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Abstract

We study the existence of singular separable solutions to the 2-dimensional quasilinear

equation �r � ðjrujp�2ruÞ þ jujq�1u ¼ 0 under the form uðr; yÞ ¼ r�boðyÞ: We obtain the full

description of the set of such solutions by combining a 2-dimensional shooting method with a

phase plane analysis approach.
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1. Introduction

Let 1opoq þ 1 be real numbers, and ðr; yÞA½0;NÞ � S1 the polar coordinates in

R2: The aim of this article is to give a complete description of the set of separable
solutions of the degenerate elliptic equation with absorption

�r � ðjrujp�2ruÞ þ jujq�1u ¼ 0 ð1:1Þ
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in R2
\f0g in the form

uðr; yÞ ¼ r�boðyÞ; ðr; yÞAð0;NÞ � S1; ð1:2Þ

for some bAR: For homogeneity reasons

b ¼ bq ¼ p=ðq þ 1� pÞ; ð1:3Þ

while o is a 2p-periodic solution of

� d

dy
½ðb2o2 þ o02Þ

p�2
2 o0� � ap;q½b2o2 þ o02�

p�2
2 oþ ojojq�1 ¼ 0; ð1:4Þ

where ap;q ¼ bqððbq þ 1Þðp � 1Þ � 1Þ:
If p ¼ 2; then bq ¼ 2=ðq � 1Þ and (1.4) reduces to

�o00 � 2

q � 1

� �2

oþ ojojq�1 ¼ 0; ð1:5Þ

which is the Euler–Lagrange equation of the functional E defined by

EðoÞ ¼ 1

2

Z
S1

o02 � 2

q � 1

� �2

o2 þ 2

q þ 1
jojqþ1

 !
dy: ð1:6Þ

Moreover, there exists an obvious first integral (usually called the Painlevé first
integral), obtained here by a simple multiplication by o0;

d

dy
o02 þ 2

q � 1

� �2

o2 � 2

q þ 1
jojqþ1

 !
¼ 0: ð1:7Þ

Those two observations make (1.5) easy to integrate. If we put l ¼ 4=ðq � 1Þ2; we
replace (1.5) by the equation

�o00 � loþ ojojq�1 ¼ 0; ð1:8Þ

and denote by El the set of its solutions. If kðlÞ is the largest integer smaller thanffiffiffiffiffiffi
jlj

p
; the following result is proved in [3].

Theorem A. If lp0; El ¼ f0g: If 0olp1; El ¼ f0; l1=ðq�1Þ;�l1=ðq�1Þg: If l41; El

has 3þ kðlÞ connected components: E0
l; E

þ
l ; E

�
l ; and Ek

l ð1pkpkðlÞÞ; where

ðiÞ E0
l ¼ f0g; Eþ

l ¼ fl1=ðq�1Þg; and E�
l ¼ f�l1=ðq�1Þg;

ðiiÞ for each 1pkpkðlÞ; Ek
l is the set of all solutions to 1.8 with least anti-period

p=k; and Ek
l ¼ foð:þ aÞ: aAS1g:

ARTICLE IN PRESS
J. Huentutripay et al.



The above result can be interpreted via the bifurcation approach since when l ¼
lk ¼ k2 the linearized problem

�c00 � lc ¼ 0; ð1:9Þ

is singular and any couple ðlk; 0Þ is a bifurcation point from which a branch of
solutions ðl;oÞ is issued. Moreover, any of these branches of solutions can be
continued for l4lk; and there exists no other solution.
When pa2; (1.4) is not the Euler equation of any functional, and this makes the

problem much more difficult to study. It is natural to introduce the set of singular
separable p-harmonic functions, i.e. the set of solutions of

�r � ðjrvjp�2rvÞ ¼ 0; ð1:10Þ

in R2
\f0g which are written in the form

vðr; yÞ ¼ r�gfðyÞ; ðr; yÞAð0;NÞ � S1:

Then f is a 2p-periodic solution of

� d

dy
½ðg2f2 þ f02Þ

p�2
2 f0� � bp;g½g2f2 þ f02�

p�2
2 f ¼ 0; ð1:11Þ

where bp;g ¼ gððgþ 1Þðp � 1Þ � 1Þ: The set of solutions of (1.11) has been

characterized by Kichenassamy and Véron [8] (and Kroll and Mazja [9] in the
regular case). They proved

Theorem B. Assume p41; then for each positive integer k there exists a gkAR and

fk :R-R with least anti-period p=k; of class CN such that

vðxÞ ¼ vðr; yÞ ¼ r�gkfkðyÞ; ð1:12Þ

is p-harmonic in R2
\f0g; gk is the positive root of

ðgþ 1Þ2 ¼ ð1þ 1=kÞ2ðg2 þ gðp � 2Þ=ðp � 1ÞÞ: ð1:13Þ

The couple ðgk;fkÞ is unique, up to translation and homothety over fk:

Let Ep;q be the set of 2p-periodic solutions of (1.4). We define

cp;q ¼ p

q þ 1� p

� �p�1
pq

q þ 1� p
� 2

� �" #1=ðqþ1�pÞ

; ð1:14Þ

which exists only if ðp � 2Þq42ð1� pÞ; or equivalently ðbq þ 1Þðp � 1Þ41: The main

result of this article is the following.
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Theorem 1. Assume q þ 14p41: If bqpð2� pÞ=ðp � 1Þ; Ep;q ¼ f0g: If ð2� pÞ=ðp �
1Þobqpg1; Ep;q ¼ f0; cp;q;�cp;qg: If bq4g1; let kðqÞ be the largest integer such that

bq4gkðqÞ: Then Ep;q has 3+kðqÞ connected components; E0
p;q; Eþ

p;q; E�
p;q; and

Ek
p;q ð1pkpkðqÞÞ; where

ðiÞ E0
p;q ¼ f0g; Eþ

p;q ¼ fcp;qg; and E�
p;q ¼ f�cp;qg;

ðiiÞ for each 1pkpkðqÞ; Ek
p;q is the set of solutions to (1.4), with least anti-period

p=k; and Ek
p;q ¼ ffð:þ aÞ: aAS1g:

The proof of this result is difficult and based upon two completely different points
of view: a 2-dimensional shooting method, and a phase plane analysis. The shooting
method consists in proving the existence of a positive solution of (1.1) in an angular
sector fðr; yÞ: r41; 0oyoykg of the 2-dimensional plane, and subject to Dirichlet
conditions on the lateral boundary of the sector. Here yk ¼ p=k for some positive
integer k: Thanks to the assumption on b; it will be proved that this solution is
bounded from below and from above by two terms with the same decay order,

CiðyÞr�b for some functions Ci ði ¼ 1; 2Þ: From this two-side estimate, these follows
a precise asymptotic behavior (as r-N) which shows the existence of at least one
positive solution of (1.4) on ð0; ykÞ vanishing at the end points. The non-existence is
proved by the strong maximum principle. Surprisingly (and contrary to the
semilinear case p ¼ 2), uniqueness cannot be obtained directly, neither from (1.1) nor
from (1.4). Thus, we immerge this equation into a more general class of 2-
dimensional differential systems and prove, by a phase plane analysis that the period
of periodic solutions of such systems is a strictly monotone function of some
shooting parameter. The dynamical systems approach for constructing solutions of
non-linear equations is usually settled upon the invariant manifold theory: either its
utilization is implicit as in [2] for constructing the very singular solution of the
semilinear heat equation with absorption, or the theory is used in full as in [1,5,6]
when studying ground states of a wide class of semilinear elliptic equations. In [7],
this approach is combined with the use of the Mel’nikov function on invariant
manifold in order to prove sharp asymptotics. The theory of internal isolated
singularities is developed in [12–14].

2. The shooting method

We start this section with two key observations:
(A) By multiplying (1.4) by o and integrating over ð0; 2pÞ we get
Z p

0

½b2o2 þ o02�
p�2
2 o02 dy� ap;q

Z p

0

½b2o2 þ o02�
p�2
2 o2dyþ

Z p

0

jojqþ1 dy ¼ 0:

Thus, there is no non-trivial solution if ap;qp0 or equivalently bqpð2� pÞ=ðp � 1Þ:
On the contrary, if ap;q40 there exists always two non-trivial constant solutions, cp;q;
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defined by (1.14), and �cp;q: Moreover, it is worth noticing that if pX2 it never

occurs that bqpð2� pÞ=ðp � 1Þ; therefore Ep;q is never reduced to the zero function.

In any case, we shall always assume ap;q40:

(B) At the point y0 where oðy0Þ vanishes, o0ðy0Þ is not zero. However, this is far
from obvious except in the case p ¼ 2; since the Cauchy–Lipschitz theorem does not
hold at points where o and o0 vanish. This fact will be the consequence of the
following structure result.

Proposition 1. Let q þ 14p41 such that ap;q40: If o is a non-constant 2p-periodic

solution of (1.4), there exists a positive integer k such that o has least period 2p=k:

Moreover there exists aAS1 such that oað:Þ ¼ oð:� aÞ vanishes at 0 and p=k; is

positive on ð0; p=kÞ and satisfies oa
0ð0Þ ¼ �oa

0ðp=kÞ40:

Proof. If o is a non-constant solution of (1.4) it is bounded from above (resp. from
below) by cp;q (resp. �cp;q). This follows from the maximum principle, since at a

point of positive maximum (resp. negative minimum), o00 exists (the equation is not

degenerate) and the solution is locally C2 (see [10]). It is also a consequence of the
fact that the function

UM : x/cp;qjxj�bq ; 8xa0; ð2:1Þ

is the maximal solution of (1.1) in AR2
\f0g; as it follows from the constructions in [4]

(see also Vazquez’ universal a priori estimate [11]). Let us assume that o achieves

positive values, and let y1 be such that oðy1Þ ¼ maxfoðyÞ: yAS1g: If o would keep a
constant sign, it would have a positive minimum, oðy2Þocp;q: Since o00ðy2Þ exists at
such a point (at this point, the equation is not degenerate since oðy2Þ40) it would be
non-negative and (1.4) would imply

oqðy2ÞXap;qb
p�2op�1ðy2Þ ) oðy2ÞXcp;q;

a contradiction. Therefore, o is not always positive on S1:

Let us denote by I1 ðy0; *y0Þ; the connected component containing y1 of the yAS1;

where oðyÞ40: Thus, o is positive on ðy0; *y0Þ (identifying S1 with ½0; 2pÞ we can

assume y0o*y0). Put

Cy0;*y0
¼ fx ¼ ðr; yÞAR2: r40; yAðy0; *y0Þg:

Then uðxÞ ¼ uðr; yÞ ¼ r�boðyÞ is a positive solution of (1.1) in the angular domain

Cy0;*y0
\f0g: In order to prove that o0ðy0Þ40; we consider aAR2 such that the open

disk D1ðaÞ; of radius 1 and center a is included into Cy0;*y0
and tangent, at the point b

and b̃ to the two half-lines L0 ¼ fðr; yÞ: r40; y ¼ y0g and L̃0 ¼ fðr; yÞ: r40; y ¼
*y0g: Although it plays no role in the sequel, the polar coordinates of a are ½sinððy0 þ
*y0Þ=2Þ��1 and ðy0 þ *y0Þ=2: Let Dð1þpÞ=2pðaÞ be the disk of radius ð1þ pÞ=2p and

ARTICLE IN PRESS
J. Huentutripay et al.



center a: Since u is positive in D1ðaÞ its minimum on @Dð1þpÞ=2pðaÞ is positive. We

denote it by Z: Set

w
A;B
ðxÞ ¼ Að1� jx � ajÞ þ Bð1� jx � ajÞ2;

where A and B are positive parameters to be chosen such that

(i) w
A;B
pZ on @Dð1þpÞ=2pðaÞ3Aðp � 1Þ=2p þ Bðp � 1Þ2=4p2pZ;

(ii) �r � ðjrw
A;B
jp�2rw

A;B
Þ þ wq

A;B
p0 in D1ðaÞ\Dð1þpÞ=2pðaÞ: If we set r ¼ x � a; this

last inequality is equivalent to

� jA þ 2Bð1� rÞjp�2½2ðp � 1ÞB � r�1ðA þ 2Bð1� rÞÞ�

þ ð1� rÞqðA þ Bð1� rÞÞqp0; 8rAðð1þ pÞ=2p; 1Þ:

Since

2ðp � 1ÞB � r�1ðA þ 2Bð1� rÞÞX2pðB � AÞ
p þ 1

; 8rAðð1þ pÞ=2p; 1Þ;

requirements (i) and (ii) are fulfilled as soon as we take 0oAoB; small enough. By
the maximum principle, w

A;B
pu in D1ðaÞ\Dð1þpÞ=2pðaÞ: Both u and w

A;B
vanish at the

point b; and on L0 and @D1ðaÞ; respectively. Thus, if n denotes the outward normal
derivative to D1ðaÞ at b;

jbj�bo0ðy0Þ ¼
@u

@n
ðbÞp

@w
A;B

@n
ðbÞ ¼ �A:

Here, we have used the fact that u is at least C1;a (for some 0oao1) by the regularity
theory of degenerate elliptic equations, and so is o: Thus, the right and left

derivatives of o at y0 coincide. Consequently, b2oðyþ0 Þ
2 þ o0ðyþ0 Þ

2a0 and the

Cauchy–Lipschitz existence and local uniqueness theorem applies at the point y0:
Since the equation is odd, the function y/� oðy0 � yÞ is a solution of (1.4) in some
interval ðy0 � d; y0Þ on the left of y0: Therefore,

oðy0 � yÞ ¼ �oðyÞ; 8yAðy0 � d; y0 þ dÞCð2y0 � *y0; *y0Þ: ð2:2Þ

Since o40 on ðy0; *y0Þ; the equation is not degenerate on ðy0 � d; y0�: This implies
that the symmetry relation (2.2) holds on the interval ½2y0 � *y0; *y0�: Again, because
the equation is not degenerate on this interval and o0ðy1Þ ¼ 0; there holds

oðyÞ ¼ oð2y1 � yÞ; 8yAð0; y1Þ:

Consequently, o is 2ð*y0 � y0Þ-periodic, with anti-period *y0 � y0: The necessary and
sufficient condition insuring o to be 2p-periodic is that there exists a positive integer
k such that *y0 � y0 ¼ p=k: Another consequence of the non-degeneracy of the
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equation is that two solutions with the same period only differs by a phase coefficient
a: This implies the last statement. &

Theorem 2. Let q þ 14p41; kAN�; yk ¼ p=k; then

ðiÞ If b4gk there exists a positive solution o of (1.4) in ð0; ykÞ which vanishes at

y ¼ 0 and y ¼ yk:
ðiiÞ If bpgk; the only solution of (1.4) in ð0; ykÞ which vanishes at y ¼ 0 and y ¼ yk is

the zero function.

Proof. For RX0; we set

CR
0;yk

¼ fx ¼ ðr; yÞ: r4R; 0oyoykg;

and C0;yk
¼ C0

0;yk
: If a solution o of (1.4) in ð0; ykÞ vanishing at the two end points

exists, the function

ðr; yÞ/ukðr; yÞ ¼ r�boðyÞ;

is a solution of (1.1) in CR
0;yk

for any r4R vanishing on the lateral boundary

@LCR
0;yk

¼ fx ¼ ðr; 0Þ: r4Rg,fx ¼ ðr; ykÞ: r4Rg:

Step 1. Construction of an approximate solution: We define the function hACðR2Þ
by

hðxÞ ¼
2� jxj if jxjp2;

0 if jxjX2:

(

For n4RX1 we set CR;n
0;yk

¼ CR
0;yk

\Cn
0;yk

: Let e40 to be chosen, and vn the solution

(obtained by minimization) of

�r � ðjrvnjp�2rvnÞ þ jvnjq�1vn ¼ 0 in C
1;n
0;yk

;

vn ¼ eh on @C1;n
0;yk

: ð2:3Þ

The function vn is non-negative. We choose e such that

ehðxÞpUMðxÞ; 8xAR2:

(remember that UM; defined by (2.1) is the maximal solution of (1.1) in R2
\f0g). By

monotonicity and the maximum principle, we have

1on1on2 ) vn1pvn2pUM in C
1;n1
0;yk

:
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When n tends to infinity, un increases and converges to some u which is a positive

solution of (1.1) in C1
0;yk

; with boundary value eh on @C1
0;yk

: Moreover,

uðxÞpUMðxÞ ¼ cp;qjxj�b in C1
0;yk

:

Notice that the decay at infinity and the monotone operators theory are enough to
ensure the uniqueness of u:

Step 2. Estimate from below: Let fk be a solution of (1.11) with corresponding
exponent g ¼ gk; normalized by

0pfkpmax
0;yk

fk ¼ 1:

We set s ¼ b=gk: Then s41: We claim that, for Z40 small enough,

ðr; yÞ/VZðr; yÞ ¼ Zr�bfs
kðyÞ;

is a non-negative subsolution of (1.1) in C1
0;yk

which vanishes on the lateral boundary

@LC1
0;yk

: If we denote

PðVÞ ¼ �r � ðjrV jp�2rVÞ þ jV jq�1V ;

and

DðcÞ ¼ � d

dy
½ðb2c2 þ c02Þ

p�2
2 c0� � ap;q½b2c2 þ c02�

p�2
2 cþ jcjq�1c;

then

PðVZÞ ¼ r�qbDðZfs
kÞ:

Put c ¼ Zfs
k: By a straightforward computation one obtains

ðb2c2 þ c02Þ
p�2
2 ¼ Zp�2sp�2fðs�1Þðp�2Þ

k ðg2kf
2
k þ fk

02Þ
p�2
2 ;

and

d

dy
½ðb2c2 þ c02Þ

p�2
2 c0� ¼ Zp�1sp�1 d

dy
½fðs�1Þðp�1Þ

k ðg2kf
2
k þ fk

02Þ
p�2
2 fk

0�

¼ Zp�1sp�1fðs�1Þðp�1Þ
k

d

dy
½ðg2kf

2
k þ fk

02Þ
p�2
2 fk

0�

þ ðs� 1Þðp � 1ÞZp�1sp�1fðs�1Þðp�1Þ�1
k ðg2kf2

k þ fk
02Þ

p�2
2 fk

02:

Since

� d

dy
½ðg2kf

2
k þ fk

02Þ
p�2
2 fk

0� ¼ bp;gk
ðg2kf

2
k þ fk

02Þ
p�2
2 fk;
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with bp;gk
¼ gkððgk þ 1Þðp � 1Þ � 1Þ; it follows that

Z1�pDðcÞ ¼ Zqþ1�pfqs
k þ sp�2fðs�1Þðp�1Þ�1

k ðg2kf
2
k þ fk

02Þ
p�2
2 ½ðsbp;gk

� bp;qÞf2
k

� sðs� 1Þðp � 1Þfk
02�:

But sbp;gk
� bp;q ¼ bðgk � bÞðp � 1Þ ¼ �g2ksðs� 1Þðp � 1Þ: Therefore,

Z1�pDðcÞ ¼ Zqþ1�pfqs
k � ðp � 1Þðs� 1Þsp�1fðs�1Þðp�1Þ�1

k ðg2kf
2
k þ fk

02Þ
p
2

p Zqþ1�pfqs
k � ðp � 1Þðs� 1Þsp�1fsðp�1Þ

k : ð2:4Þ

Since s41; the right-hand side of (2.4) is non-positive for Z small enough. We can
also impose Zfkpe in order to have VZpuðxÞ if jxj ¼ 1: By the maximum principle,

VZ is dominated by u in C1
0;yk

: This implies

Zfs
kðx=jxjÞpjxjbuðxÞpcp;q in C1

0;yk
: ð2:5Þ

Step 3. Asymptotic behavior: For R40; we define uR by uR ¼ RbuðRxÞ: The
function uR satisfies (1.1) in C

1=R
0;yk

: By the degenerate elliptic equation regularity

theory, the set of functions fuRg remains bounded in the C1;a
loc -topology of C0;yk

\f0g:
Since

d

dR
ðRbð2� RjxjÞbþÞ ¼ bRð2� RjxjÞb�1þ ð2� 2RjxjÞp0 for jxjX1=R;

there holds

R0bð2� R0jxjÞbþpRbð2� RjxjÞbþ for jxjX1=R;

for 0oRoR0: Because hðxÞ ¼ ð2� jxjÞþ; it follows by the maximum principle

R0
XR ) uR0puRAC0;yk

: ð2:6Þ

Thus, there exists a function u� such that uR decreases and converges to u� as R-N

in C1
locðC0;yk

\f0gÞ: The function u� is a solution of (1.1) in C0;yk
which vanishes on

@LC0;yk
: Because of (2.5), u� satisfies

Zfs
kðx=jxjÞpjxjbu�ðxÞpcp;q in C0;yk

: ð2:7Þ

Finally,

lim
R-N

RbuðRr; yÞ ¼ u�ðr; yÞ ¼ r�b lim
R-N

ðRrÞbuðRr; yÞ ¼ r�bu�ð1; yÞ:
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If we define o by oðyÞ ¼ u�ð1; yÞ; then u�ðr; yÞ ¼ r�boðyÞ; and

Zfs
kðyÞpoðyÞpcp;q; 8yA½0; yk�: ð2:8Þ

This implies that o is a positive solution of (1.4) on ð0; ykÞ which vanishes at the two
end points.

Step 4. Non-existence: Let us assume bpgk and there exists a positive solution o
of (1.4) in ð0; ykÞ vanishing at the two end points. In this case, s ¼ b=gkp1: We still
define VZ by

VZðr; yÞ ¼ Zr�bfs
kðyÞ;

where Z40 and obtain, with c ¼ Zfs
k;

Z1�pDðcÞ ¼ Zqþ1�pfqs
k � ðp � 1Þðs� 1Þsp�1fðs�1Þðp�1Þ�1

k ðg2kf2
k þ fk

02Þ
p
240:

We choose Z ¼ Z040 as the smallest parameter such that Zfs
kXo: Notice that this is

possible since both o and fs
k are C1 and positive in the interval ð0; ykÞ on the end

points of which fk
0 does not vanish.

Case 1: There exists y0Að0; ykÞ such that

Zfs
kðyÞXoðyÞ; 8yA½0; yk� and Zfs

kðy0Þ ¼ oðy0Þ:

Notice that the above configuration always holds if so1: By the mean value
theorem,

ðb2c2 þ c02Þðp�2Þ=2c0 � ðb2o2 þ o02Þðp�2Þ=2o0 ¼ aðc0 � o0Þ þ bðc� oÞ;

where

b ¼ðp � 2Þðb2ðoþ tðc� oÞÞ2 þ ðo0 þ tðc0 � o0ÞÞ2Þðp�4Þ=2

� ðoþ tðc� oÞÞðo0 þ tðc0 � o0ÞÞ

and

a ¼ðp � 2Þðb2ðoþ tðc� oÞÞ2 þ ðo0 þ tðc0 � o0ÞÞ2Þðp�4Þ=2

� ðoþ tðc� oÞÞðo0 þ tðc0 � o0ÞÞ2

þ ðb2ðoþ tðc� oÞÞ2 þ ðo0 þ tðc0 � o0ÞÞ2Þðp�2Þ=2;

for some tAð0; 1Þ: Moreover,

cðy0Þ ¼ oðy0Þ ¼ Y40 and c0ðy0Þ ¼ o0ðy0Þ ¼ L:
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Therefore,

bðy0Þ ¼ ðp � 2Þðb2Y2 þ L2Þðp�4Þ=2YL

and

aðy0Þ ¼ ðb2Y2 þ L2Þðp�4Þ=2ðb2Y2 þ ðp � 1ÞL2Þ:

Thus, aðy0Þ40; and this property holds in a neighborhood of y0: Since the two

equations are not degenerate, the functions a and b are C1 in a neighborhood of y:
Similarly,

ðb2c2 þ c02Þðp�2Þ=2c� ðb2o2 þ o02Þðp�2Þ=2o ¼ cðc0 � o0Þ þ dðc� oÞ;

and

cq � oq ¼ eððc� oÞÞ;

for some bounded C1 functions c; d and e: From this we have

DðcÞ �DðoÞ ¼ � d

dy
ðaðc0 � o0Þ þ bðc� oÞÞ � ap;qcðc0 � o0Þ þ ðd þ eÞðc� oÞ:

Since DðcÞ �DðoÞX0;

� d

dy
ðaðc0 � o0ÞÞ � ðap;qc þ bÞðc0 � o0Þ þ ðd þ e � b0Þðc� oÞþX0; ð2:9Þ

holds, with c� oX0 and ðc� oÞðy0Þ ¼ 0: By the strong maximum principle c�
o � 0 in a neighborhood of y0: Therefore, the set of points where c and o coincide is
open in ð0; y0Þ: Since it is closed by continuity, it implies c� o � 0 in the whole
interval ð0; y0Þ: Contradiction.

Case 2: s ¼ 1 and there exists Z40 such that

ZfkðyÞ4oðyÞ; 8yAð0; ykÞ and Zfk
0ð0Þ ¼ o0ð0Þ or

Zfk
0ðykÞ ¼ o0ðykÞ:

We proceed as above, using the fact that fk
0 does not vanish at the end points.

Therefore, c� oX0 in a neighborhood of 0 (or yk similarly). The inequality (2.9)
holds with a strongly elliptic operator. Since ðc� oÞðy0Þ ¼ 0; the Hopf boundary
lemma implies ðc0 � o0Þðy0Þ40; which contradicts the tangency of the two graphs at
y ¼ 0: &

The proof of uniqueness of o will be obtained by the phase plane analysis
developed in the next section.
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3. The phase plane analysis

3.1. Dynamical system and critical points

In this section, we will consider the following more general ordinary differential
equation (ODE) in the real variable t:

�d

dt
½ðb2o2 þ o02Þ

p�2
2 o0� � a½b2o2 þ o02�

p�2
2 oþ gðoÞ ¼ 0; ð3:1Þ

where a40 and g is a differentiable and odd function that satisfies the following
hypotheses:

(H1) abp�2AImðFÞ; where FðxÞ :¼ gðxÞ
xjxjp�2;

(H2) F is a strictly increasing function.

In order to transform the ODE into a dynamical system put x ¼ o and y ¼ o0;
then we get

ðSÞ
x0 ¼ Pðx; yÞ :¼ y;

y0 ¼ Qðx; yÞ :¼ gðxÞ½b2x2 þ y2�
4�p
2 � ab2x3 � ðaþ ðp � 2Þb2Þxy2

ðp � 1Þy2 þ b2x2
:

8><
>:

The only singular point of the system is the origin ð0; 0Þ: Therefore, at any point in
R2

\f0; 0g the Cauchy–Lipschitz local existence and uniqueness theorem applies. A
direct calculation shows that the critical points of ðSÞ; are given by

y ¼ 0 and FðxÞ ¼ abp�240: ð3:2Þ

Since F is strictly increasing and even, we have then two critical points, ð�c; 0Þ and
ðc; 0Þ; where c ¼ F�1ðabp�2Þ: The linearized system at a point ðx; 0Þ; is given by the
matrix

AðxÞ :¼
0 1

aðxÞ 0

" #
;

where

aðxÞ :¼ b2�p½�abp�2 þ g0ðxÞjxj2�p � ðp � 2ÞgðxÞjxj�p
x�:

Note that the condition (H2) on F ; for x40; is equivalent to xg0ðxÞ4ðp � 1ÞgðxÞ
and aðxÞ4b2�p½x1�pgðxÞ � abp�2�: Thus, aðcÞ40:
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Remark 1. Define HðxÞ :¼ Qðx; 0Þ ¼ xb2�p½FðxÞ � FðcÞ�; we have

H 0ðxÞ ¼ xb2�p½FðxÞ � FðcÞ þ xF 0ðxÞ�;

and then by the condition (H2) on F ; we see that HðxÞ is strictly negative for
0oxoc; and strictly positive and increasing for x4c:

The eigenvalues l1 and l2 of AðcÞ are given by the following algebraic system:

l1 þ l2 ¼ 0;

l1l2 ¼ �aðcÞ;

(

and the associated eigenvectors are

1

l1

" #
and

1

l2

" #
:

Note that in this case, both ðc; 0Þ and ð�c; 0Þ; are saddle points.

3.2. Qualitative study of the dynamical system

Notation 1. We will use the following notation: Oðx0; y0Þ is the orbit fðxðtÞ; yðtÞÞg;
that passes through the point ðx0; y0Þ at t ¼ 0:

Lemma 1. Concerning the dynamical system ðSÞ; we have

ðaÞ The x- and y-axis are axes of symmetry, and so the origin is a center of

symmetry.
ðbÞ Orbit of solutions of any autonomous system is invariant by time shift.

Proof. The second point is obvious and to see the first point (a), consider the
following applications:

Fx : ðt; x; yÞ/ð�t;�x; yÞ; Fy : ðt; x; yÞ/ð�t;x;�yÞ:

It is clear that, ðSÞ is invariant under Fx and Fy: Since the Cauchy–Lipschitz

theorem applies, any orbit which intersects the x-axis (always perpendicularly) is
symmetric with respect to the y-axis, and similarly by exchanging the role of the two
axes. &

This will give directly

Lemma 2. Any orbit which intersects both x- and y-axis is a closed orbit.
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Proof. Without loss of generality (see 1(b)), we can assume that the orbit starts at
ð0; y0Þ; at time t ¼ 0; Applying in this order the applications Fy;Fx; and Fy; we get

the result. &

Now, we define the following subsets:

I1 ¼ fy040: Oð0; y0Þ-Oxaf ðfinite timeÞg;

I2 ¼ fy040: Oð0; y0Þ satisfies ðPÞg;

where the property ðPÞ means
there exists E040 such that yðtÞXE0; 8tAR:

Lemma 3. The set I1 is a non-empty interval.

Proof. Step 1. The set I1 is not empty. Let x0Að0; cÞ; and consider the orbit Oðx0; 0Þ:
We will show that the trajectory intersects the y-axis at finite time. Using ðSÞ we
have

x0ð0Þ ¼ 0 and y0ð0Þ ¼ gðx0Þðbx0Þ2�p � ax0o0;

and then, x and y are decreasing from x0 and 0; respectively. Note that the orbit
cannot cross again the x-axis or the origin, since y0o0:
Thus, if the orbit does not intersect the y-axis the unique possibility is to have a

vertical asymptote. In this case, we must have

x0ðtÞ-0 and yðtÞ-�N as t-þN:

From the equation, x0ðtÞ ¼ yðtÞ; we get yðtÞ-0 as t-þN; which is not possible.
Therefore, there exists t040; such that xðt0Þ ¼ 0; and so �yðt0ÞAI1:
Step 2. The set I1 is an interval. Let y0AI1; and let us prove that �0; y0�DI1: Indeed,

if 0oy1oy0; then the orbit Oð0; y1Þ cannot intersect the orbit Oð0; y0Þ; and it cannot
tend to the origin or any equilibrium, because x040: So necessarily it intersects the x-
axis. &

Remark 2. By Lemma 2, if y0AI1; then the point ð0; y0Þ belongs to a periodic orbit.

Lemma 4. Every periodic orbit intersects the x-axis in the interval ð�c; cÞ:

Proof. By the Poincaré–Bendixon theorem, the bounded open domain of R2

bordered by a closed orbit contains at least a stationary point, ð�c; 0Þ or ðc; 0Þ; or the
singular point ð0; 0Þ: Thus, any periodic trajectory intersects the x-axis. Assume that
x14c is the intersection of a closed orbit with the x-axis. For t40 small enough, the
solution t/ðxðtÞ; yðtÞÞ with initial data ðx1; 0Þ satisfies x0ðtÞ40 and y0ðtÞ40 (by
Remark 1). Therefore, the x-coordinates are increasing as long as the trajectory
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belongs to the upper half-plane y40: This implies that the abscissa x2 of the second
intersection point ðx2; 0Þ with the x-axis satisfies x24x1: Since the x-axis is an axis of
symmetry, the whole trajectory Oðx1; 0Þ is obtained by reflection through this axis,

and the bounded open domain of R2 that it encloses contains no stationary or
singular point, a contradiction. &

Lemma 5. The set I2 is a non-empty open interval.

Proof. Consider x0 ¼ c and y040; and the associated orbit Oðx0; y0Þ; with for some
t; xðtÞ ¼ c and yðtÞ ¼ y0: Since x0ðtÞ ¼ y0; t/xðtÞ is increasing for tXt:
Since for all x4c; Qðx; 0Þ40 and limx-N Qðx; 0Þ ¼ þN; the orbit could not

intersect the x-axis and the limit of y could not be zero as t-N: We cannot have a
horizontal asymptote: otherwise, limt-N yðtÞ ¼ r40 so this means that
limx-N y0ðtÞ ¼ 0; but in this case limx-N xðtÞ ¼ N and 0 ¼ limx-N Qðx; rÞ ¼ N:
Thus, necessarily limt-þN yðtÞ ¼ þN: Therefore, this orbit is bounded below, for
tXt; by some E0:
Next we will show that this orbit Oðx0; y0Þ intersects the y-axis. For this, consider

the orbit *Orðx0;�y0Þ; with components ðx̃ðtÞ; ỹðtÞÞ with x̃ð0Þ ¼ x0 and ỹð0Þ ¼ �y0:
By the argument above ỹðtÞp� E0 for tp0; so x̃ðtÞ decreases from c: Notice again
that this orbit Oðx0; y0Þ could not cross the x-axis or the origin. By the same
argument of the proof of Lemma 3 this orbit does not have a vertical asymptote, so it
must intersect the y-axis in some y1o0 and so �y1AI2:
Now to see that I2 is an interval, let y0AI2 and y24y0: Then immediately y2AI2;

since the orbit Oð0; y2Þ cannot intersect Oð0; y0Þ:
Now, we are going to prove that I2 is an open interval. Indeed, let y0AI2; and

consider the orbit Oð0; y0Þ with components ðxðtÞ; yðtÞÞ: We know that x is always
increasing from 0. There exists then t1; such that, xðt1Þ ¼ c and yðt1Þ40: Let Orð %x; %yÞ
be the orbit where, %x ¼ c and yðt1Þ4 %y40: By the same argument, Orð %x; %yÞ crosses
the y-axis at ð0; y1Þ; for some y04y1; and therefore y1AI2 and so
y0Aðy1;þNÞCI2: &

Remark 3. It is easy to see that I1 is an interval bounded above by any element of I2:
Therefore, we denote

b :¼ sup I1oþN:

Lemma 6. For every x0Að�c; cÞ\f0g; there exists a unique periodic orbit such that

ðx0; 0Þ belongs to this orbit.

Proof. By symmetry and same analysis as in the proof of Lemma 3. &

Lemma 7. I1 is an open interval.

Proof. We know that I1 is an interval. We need to show that beI1: We proceed by
contradiction and assume that bAI1: Then there exists, a first time, t040; such that

ARTICLE IN PRESS
J. Huentutripay et al.



yðt0Þ ¼ 0: By Lemma 4, we know that xðt0ÞAð0; cÞ: So for any xðt0Þox1oc; and by
the last lemma, ðx1; 0Þ belongs to a periodic orbit Oðx1; 0Þ: This periodic orbit
intersects the y-axis at some yðt1Þ4b; which is impossible since b is the supremum of
I1: &

Proposition 2. There exists one and only one heteroclinic orbit which connects the

points ð�c; 0Þ and ðc; 0Þ in the upper half-plane, and one heteroclinic orbit that connects

ðc; 0Þ and ð�c; 0Þ in the lower half-plane.

Proof. Consider the orbit Oð0; bÞ; b as above, and let us show that

lim
t-þN

xðtÞ ¼ c and lim
t-þN

yðtÞ ¼ 0:

Using the fact that beI1; we obtain, limt-þN xðtÞXc: Suppose limt-þN xðtÞ4c:
Then there exists t0 such that, xðt0Þ ¼ c and yðt0Þ40: Proceeding as in the proof of

Lemma 5, we get bAI2; which is impossible since I2 is open and I1,I2 ¼ ð0;þNÞ:
Thus, limt-N xðtÞ ¼ c: From x0 ¼ y; we obtain

lim
t-þN

yðtÞ ¼ 0:

The orbit in the lower half-plane is obtained by symmetry. &

Remark 4. The heteroclinic orbit in the upper half-plane is the unstable (resp. stable)
trajectory of the point ð�c; 0Þ (resp. ðc; 0Þ).

3.3. Variation of the period

In this section, we will consider a general dynamical system

ðS0Þ
x0 ¼ Fðx; yÞ;
y0 ¼ Gðx; yÞ;

(

where F and G are C1 functions in R2
\fð0; 0Þg; in which region the system has no

equilibrium. We assume that F (resp. G) is odd with respect to y (resp. x) and even
with respect to x (resp. y). As in Lemma 2, these equivariance properties imply that
any orbit of S0 which intersects both x- and y-axis is closed. We assume also that
there exists an open interval ð0; bÞ (b40) of the positive y-axis such that for any

yAð0; bÞ; the positive trajectory of (S0) through ð0; yÞ enters the region Qþ ¼
fðx; yÞAR2: x40; y40g and escapes from Qþ in crossing the positive x-axis in finite
time. Let us denote by TðyÞ the first time such a trajectory intersects the x-axis. The
orbit through ð0; yÞ is periodic and symmetric with respect to the coordinates axis,

therefore, it is 4TðyÞ-periodic. If ðx; yÞAR2
\fð0; 0Þg; we denote by Mðx;yÞðtÞ ¼

ðxðtÞ; yðtÞÞ the maximal solution of (S0) with initial data ðx; yÞ: Since the function T
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is continuous, the set

R ¼
[

0oyob

[
0otoTðyÞ

fMð0;yÞðtÞg;

is a non-empty open subset of Qþ:
The aim of this section, under some hypothesis on F and G; is to prove a general

result on the monotonicity of the period as function of the y coordinates of the initial
data.

Notation 2. For all ðx; yÞAR2
\fð0; 0Þg denote by V the vector ðFðx; yÞ;Gðx; yÞÞ and

for la0; denote by Vl the vector ðFðlx; lyÞ;Gðlx; lyÞÞ:

The main assumption on V is the following:
(H3) The functions F and G are, respectively, positively homogeneous of degree 1

and superpositively homogeneous of degree 1 in R; which is

Fðlx; lyÞ ¼ lFðx; yÞ and Gðlx; lyÞ4lGðx; yÞ ð3:3Þ

for all ðx; yÞAR and all l41 such that ðlx; lyÞAR:
(H4) The function F remains positive in R:

Remark 5. Concerning the assumption on G; we could have equality: Gðlx; lyÞ ¼
lGðx; yÞ on a discrete subset of each orbit.

In order to show that the function T defined above is strictly increasing, let us
consider Oð0; y0Þ an orbit with components MðtÞ ¼ Mð0;y0ÞðtÞ ¼ ðxðtÞ; yðtÞÞ; such
that ðxð0Þ; yð0ÞÞ ¼ ð0; y0ÞAR; l41; such that lO; the homothetic of O with
components ðlxðtÞ; lyðtÞÞ still in R: Notice that lO and O have the same period.
Finally, consider the orbit Ol with components MlðtÞ ¼ ðxlðtÞ; ylðtÞÞAR; l41;

such that, xlð0Þ ¼ 0 and ylð0Þ ¼ ly0Að0; bÞ:

Remark 6. The hypothesis on F and G have the following geometrical interpreta-
tions:
(i) For all ðx; yÞAR; ðlx; lyÞAR the oriented angle ðV ;VlÞ is positive.
(ii) If for some times t0 and t1; lMðt0Þ ¼ Mlðt1Þ then for t40 small, Mlðt1 þ tÞ is

above the straight line OMðt0 þ tÞ for all tAð0; t�:

To see the second point, remark that the two associated vectors lV and Vl have the
same abscissa lFðx; yÞ; and Gðlx; lyÞ4lGðx; yÞ:
We start by the following lemma:

Lemma 8. For l41; the homothetic lO of the orbit O is below the orbit Ol (in RÞ:
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Proof. Let dAð0;Tðy0ÞÞ and let Ol;d denote the orbit through the point lMðdÞ:
Using the last remark (i) there exists e40 such that lO is strictly below the curve Ol;d

for t in the interval �0; E�:
Suppose that there exists a point of intersection between the two curves Ol;d and

lO in the set R and let ðlx1; ly1ÞAOl be the first point of intersection. Thus, at the
point ðlx1; ly1Þ; the oriented angle between V and Vl is negative, which contradicts
Remark 6(i). Therefore, the curve Ol;d is above lO for t4d: Letting d-0 and using

the continuity of the solutions with respect to the initial data in R2
\fð0; 0Þg implies

that the y-coordinate of any points of Ol in R is greater than or equal to the y-
coordinate of the point in lO which has the same x-coordinate. Since equality is
impossible, by Remark 6, the proof follows. &

Now we can show the main result of this section:

Theorem 3. The function y/TðyÞ is increasing.

Proof. By Remark 6(ii) and since lMð0Þ ¼ Mlð0Þ; there exists t040 such that for all
tA�0; t0� the point MlðtÞ is above the straight line OMðtÞ:
Let t40 such that, Mlðt0 þ tÞ; Mðt0Þ and the origin are collinear. Then there

exists l04l such that Mlðt0 þ tÞ ¼ l0Mðt0Þ: By the same argument, there exists
t14t0; such that, for all tA½t0; t1�; Mlðt þ tÞ is above the line OMðtÞ: This proves that
for all t; MlðtÞ is strictly above the straight line OMðtÞ: &

3.4. Proof of Theorem 1

By Proposition 1, we know that all the 2p-periodic (non-constant) solutions of
(1.4) are p=k-anti-periodic for some positive integer k: Therefore (and up to a Uð1Þ
action), the completion of the proof is reduced to proving the uniqueness holds for
positive solutions on the same interval, and that it vanishes at the end points. Let o
and *o be two solutions of (1.4) on ð0; ykÞ such that

oðyÞ40; *oðyÞ40; 8yAð0; ykÞ and oð0Þ ¼ *oð0Þ ¼ oðykÞ ¼ *oðykÞ ¼ 0: ð3:4Þ

If o and *o differ, their derivatives at y ¼ 0 must be different (since the equation is
never degenerate on a trajectory). Therefore, we can assume

0oo0ð0Þo *o0ð0Þ: ð3:5Þ

Moreover, *o0ð0Þob since *o is a periodic solution. If we put

Fðx; yÞ :¼ y

and

Gðx; yÞ :¼ jxjq�1x½b2x2 þ y2�2�p=2 � ap;qb
2x3 � ðap;q þ ðp � 2Þb2Þxy2

ðp � 1Þy2 þ b2x2
;
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then F and G satisfies the regularity and equivariance properties required in (3.3).
Moreover, for any l;

Fðlx; lyÞ ¼ lFðx; yÞ

and

Gðlx; lyÞ ¼ ðlqþ1�p � lÞ jxj
q�1

x½b2x2 þ y2�2�p=2

ðp � 1Þy2 þ b2x2
þ lGðlx; lyÞ:

Thus, assumption (3.3) is satisfied in whole Qþ and the minimal periods of o and *o
cannot be the same. &
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