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Abstract

We study the existence of singular separable solutions to the 2-dimensional quasilinear
equation —V - (|Vul” >Vu) + |u*"'u = 0 under the form u(r, 0) = rPw(0). We obtain the full
description of the set of such solutions by combining a 2-dimensional shooting method with a
phase plane analysis approach.
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1. Introduction

Let 1<p<g+ 1 be real numbers, and (r,0)€[0, c0) x S! the polar coordinates in

R?. The aim of this article is to give a complete description of the set of separable
solutions of the degenerate elliptic equation with absorption

—V - (|Vul 7 Vu) + u] 'u =0 (1.1)
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in R*\{0} in the form
u(r,0) =rtw(0), (r,0)e(0,0) x S", (1.2)
for some feR. For homogeneity reasons
p=B,=pr/a+1-p) (1.3)

while w is a 2zn-periodic solution of
d . m e N=g 2 2 12155 g1
—g(Fo”+ o) 7 o] = aylfo” + 070 + oo =0, (1.4)

where g, , = ﬁq((ﬁq +DHp-1)-1).
If p=2, then f, =2/(q — 1) and (1.4) reduces to

2 2
o= (Z5) o olot =0 (1)

which is the Euler—Lagrange equation of the functional E defined by

E(w) = / o (iya’”iwl"“ 0. (1.6)
2 N q— 1 q + 1

Moreover, there exists an obvious first integral (usually called the Painlevé first
integral), obtained here by a simple multiplication by o/,

d /2 2 ? 2 2 q+1 _

Those two observations make (1.5) easy to integrate. If we put 2 =4/(q — 1)2 , wWe
replace (1.5) by the equation

—" —Jw + oo =0, (1.8)

and denote by & the set of its solutions. If k(7) is the largest integer smaller than
v/|A|, the following result is proved in [3].

Theorem A. If 2<0, &, = {0}. If 0<i<1, & = {0, V=V V= 1ri>1, 6,
has 3 + k(1) connected components: 6’2, &7, 65, and (o‘f (1<k<k(A)), where

(i) 60 = {0}, 67 = (2070}, and &7 = (-2,

(i) for each 1<k<k(2), % is the set of all solutions to 1.8 with least anti-period
n/k, and % = {w(. + a): aeS'}.
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The above result can be interpreted via the bifurcation approach since when A =
Jx = k? the linearized problem

—" = =0, (1.9)
is singular and any couple (,0) is a bifurcation point from which a branch of
solutions (A,w) is issued. Moreover, any of these branches of solutions can be
continued for 1> 4y, and there exists no other solution.

When p#2, (1.4) is not the Euler equation of any functional, and this makes the
problem much more difficult to study. It is natural to introduce the set of singular
separable p-harmonic functions, i.e. the set of solutions of

—V - (Vo] Vo) =0, (1.10)
in R?\{0} which are written in the form

o(r,0) = r7¢(0), (r,0)e(0,0) x S'.

Then ¢ is a 2n-periodic solution of
d . 5.0 12N52 2,2 12955
g P8+ 6T ) = by P74 67T g — 0, (111
where b,, =y((y+1)(p—1)—1). The set of solutions of (1.11) has been
characterized by Kichenassamy and Véron [8] (and Kroll and Mazja [9] in the

regular case). They proved

Theorem B. Assume p>1, then for each positive integer k there exists a y,€R and
i : R—> R with least anti-period n/k, of class C* such that

v(x) =v(r,0) =r "¢, (0), (1.12)
is p-harmonic in R?\{0}; y, is the positive root of
(+ 17 = 1+ 1RGP+ =2/ (0~ 1)), (1.13)
The couple (i, ¢y) is unique, up to translation and homothety over ;.

Let &, be the set of 2n-periodic solutions of (1.4). We define

-1 1/(g+1-p)
( p_) < pq_ —2> , (1.14)
qg+1—p q+1-p

which exists only if (p —2)g>2(1 — p), or equivalently (8, + 1)(p — 1) > 1. The main
result of this article is the following.

lpg =
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Theorem 1. Assume g+ 1>p>1.If B, <(2—p)/(p—1), Epg =10} If 2—p)/(p —
D) <By<y1s Epg =10,4pgs—Lpg}- If By>71, let k(q) be the largest integer such that
By>Vk(g- Then &4 has 3+k(q) connected components; (502#, (S";q, 5 g and
@@;f_q (1<k<k(q)), where

(1) éﬂg,q = {0}’ (’)@;q = {fl’vq}7 and g}?q = {_/Paq};
(ii) for each 1<k<k(q), é"][j# is the set of solutions to (1.4), with least anti-period
n/k, and &% = {$(. +a): aeS'}.

The proof of this result is difficult and based upon two completely different points
of view: a 2-dimensional shooting method, and a phase plane analysis. The shooting
method consists in proving the existence of a positive solution of (1.1) in an angular
sector {(r,0): r>1, 0<0<0;} of the 2-dimensional plane, and subject to Dirichlet
conditions on the lateral boundary of the sector. Here 6; = n/k for some positive
integer k. Thanks to the assumption on f, it will be proved that this solution is
bounded from below and from above by two terms with the same decay order,
C:(0)r=* for some functions C; (i = 1,2). From this two-side estimate, these follows
a precise asymptotic behavior (as r— o0) which shows the existence of at least one
positive solution of (1.4) on (0, 0;) vanishing at the end points. The non-existence is
proved by the strong maximum principle. Surprisingly (and contrary to the
semilinear case p = 2), uniqueness cannot be obtained directly, neither from (1.1) nor
from (1.4). Thus, we immerge this equation into a more general class of 2-
dimensional differential systems and prove, by a phase plane analysis that the period
of periodic solutions of such systems is a strictly monotone function of some
shooting parameter. The dynamical systems approach for constructing solutions of
non-linear equations is usually settled upon the invariant manifold theory: either its
utilization is implicit as in [2] for constructing the very singular solution of the
semilinear heat equation with absorption, or the theory is used in full as in [1,5,6]
when studying ground states of a wide class of semilinear elliptic equations. In [7],
this approach is combined with the use of the Mel’'nikov function on invariant
manifold in order to prove sharp asymptotics. The theory of internal isolated
singularities is developed in [12-14].

2. The shooting method

We start this section with two key observations:
(A) By multiplying (1.4) by w and integrating over (0,27) we get

/ [ + 0T 0?d0 - ay, / (B + T w?do + / | do = 0.
0 0 0

Thus, there is no non-trivial solution if a,,<0 or equivalently f,<(2—p)/(p — 1).
On the contrary, if a, , >0 there exists always two non-trivial constant solutions, 7, 4,
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defined by (1.14), and —¢,,. Moreover, it is worth noticing that if p>2 it never
occurs that f,<(2 —p)/(p — 1), therefore &, , is never reduced to the zero function.
In any case, we shall always assume a, ,>0.

(B) At the point 0y where w(6y) vanishes, o’(60y) is not zero. However, this is far
from obvious except in the case p = 2, since the Cauchy—Lipschitz theorem does not
hold at points where w and ' vanish. This fact will be the consequence of the
following structure result.

Proposition 1. Let g+ 1>p>1 such that a,,>0. If ® is a non-constant 2n-periodic
solution of (1.4), there exists a positive integer k such that o has least period 2n/k.
Moreover there exists o€ S' such that w,(.) = (. — &) vanishes at 0 and n/k, is
positive on (0,n/k) and satisfies w,'(0) = —w,'(n/k)>0.

Proof. If w is a non-constant solution of (1.4) it is bounded from above (resp. from
below) by ¢, , (resp. —£,,). This follows from the maximum principle, since at a
point of positive maximum (resp. negative minimum), " exists (the equation is not
degenerate) and the solution is locally C? (see [10]). It is also a consequence of the
fact that the function

Unt i x—pglx| P, Vx#0, (2.1)

is the maximal solution of (1.1) in e R?\{0}, as it follows from the constructions in [4]
(see also Vazquez’ universal a priori estimate [11]). Let us assume that @ achieves
positive values, and let 0; be such that w(0;) = max{w(0): 0eS'}. If ® would keep a
constant sign, it would have a positive minimum, w(0,) </, ,. Since " (0,) exists at
such a point (at this point, the equation is not degenerate since w(6,) > 0) it would be
non-negative and (1.4) would imply

0(02) 2 ap 0" (02) = 0(02) 24,

a contradiction. Therefore,  is not always positive on S'.

Let us denote by I; (6o, 50), the connected component containing 0, of the e S',
where w(0)>0. Thus, w is positive on (6, fy) (identifying S! with [0,27) we can
assume 0y < 0). Put

Cy 5 = {x = (r,0)eR* r>0,0€ (0, 0)}.

O‘é’(]
Then u(x) = u(r,0) = rPw(0) is a positive solution of (1.1) in the angular domain
Cy,.5,\{0}. In order to prove that w'(6) >0, we consider ae R? such that the open
disk D (a), of radius 1 and center a is included into Coon and tangent, at the point »
and b to the two half-lines Ly = {(r,0): r>0, 0 = 0y} and Lo = {(r,0): r>0, 0 =
0p}. Although it plays no role in the sequel, the polar coordinates of a are [sin((0 +
00)/2)"" and (0o + 0o)/2. Let D(11,)5,(a) be the disk of radius (1+p)/2p and
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center a. Since u is positive in D(a) its minimum on 9D, p(a) is positive. We
denote it by #. Set

W,a(x) = A1 = |x —a]) + B(1 = |x — a])’,

where 4 and B are positive parameters to be chosen such that

(D) w,, <1 0N D1y p(a) <> A(p —1)/2p + Blp — 1) /4p> <,

(i) =V - (IVw,, [P Vw,,) +w! <0in Dy (a)\D14p),(a). If we set p = x — a, this
last inequality is equivalent to

—[A+2B(1—p)"*2(p — 1)B—p~' (A +2B(1 — p))]
+ (1= p)(4+ B(1-p))'<0, Vpe((1+p)/2p,1).
Since

2p(B—A)

2(p—1)B—p (4 +2B(1 —p))= P

, Ype((1+p)/2p,1),
requirements (i) and (ii) are fulfilled as soon as we take 0 <A < B, small enough. By
the maximum principle, w, , <u in Dy (a)\D14p)2,(a). Both u and w, , vanish at the

point b, and on Ly and 0D, (a), respectively. Thus, if v denotes the outward normal
derivative to Di(a) at b,

ou ow
=B _ vt A,B
bl (00) = 5 (B) <

(b) = —A.

Here, we have used the fact that u is at least C'* (for some 0 <o < 1) by the regularity
theory of degenerate elliptic equations, and so is w. Thus, the right and left
derivatives of @ at 6y coincide. Consequently, fw(0))” +'(0)*#0 and the
Cauchy-Lipschitz existence and local uniqueness theorem applies at the point 0.
Since the equation is odd, the function 86— — w(6y — 0) is a solution of (1.4) in some
interval (6 — 0, 6y) on the left of 6,. Therefore,

(0 — 0) = —w(0), YOe(0y— 5,00 + )= (200 — O, ). (2.2)

Since w >0 on (6, éo), the equation is not degenerate on (6y — 0, 6y]. This implies
that the symmetry relation (2.2) holds on the interval [26, — 50, @0]. Again, because
the equation is not degenerate on this interval and o'(0,) = 0, there holds

o(0) = w(20, — 0), Y0e(0,0;).

Consequently, w is 2(50 — 6y)-periodic, with anti-period Gy — Op. The necessary and
sufficient condition insuring  to be 2z-periodic is that there exists a positive integer
k such that Oy — 0y = n/k. Another consequence of the non-degeneracy of the
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equation is that two solutions with the same period only differs by a phase coefficient
o. This implies the last statement. [

Theorem 2. Let g+ 1>p>1, keN,, 0, = n/k, then

(i) If B>y, there exists a positive solution o of (1.4) in (0,0x) which vanishes at
0 =0 and 0 = 0y.

(ii) If <y, the only solution of (1.4) in (0, 6x) which vanishes at 0 = 0 and 0 = 0y, is
the zero function.
Proof. For R>0, we set

Coo, = {x=(r,0): r>R,0<0<0:},

and Cpyg, = Cgﬁk' If a solution w of (1.4) in (0, 0;) vanishing at the two end points
exists, the function

(r,0) > u(r,0) = r P (0),
is a solution of (1.1) in C(fﬂk for any r> R vanishing on the lateral boundary
aLCé{,()k ={x=(r,0): r>R}u{x = (r,0): r>R}.

Step 1. Construction of an approximate solution: We define the function ie C(R?)
by

2— x| if |x|<2,
h(x) = .
0 if |x|=2.

For n>R>1 we set C(fb'i = Cfy \Cp o, Let e>0 to be chosen, and v, the solution
(obtained by minimization) of

=V (Ve V) + ol e, =0 in G,
v, =¢h on BCé"gk. (2.3)
The function v, is non-negative. We choose ¢ such that

eh(x) < Um(x), VxeR2.

(remember that Uy, defined by (2.1) is the maximal solution of (1.1) in R?\{0}). By
monotonicity and the maximum principle, we have

l<m<ny = vy, <vp, <Uy in Cé’g,‘.
- WK
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When rn tends to infinity, u, increases and converges to some u which is a positive
solution of (1.1) in Cj,, , with boundary value ¢h on dC;, . Moreover,

u(x) S Un(x) = Lpglx| P in Cl .
Notice that the decay at infinity and the monotone operators theory are enough to
ensure the uniqueness of u.

Step 2. Estimate from below: Let ¢, be a solution of (1.11) with corresponding
exponent y = vy,, normalized by

O<¢k< max ¢k = l
0,0;

We set ¢ = fi/y,. Then ¢>1. We claim that, for #>0 small enough,
(r,0) >V, (r,0) = nr= " (0),

is a non-negative subsolution of (1.1) in C(l)ﬂk which vanishes on the lateral boundary
dLCy g, If we denote

PV)= -V - (VVPVV)+ V"'V
and
D) = B+ 9T — a9+ 9 4 i
then
2(Vy) =r P2(ne)).
Put y = n¢;. By a straightforward computation one obtains

=2 _ _ —1D(p=2 222
(B2 + 9T = 2029 V0P (0202 + 9T,

and

P VR =0 i G )

ot L e—D—1) d 123222
A e (TR O R
c—1)(p—1)— p22
+(o—= D= e 0 + D) T g

Since

d 2
0 [(Vk¢k + ¢ ) ¢k] Pik(/kd)k + ¢ ) (o



J. Huentutripay et al.

with b,,, =y ((x +1)(»p — 1) — 1), it follows that

WD) =G + 0240 G20E 4 ) T (b, — bpa) B
—a(e—1)(p - 1)¢").
But ab,,, — by = By — B)(p — 1) = —yia(c — 1)(p — 1). Therefore,
0PI =0 — (p— Do = Do TV GRg + )
<™ — (=)o — Do . (24)
Since o> 1, the right-hand side of (2.4) is non-positive for # small enough. We can

also impose 1¢, <¢ in order to have V, <u(x) if |x| = 1. By the maximum principle,
V, is dominated by u in Cj,, . This implies

N (x/ |x|) < |x'u(x) < £ in Cig,. (2.5)

Step 3. Asymptotic behavior: For R>0, we define ug by ug = RPu(Rx). The

function ug satisfies (1.1) in Cé/(f:. By the degenerate elliptic equation regularity

theory, the set of functions {ug} remains bounded in the C]lo’f:‘-topology of Cyp,\{0}.
Since

d
dR

—=(RP(2 = RIx|)) = BR(2 = RIx|)"' (2 = 2R|x|) <0 for |x|>1/R,
there holds

RP(2 - R|x|)! <RF(2—R|x|)!} for [x|>1/R,
for 0< R<R'. Because h(x) = (2 — |x|),, it follows by the maximum principle

R/ZR:> MR/SMREC07()I(. (26)

Thus, there exists a function u* such that ug decreases and converges to u* as R— o0
in Cl.(Cop,\{0}). The function u* is a solution of (1.1) in Cyg, which vanishes on
01 Co 0, - Because of (2.5), u* satisfies

N7 (x/Ix) < |xl"u’ (x) </ in Cog- (2.7)
Finally,

Rlim RPu(Rr,0) = u*(r,0) = ¥ lim (Rr)'u(Rr,0) =ru*(1,0).

— 0
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If we define w by w(0) = u*(1,0), then u*(r,0) = r Pw(0), and
npr(0)<w(0)</py, V00,04 (2.8)
This implies that w is a positive solution of (1.4) on (0, 0;) which vanishes at the two
end points.
Step 4. Non-existence: Let us assume <y, and there exists a positive solution w

of (1.4) in (0, 0;) vanishing at the two end points. In this case, ¢ = f/y, <1. We still
define V), by

V’?(ra 0) = 17}"7[;(]32(6)7
where #>0 and obtain, with ¥ = n¢7,
_ p g0 _ “D(p-1)— 2
N"PDW) = P — (p— 1o — e PV 02k + %) >0,

We choose 1 = 1,>0 as the smallest parameter such that n¢; > w. Notice that this is
possible since both @ and ¢f are C' and positive in the interval (0, 6;) on the end
points of which ¢,” does not vanish.
Case 1: There exists 6y € (0, 0;) such that
ngr(0)=w(0), V0e[0,0,] and n¢7(0s) = w(0y).

Notice that the above configuration always holds if o<1. By the mean value
theorem,

(B + )72y — (B0’ + )P0 = a(y — o) + b — o),
where
b=(p—2)(B 0+ iy — )+ (@ + iy — )9
x (0 + 1) — w)) (o + 1) — o))
and
a=(p=2)( e+ 1 -0)]+ (@ + 1y = )))""
x (@4 1Y — )@ + iy - o))’
+ (B + 1 = ) + (o + 1Y = o)),
for some z€(0,1). Moreover,

W(0) = o(00) = ©>0 and y/(00) = o/ (00) = A.
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Therefore,
b(0o) = (p — 2)(B*0* + A2V 4
and
a(0y) = (0 + 472207 + (p — 1)4%).

Thus, a(6y)>0, and this property holds in a neighborhood of 6. Since the two
equations are not degenerate, the functions @ and b are C' in a neighborhood of 0.
Similarly,

(B? + )Py — (B’ + )PP o = (Y — o) +d() - o),
and
Y — ol = e((f — ),

for some bounded C! functions ¢, d and e. From this we have

IW) = Z(0) = =5 (W' = o) + by = 0)) = apc(Y’ = ') + (d + &)Y — ).

Since Z(Y) — Z(w) =0,
(Y’ — o)) = (gpgc+ D)(Y' — ) + (d + e = D)) — ) 20, (29)

holds, with y — >0 and (Y — ®)(0y) = 0. By the strong maximum principle ¥ —
o = 0 in a neighborhood of ¢,. Therefore, the set of points where yy and w coincide is
open in (0,6)). Since it is closed by continuity, it implies  — w = 0 in the whole
interval (0, 6). Contradiction.

Case 2: 0 = 1 and there exists >0 such that

npi(0)>w(0), VOe(0,0;) and ne (0) = o'(0) or
ney' (0x) = o' (0k).

We proceed as above, using the fact that ¢,’ does not vanish at the end points.
Therefore, ¥ — w >0 in a neighborhood of 0 (or 0 similarly). The inequality (2.9)
holds with a strongly elliptic operator. Since (¥ — w)(6y) = 0, the Hopf boundary
lemma implies (' — @')(0y) >0, which contradicts the tangency of the two graphs at
0=0. 0O

The proof of uniqueness of w will be obtained by the phase plane analysis
developed in the next section.
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3. The phase plane analysis
3.1. Dynamical system and critical points

In this section, we will consider the following more general ordinary differential
equation (ODE) in the real variable

—% (B0 + )T o] — ol + o0 + g(w) =0, (3.1)

where >0 and ¢ is a differentiable and odd function that satisfies the following
hypotheses:

(H1) 572 eIm(F), where F(x) = -4

— xlxlp—Za

(H2) F is a strictly increasing function.

In order to transform the ODE into a dynamical system put x = w and y = o',
then we get

X' =P(x,y) =y,

), g+ 07T — P — (a4 (p — 2B
V' =0(xy) = PRSI :

The only singular point of the system is the origin (0, 0). Therefore, at any point in
[Rz\{0,0} the Cauchy-Lipschitz local existence and uniqueness theorem applies. A
direct calculation shows that the critical points of (%), are given by

y=0 and F(x)=oap">>0. (3.2)
Since F is strictly increasing and even, we have then two critical points, (—¢,0) and

(¢,0), where ¢ = F~'(a"~2). The linearized system at a point (x,0), is given by the
matrix

where

a(x) = B [~ + ¢ ()| = (p = 2)g(x) x| "x].

Note that the condition (H2) on F, for x>0, is equivalent to xg’(x) > (p — 1)g(x)
and a(x)> > ?[x"?g(x) — af’2]. Thus, a(c)>0.
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Remark 1. Define H(x) = Q(x,0) = x> ?[F(x) — F(c)], we have
H'(x) = xp* P [F(x) = F(c) + xF'(x)],

and then by the condition (H2) on F, we see that H(x) is strictly negative for
0<x<c, and strictly positive and increasing for x> c.

The eigenvalues 1 and 4, of A(c) are given by the following algebraic system:

A+ A =0,
1112 = —a(c),

and the associated eigenvectors are

1 1
and .
a A2
Note that in this case, both (¢,0) and (—c,0), are saddle points.

3.2. Qualitative study of the dynamical system

Notation 1. We will use the following notation: ((xo, yo) is the orbit {(x(z), y(¢))},
that passes through the point (xo, ) at £ = 0.

Lemma 1. Concerning the dynamical system (&), we have

(a) The x- and y-axis are axes of symmetry, and so the origin is a center of
symmetry.

(b) Orbit of solutions of any autonomous system is invariant by time shift.

Proof. The second point is obvious and to see the first point (a), consider the
following applications:

¢x:(t7x7y)'_)(_l7_x7y>7 ¢y:(lax7y)'_)(_[7xa_y)'
It is clear that, () is invariant under @, and @®,. Since the Cauchy-Lipschitz
theorem applies, any orbit which intersects the x-axis (always perpendicularly) is
symmetric with respect to the y-axis, and similarly by exchanging the role of the two
axes. [

This will give directly

Lemma 2. Any orbit which intersects both x- and y-axis is a closed orbit.
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Proof. Without loss of generality (see 1(b)), we can assume that the orbit starts at
(0,0), at time ¢ = 0, Applying in this order the applications &,, @, and &,, we get
the result. [

Now, we define the following subsets:

I = {yo>0: 0(0,y9) " Ox+#¢ (finite time)},

L = {yo>0: 0(0,y) satisfies (2)},

where the property () means
there exists ¢o >0 such that y(7)>¢y, VieR.

Lemma 3. The set I, is a non-empty interval.

Proof. Step 1. The set I; is not empty. Let xy € (0, ¢), and consider the orbit O(xy, 0).
We will show that the trajectory intersects the y-axis at finite time. Using (&) we
have

X(0)=0 and ' (0) = g(xo)(fx0)* " — oxo <0,

and then, x and y are decreasing from xy and 0, respectively. Note that the orbit
cannot cross again the x-axis or the origin, since y' <0.

Thus, if the orbit does not intersect the y-axis the unique possibility is to have a
vertical asymptote. In this case, we must have

X(t)-»0 and y(1)> — o0 as t— + .

From the equation, x'(¢) = y(t), we get y(t)—>0 as t— + oo, which is not possible.

Therefore, there exists #, >0, such that x(#) = 0, and so —y(#y)e1;.

Step 2. The set I; is an interval. Let yy €1}, and let us prove that |0, yo] = ;. Indeed,
if 0<y; <)o, then the orbit (’(0, y;) cannot intersect the orbit ¢(0, o), and it cannot
tend to the origin or any equilibrium, because x’ > 0. So necessarily it intersects the x-
axis. [

Remark 2. By Lemma 2, if ygel;, then the point (0, yy) belongs to a periodic orbit.
Lemma 4. Every periodic orbit intersects the x-axis in the interval (—c,c).

Proof. By the Poincaré-Bendixon theorem, the bounded open domain of R?
bordered by a closed orbit contains at least a stationary point, (—c, 0) or (¢,0), or the
singular point (0, 0). Thus, any periodic trajectory intersects the x-axis. Assume that
x1> ¢ is the intersection of a closed orbit with the x-axis. For >0 small enough, the
solution ¢+ (x(),y(¢)) with initial data (x;,0) satisfies x'(#)>0 and )'(¢)>0 (by
Remark 1). Therefore, the x-coordinates are increasing as long as the trajectory
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belongs to the upper half-plane y> 0. This implies that the abscissa x; of the second
intersection point (x,0) with the x-axis satisfies x, > x;. Since the x-axis is an axis of
symmetry, the whole trajectory O(x;,0) is obtained by reflection through this axis,
and the bounded open domain of R’ that it encloses contains no stationary or
singular point, a contradiction. [

Lemma 5. The set I, is a non-empty open interval.

Proof. Consider xo = ¢ and yy >0, and the associated orbit ((xo, yy), with for some
7, x(t) = ¢ and y(t) = yo. Since x'(t) = yo, t+>x(f) is increasing for ¢>7.

Since for all x>¢, O(x,0)>0 and lim,_, o, Q(x,0) = 40, the orbit could not
intersect the x-axis and the limit of y could not be zero as t— oo. We cannot have a
horizontal asymptote: otherwise, lim, . y(f) =r>0 so this means that
lim,_,  y/(t) = 0, but in this case lim,_, ,, x(¢#) = c0 and 0 = lim,_, ., Q(x,r) = 0.
Thus, necessarily lim,_, . ., y(¢) = 4+ co. Therefore, this orbit is bounded below, for
t=1, by some ¢.

Next we will show that this orbit O(xo, yo) intersects the y-axis. For this, consider
the orbit @,(xg, —yo), with components ((¢), 7(¢)) with £(0) = xo and $(0) = —yo.
By the argument above y(f)< — ¢y for 1<0, so X(¢) decreases from ¢. Notice again
that this orbit @(xy,y) could not cross the x-axis or the origin. By the same
argument of the proof of Lemma 3 this orbit does not have a vertical asymptote, so it
must intersect the y-axis in some y; <0 and so —y; e /,.

Now to see that I> is an interval, let yoe l, and y,>yo. Then immediately y, e[,
since the orbit ¢(0, y2) cannot intersect (0, yo).

Now, we are going to prove that I is an open interval. Indeed, let yoe />, and
consider the orbit ((0, yy) with components (x(¢), y(¢)). We know that x is always
increasing from 0. There exists then 7, such that, x(¢;) = ¢ and y(#;) > 0. Let 0,(x, 7)
be the orbit where, X = ¢ and y(¢;) > 7>0. By the same argument, O,(x, 7) crosses
the y-axis at (0,y;), for some yo>y;, and therefore y;el, and so
e, +oo)ch., O

Remark 3. It is easy to see that /) is an interval bounded above by any element of /.
Therefore, we denote

b=supli<+ .

Lemma 6. For every xoe(—c,c)\{0}, there exists a unique periodic orbit such that
(x0,0) belongs to this orbit.

Proof. By symmetry and same analysis as in the proof of Lemma 3. [
Lemma 7. I is an open interval.

Proof. We know that [; is an interval. We need to show that b¢ ;. We proceed by
contradiction and assume that he ;. Then there exists, a first time, 7y >0, such that
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¥(t) = 0. By Lemma 4, we know that x(#) € (0, ¢). So for any x(#) <x; <c, and by
the last lemma, (x;,0) belongs to a periodic orbit ((x;,0). This periodic orbit
intersects the y-axis at some y(#,) > b, which is impossible since b is the supremum of
I, O

Proposition 2. There exists one and only one heteroclinic orbit which connects the
points (—c,0) and (¢, 0) in the upper half-plane, and one heteroclinic orbit that connects
(¢,0) and (—c,0) in the lower half-plane.

Proof. Consider the orbit 0(0,5), b as above, and let us show that

zll+moc x(f)=c¢ and rll+mm y(1) =0.
Using the fact that b¢ I, we obtain, lim,_ ,,, x(f)=c. Suppose lim,_ ., x(¢)>c.
Then there exists 7y such that, x(z)) = ¢ and y(¢y) >0. Proceeding as in the proof of
Lemma 5, we get be I, which is impossible since 7, is open and I; U, = (0, + ).
Thus, lim,_, o, x(¢) = ¢. From x' = y, we obtain
lim y(¢) = 0.

t—>+w

The orbit in the lower half-plane is obtained by symmetry. [

Remark 4. The heteroclinic orbit in the upper half-plane is the unstable (resp. stable)
trajectory of the point (—c,0) (resp. (c,0)).

3.3. Variation of the period

In this section, we will consider a general dynamical system

on) X =F(xp),
(f){y/ = G(X,y),

where F and G are C! functions in R*\{(0,0)}, in which region the system has no
equilibrium. We assume that F (resp. G) is odd with respect to y (resp. x) and even
with respect to x (resp. y). As in Lemma 2, these equivariance properties imply that
any orbit of &’ which intersects both x- and y-axis is closed. We assume also that
there exists an open interval (0,5) (b>0) of the positive y-axis such that for any
y€(0,b), the positive trajectory of (&) through (0,y) enters the region Q. =
{(x,y)eR?* x>0, »>0} and escapes from Q, in crossing the positive x-axis in finite
time. Let us denote by 7'(y) the first time such a trajectory intersects the x-axis. The
orbit through (0, y) is periodic and symmetric with respect to the coordinates axis,
therefore, it is 47(y)-periodic. If (x,»)eR*{(0,0)}, we denote by M, (t) =
(x(2), y(¢)) the maximal solution of (%) with initial data (x, ). Since the function T
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is continuous, the set

R = U U {M(O,y)(l)}a

0<y<b 0<t<T(y)

is a non-empty open subset of Q.

The aim of this section, under some hypothesis on F and G, is to prove a general
result on the monotonicity of the period as function of the y coordinates of the initial
data.

Notation 2. For all (x,y)eR*\{(0,0)} denote by V' the vector (F(x,y), G(x,y)) and
for 1#0, denote by V the vector (F(ix, 1y), G(Ax, 1y)).

The main assumption on ¥ is the following:
(H3) The functions F and G are, respectively, positively homogeneous of degree 1
and superpositively homogeneous of degree 1 in %, which is

F(ix,Ay) = AF(x,y) and G(ix,ly)>A1G(x,y) (3.3)

for all (x,y)eZ and all 2>1 such that (x, ly)eZ.
(H4) The function F remains positive in Z.

Remark 5. Concerning the assumption on G, we could have equality: G(Ax, Ay) =
AG(x,y) on a discrete subset of each orbit.

In order to show that the function T defined above is strictly increasing, let us
consider ((0,y) an orbit with components M (t) = M, (t) = (x(t),y(t)), such
that (x(0),y(0)) = (0,y0)e#, A>1, such that A¢, the homothetic of @ with
components (Ax(¢), Ay(¢)) still in #. Notice that A¢ and @ have the same period.

Finally, consider the orbit ¢, with components M, (t) = (x,(¢),y,(¢)) R, 2>1,
such that, x,(0) = 0 and y,(0) = Ay €(0,b).

Remark 6. The hypothesis on F and G have the following geometrical interpreta-
tions:

(i) For all (x,y)e®, (Ax,Ay)eZ the oriented angle (V, V) is positive.

(i) If for some times 7y and #;, AM (ty) = M,(¢;) then for >0 small, M, (¢; + ¢) is
above the straight line OM () + 1) for all te(0,7].

To see the second point, remark that the two associated vectors AV and V; have the
same abscissa AF(x,y), and G(Ax, ly)>1G(x,y).
We start by the following lemma:

Lemma 8. For A>1, the homothetic .0 of the orbit O is below the orbit O, (in R).
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Proof. Let 0€(0,7(y9)) and let 0,5 denote the orbit through the point LM (J).
Using the last remark (i) there exists £>0 such that 10 is strictly below the curve ¢; s
for ¢ in the interval |0, ¢].

Suppose that there exists a point of intersection between the two curves ¢/, ; and
A0 in the set R and let (Ax1, Ay;) €0, be the first point of intersection. Thus, at the
point (Axy, Ay1), the oriented angle between ¥ and V) is negative, which contradicts
Remark 6(i). Therefore, the curve ¢, 5 is above 10 for t>6. Letting 6 -0 and using
the continuity of the solutions with respect to the initial data in IRZ\{(O, 0)} implies
that the y-coordinate of any points of @, in £ is greater than or equal to the y-
coordinate of the point in A® which has the same x-coordinate. Since equality is
impossible, by Remark 6, the proof follows. [

Now we can show the main result of this section:
Theorem 3. The function y+— T(y) is increasing.

Proof. By Remark 6(ii) and since AM (0) = M, (0), there exists #) > 0 such that for all
t€]0, ty] the point M;(¢) is above the straight line OM (7).

Let >0 such that, M,(t) + 1), M(t) and the origin are collinear. Then there
exists />4 such that M,(zp + 1) = 2’ M(#). By the same argument, there exists
11> to, such that, for all € [ty, #,], M, (¢ + 1) is above the line OM (¢). This proves that
for all ¢, M,(¢) is strictly above the straight line OM (7). O

3.4. Proof of Theorem 1

By Proposition 1, we know that all the 2zn-periodic (non-constant) solutions of
(1.4) are n/k-anti-periodic for some positive integer k. Therefore (and up to a U(1)
action), the completion of the proof is reduced to proving the uniqueness holds for
positive solutions on the same interval, and that it vanishes at the end points. Let w
and @& be two solutions of (1.4) on (0, ;) such that

(0)>0,d(0)>0, V0e(0,0,) and (0)=d(0) =w(0x) =d(0r) =0. (3.4)

If w and & differ, their derivatives at 0 = 0 must be different (since the equation is
never degenerate on a trajectory). Therefore, we can assume

0<w'(0)<a'(0). (3.5)
Moreover, @' (0) <b since @ is a periodic solution. If we put
Flx,y) =y
and

G(x,y) = e 4y gB°X° — (apq + (p = 2)B*)x)”
o (p— 1)y + 2
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then F and G satisfies the regularity and equivariance properties required in (3.3).
Moreover, for any 4,

F(ix,Ay) = AF(x,y)
and
x| X[ 4 )
(p = 1)y2 + p2x2

Thus, assumption (3.3) is satisfied in whole Q. and the minimal periods of w and @
cannot be the same. [J

G(x,Ay) = (J4T1F - )) + 2G(Jx, ).

Acknowledgments

The authors are grateful to Professors Hector Giacomini and Ahmad EI Soufi for
useful discussions during the preparation of this work.

References

[1] F. Battelli, R. Johnson, Singular ground states for the scalar curvature equation in R”, Differential
Integral Equations 14 (2001) 141-158.
[2] H. Brezis, L.A. Peletier, D. Terman, A very singular solution of the heat equation with absorption,
Arch. Rational Mech. Anal. 95 (1986) 185-209.
[3] X.Y. Chen, H. Matano, L. Véron, Anisotropic singularities of solutions of nonlinear elliptic
equations in R?, J. Funct. Anal. 83 (1989) 50-97.
[4] A. Friedman, L. Véron, Singular solutions of some quasilinear elliptic equations, Arch. Rational
Mech. Anal. 96 (1986) 359-387.
[5] R. Johnson, X.B. Pan, Y. Yi, Positive solutions of super-critical elliptic equations and asymptotics,
Comm. Partial Differential Equations 18 (1993) 977-1019.
[6] R. Johnson, X.B. Pan, Y. Yi, Singular ground states of semilinear elliptic equations via invariant
manifold theory, Nonlinear Anal. 20 (1993) 1279-1302.
[7]1 R. Johnson, X.B. Pan, Y. Yi, The Mel’'nikov method and elliptic equations with critical exponent,
Indiana Univ. Math. J. 43 (1994) 1045-1077.
[8] S. Kichenassamy, L. Véron, Singular solutions of the p-Laplace equation, Math. Ann. 275 (1986)
599-615.
[9] I.N. Kroll, V.G. Mazja, The lack of continuity and Holder continuity of the solution of a certain
quasilinear equation, Proc. Steklov Inst. Math. 125 (1973) 130-136.
[10] P. Tolksdorft, On the Dirichlet problem for quasilinear equations in domains with conical boundary
points, Comm. Partial Differential Equation 8 (1983) 773-817.
[11] J.L. Vazquez, An a priori interior estimate for the solutions of a nonlinear problem representing weak
diffusion, Nonlinear Anal. 5 (1980) 95-103.
[12] J.L. Vazquez, L. Véron, Removable singularities of some strongly nonlinear elliptic equations,
Manuscripta Math. 33 (1980) 129-144.
[13] L. Véron, Some existence and uniqueness results for solution of some quasilinear elliptic equations on
compact Riemannian manifolds, Colloq. Math. Soc. Janos Bolyai 62 (1991) 317-352.
[14] L. Véron, Singularities of Solutions of Second Order Quasilinear Elliptic Equations, Pitman Research
Notes in Mathematics, Vol. 353, Addison-Wesley—Longman, Harlow, 1996.



	A dynamical system approach to the construction of singular solutions of some degenerate elliptic equations
	Introduction
	The shooting method
	The phase plane analysis
	Dynamical system and critical points
	Qualitative study of the dynamical system
	Variation of the period
	Proof of Theorem 1

	Acknowledgements
	References


