconds per megabyte.

M. Crochemore et al.

inearly
short
vi-

f 5

e
ider

terna-
plain
ing in

back-
ckward
Back-
tion fit

yte.
As expected, Forward and Forward-superp are the slowest and their cost grows l
with m. Forward-superp shows a better constant factor and it is attractive for very
patterns, but soon its linear dependence withm renders it useless. Superimposition alle
ates this only partially, as the optimum was to superimpose 2 to 7 patterns forδ = 2 and 2
to 5 for δ = 4. These numbers grow slowly asm increases and stay at a maximum o
or 6, making the whole scheme linear inm anyway.

Forward-last and Forward-register, on the other hand, display their O(n) average cas
time, independent ofn. As expected, Forward-register is by far the best. We will cons
only this alternative to compare against backward algorithms.

Fig. 7 compares backward algorithms (which includes the relevant competing al
tives), and Forward-register. The backward algorithm only has variants “Backward” (
single- or multi-word, as needed) and “Backward superp” (partition plus superimpos
the best possible way).δ-BM2 is the best existing alternative algorithm.

We observe that partitioning (including superimposition) is also a bad choice for
ward scanning. The reasons are the same as for the forward version. In general, ba
searching does not behave competitively when many computer words are involved.
ward was better than Forward-register when the whole (superimposed) representa

Fig. 7. Timing figures for backward algorithms and the best forward algorithm, in seconds per megab

M. Crochemore et al.

ter be-
e all its
rds.

be
filter

le
s
both

g
use

us ap-
ss text

just
a

hms are
t uses
ing to

filter

rise in
-
rallel

re-

g the
tree of
tial on

lsevier
in a single computer word. As more than a single word is necessary, Forward-regis
comes superior. The reason is that backward searching needs to effectively updat
computer words, while the forward versions do so only for a few active computer wo

With respect to the competing algorithm, it can be seen thatδ-BM2 is faster than ours
for small δ = 2, but as we use a largerδ = 4 it becomes not competitive, as it can
expected from its only-δ filtration scheme. Our algorithms are the only ones that can
usingδ andγ simultaneously.

Finally, we notice that the dependence onδ is significant to the extent that it can doub
the time it takes by going fromδ = 2 to δ = 4. The dependence onγ , on the other hand, i
not much significant. We note, however, that Forward-register is rather insensitive toδ
andγ , becoming a strong and stable choice for general(δ, γ)-matching.

7. Conclusions

We have presented new bit-parallel algorithms for(δ, γ)-matching, an extended strin
matching problem with applications in music retrieval. Our new algorithms make
of bit-parallelism and suffix automata and has several advantages over the previo
proaches: they make better use of the bits of the computer word, they inspects le
characters, they are simple, extendible, and robust.

Especially important is that our algorithms are the first truly(δ, γ) character-skipping
algorithms, as they skip characters using both criteria. Existing approaches doδ-
matching and check the candidates for theγ -condition. This makes our algorithms
stronger and more stable choice for this problem.

We have also presented several ideas to handle longer patterns, as the algorit
limited by the length of the computer word. The fastest choice is an algorithm tha
several computer words and updates only those that hold relevant values, switch
single-word mode when possible.

We have shown that our algorithms are the best choice in practice whenδ is not small
enough to make up a good filter by itself. In this case, the ability of our algorithms to
with γ at the same time becomes crucial.

We plan to investigate further on more sophisticated matching problems that a
music retrieval. For example, it would be good to extend(δ, γ)-matching in order to per
mit insertions and deletions of symbols, as well as transposition invariance. Bit-pa
approaches handling those options, albeit not(δ, γ)-matching at the same time, have
cently appeared[14].

Another challenging problem is to consider text indexing, that is, preprocessin
musical strings to speed up searches later. A simple solution is the use of a suffix
the text combined with backtracking, which yields search times which are exponen
the pattern length but independent of the text length[22].

References

[1] R. Baeza-Yates, Text retrieval: Theory and practice, in: 12th IFIP World Computer Congress, vol. I, E
Science, 1992, pp. 465–476.

M. Crochemore et al.

(1994)

8.

llenges,
ntion,

uting
rial Al-

uting
8.
ecog-

string

tes in

ing up

prox-
ation

UK,

30 (4)

mata,

s for

eadings

c. 5th

torial
[2] R. Baeza-Yates, G. Gonnet, A new approach to text searching, Comm. ACM 35 (10) (1992) 74–82.
[3] R. Baeza-Yates, G. Gonnet, Fast string matching with mismatches, Inform. and Comput. 108 (2)

187–199.
[4] R. Baeza-Yates, G. Navarro, Faster approximate string matching, Algorithmica 23 (2) (1999) 127–15
[5] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (10) (1977) 762–772.
[6] E. Cambouropoulos, T. Crawford, C. Iliopoulos, Pattern processing in melodic sequences: Cha

caveats and prospects, in: Proc. Artificial Intelligence and Simulation of Behaviour (AISB’99) Conve
1999, pp. 42–47.

[7] E. Cambouropoulos, M. Crochemore, C. Iliopoulos, L. Mouchard, Y.J. Pinzon, Algorithms for comp
approximate repetitions in musical sequences, in: Proc. 10th Australasian Workshop on Combinato
gorithms (AWOCA’99), 1999, pp. 129–144.

[8] E. Cambouropoulos, M. Crochemore, C.S. Iliopoulos, L. Mouchard, Y.J. Pinzon, Algorithms for comp
approximate repetitions in musical sequences, Internat. J. Comput. Math. 79 (11) (2002) 1135–114

[9] T. Crawford, C. Iliopoulos, R. Raman, String matching techniques for musical similarity and melodic r
nition, Computing in Musicology 11 (1998) 73–100.

[10] M. Crochemore, C. Iliopoulos, T. Lecroq, Y.J. Pinzon, W. Plandowski, W. Rytter, Occurrence and sub
heuristics forδ-matching, Fundamenta Informaticae 55 (2003) 1–15.

[11] M. Crochemore, C. Iliopoulos, T. Lecroq, W. Plandowski, W. Rytter, Three heuristics forδ-matching:δ-BM
algorithms, in: Proc. 13th Ann. Symp. on Combinatorial Pattern Matching (CPM’02), in: Lecture No
Comput. Sci., vol. 2373, 2002, pp. 178–189.

[12] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1994.
[13] A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, W. Rytter, Speed

two string-matching algorithms, Algorithmica 12 (1994) 247–267.
[14] K. Lemström, G. Navarro, Flexible and efficient bit-parallel techniques for transposition invariant ap

imate matching in music retrieval, in: Proc. 10th Internat. Symp. on String Processing and Inform
Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, 2003, pp. 224–237.

[15] P. McGettrick, MIDIMatch: Musical pattern matching in real time, MSc Dissertation, York University,
1997.

[16] G. Navarro, R. Baeza-Yates, Improving an algorithm for approximate string matching, Algorithmica
(2001) 473–502.

[17] G. Navarro, M. Raffinot, Fast and flexible string matching by combining bit-parallelism and suffix auto
ACM J. Experimental Algorithmics (JEA) 5 (4) (2000).

[18] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings—Practical On-line Search Algorithm
Texts and Biological Sequences, Cambridge University Press, 2002.

[19] P. Roland, J. Ganascia, Musical pattern extraction and similarity assessment, in: E. Miranda (Ed.), R
in Music and Artificial Intelligence, Harwood Academic Publishers, 2000, pp. 115–144.

[20] L.A. Smith, E.F. Chiu, B.L. Scott, A speech interface for building musical score collections, in: Pro
ACM Conference on Digital Libraries, ACM Press, 2000, pp. 165–173.

[21] D. Sunday, A very fast substring searching algorithm, Comm. ACM 33 (8) (1990) 132–142.
[22] E. Ukkonen, Approximate string matching over suffix trees, in: Proc. 4th Ann. Symp. on Combina

Pattern Matching (CPM’93), 1993, pp. 228–242.
[23] S. Wu, U. Manber, Fast text searching allowing errors, Comm. ACM 35 (10) (1992) 83–91.

	Bit-parallel (delta,gamma)-matching and suffix automata
	Introduction
	Basic concepts
	Bit-parallelism
	Suffix automata

	Improving the bit-parallel algorithm
	Using suffix automata
	Handling longer patterns
	Active computer words
	Pattern partitioning

	Experimental results
	Conclusions
	References

