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Abstract

This article presents a numerical method to solve singularly perturbed turning point problems exhibiting two
exponential boundary layers. Classical finite-difference schemes do not yield parameter uniform convergent
results on a uniform mesh, in general (Robust Computational Techniques for Boundary Layers, Chapman
& Hall, London, CRC Press, Boca Raton, FL, 2000). In order to overcome this difficulty, we propose an
appropriate piecewise uniform (Shishkin) mesh and apply the classical finite-difference schemes on this mesh.
Error estimates are derived by decomposing the solution into smooth and singular components. The present
method is layer resolving as well as parameter uniform convergent. Numerical examples are presented to show
the applicability and efficiency of the method.

Keywords.: Singularly perturbed turning point problems; Boundary layer; Asymptotic approximation; Finite-difference
schemes; Piecewise uniform (Shishkin) mesh

1. Introduction

Singular perturbation problems (SPPs) model convection—diffusion process in applied mathematics
that arise in diverse areas, including linearized Navier—Stokes equation at high Reynolds number,
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heat transport problems with large Peclet numbers, magneto-hydrodynamic duct problems at Hartman
numbers and the drift—diffusion equation of semiconductor device modeling. Boundary and interior
layers are usually present in the solutions of SPPs. These layers are thin regions in the domain
where the gradient of the solution steepens as the singular perturbation parameter ¢ approaches zero.

In general, classical numerical methods may give rise to difficulties for small values of the singular
perturbation parameter ¢. More precisely, finite-difference schemes based on centered or upwind
differences on uniform meshes yield error bounds, in the maximum norm, which depend on an
inverse power of ¢. To resolve these problems, either additional information about the solution may
be used to produce accurate efficient methods, which may involve a priori modification of the mesh
or operator, or an attempt may be made to produce a posteriori adaptive methods. For more details
about the numerical methods, the readers may refer to the books of Miller et al. [8], Roos et al.
[14] and Farrell et al. [5].

In this paper, we treat the following singularly perturbed two-point boundary value problem with
a turning point at x = 0:

Lu(x) = e’ (x) + a(x)u/(x) — b(x)u(x) = f(x), xeD=(—1,1), (1.1)

u(—=1)=4, u(l)=B~8, (1.2)
where ¢ > 0 is a small parameter, a, b and f are sufficiently smooth functions such that
a(0)=0, d(0)<0,

la(x)] = ay>0 for 0 < |x| <1,

b(x) =by >0, VYxeD=[-1,1], (1.3)
/
el > YO e s

With the above assumptions, the turning point problem (TPP) (1.1)—(1.2) possesses a unique solution
exhibiting two boundary layers of exponential type at both end points x = —1,1 [2].

In [6], Jayakumar and Ramanujam proposed a numerical method for a singularly perturbed DE
without turning points. They have used the classical and exponentially fitted difference (EFD)
schemes (see, for example, [3]) to obtain the numerical solution, respectively, in the outer and
inner regions. Recently, Natesan et al. [12] presented a numerical technique to solve SPP without
turning points. Vigo-Aguiar and Natesan [15] introduced a domain decomposition method for a class
of singular perturbation problems and implemented it in a parallel machine.

In general, the numerical treatment of TPP is more difficult than the SPPs without turning points,
because the coefficient of the convection term vanishes inside the domain of interest. Natesan and
Ramanujam suggested a computational method for the TPP (1.1)—(1.2) using classical and EFD
schemes in [10]. All these methods need the knowledge of an asymptotic approximation of the
exact solution to determine the so-called transition boundary condition. Another technique known as
initial-value technique was suggested in [11] for the singularly perturbed TPP (1.1)—(1.2) in which
the numerical solution is obtained by solving suitable initial and terminal value problems. In [9], the
authors analyzed the piecewise uniform meshes for the TPP (1.1)—(1.2).

Miller et al. [8] used the classical schemes on piecewise uniform meshes (known as Shishkin
meshes) to solve singularly perturbed BVPs of convection—diffusion and reaction—diffusion problems
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subject to Dirichlet boundary conditions without turning points. The principal aim of this paper is
to provide layer resolving parameter uniform convergent numerical method for the TPP (1.1)—(1.2).
For this, we suggest an appropriate piecewise-uniform mesh and apply the classical finite-difference
schemes on this mesh. Then ¢-uniform error estimates are derived and some numerical examples are
included to support the theoretical estimates.

Before concluding the introduction section, we present some of the earlier works for singularly
perturbed TPPs. Abrahamsson [1] derived a priori estimates for the solutions of SPPs with a turning
point. The qualitative aspects of these problems, like existence, uniqueness and asymptotic behavior
of the solution was studied by O’Malley [13] and Wasow [16]. A set of general sufficient condi-
tions for a uniformly convergent scheme is obtained by Farrell [4]. Berger et al. [2] modified the
El-Mistikway-Werle scheme for TPPs.

The rest of the paper is organized as follows. Section 2 presents some analytical results giving
bounds for the derivatives of the solution of the TPP (1.1)—(1.2). Uniform convergence on Shishkin
meshes is proved in Section 3. Section 4 provides numerical examples and the paper concludes with
a discussion.

For any given function g(x) € *(D) (k a nonnegative integer), let us denote

k
lglle = max |g”(x)].
=0 xeD

2. The continuous problem

Bounds for the solution of the TPP (1.1)—(1.2) and its derivatives are derived in this section.
Further, we analyze the asymptotic behavior of the solution and obtain bounds for the smooth and
singular components of the analytic solution separately. Hereinafter, we shall denote the subdomains
of D, as D, =[—1,-6], D, =[—6,0] and D3 =[9, 1], where 0 < ¢ < %

In the following, we first prove that the operator L as defined in (1.1) satisfies a minimum
principle. Then we state a stability estimate for the solution of the TPP (1.1)—(1.2).

Lemma 2.1 ((Minimum principle) (Berger et al. [2]). Let y be a smooth function satisfying y(—1)
>0, (1) =0 and Ly(x) <0, VxeD. Then y(x) =0, VxeD.

Proof. The proof is by contradiction. Assume that there exist a point p € D such that y(p)<O0. It fol-
lows from the given boundary values that p & {—1,1}. Define the function w(x)=y(x)exp(ao(1+x)/
2¢) and note that w(p) < 0.

Choose a point ¢ € D and that w(g)=minp w(x) < 0. Therefore, from the definition of ¢,w'(¢)=0
and w”(q) = 0. But then

a a
Ly(g) = exp(—ao(1 +)/28) |aw”(q) + (alq) — aow/(q) = 5+ (alg) + bla) = T ) w(a)| > 0.
which is a contradiction. Thus we obtain y(x) >0, VxeD. O

An immediate consequence of the minimum principle is the following uniform stability estimate.
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Lemma 2.2 (Berger et al. [2]). Consider the TPP (1.1)~(1.2). If u(x) is the solution of this TPP,
then for some positive constant C, we have

1 _
Juto)] < € max{lal, 81} + 1171 veeD
Proof. Let us define the comparison functions
1
4 = [max(lal, 181 + 171 £ 0o

One can obtain the required estimate by applying the minimum principle (Lemma 2.1) to the com-
parison function Y*(x). O

The following theorem gives estimates for u and its derivatives in the interval D; and D; which
exclude the turning point x = 0.

Theorem 2.3 (Berger et al. [2]). If u(x) is the solution of (1.1)~(1.2) and a,b and f € 6/(D), j > 0,
then there exist positive constants n and C depending only on S\(j) such that

ey < { CUHE R 0/, k=100 +1, xeD,
Sl Cl 4 e Fexp(—2n(1 —x)/e)], k=1(1)j+1, xeDs,

where $1(j) = {llall, [[bll;, [ £l a0, (1 = 0),u(=1),u(1),u(=0),u(d),j}, a(x) >0, for x€Dy and
a(x) <0, for x € Ds.

Let us denote = b(0)/a’(0), and B, s be fixed positive constants such that ff; < 1 < f; and
B < Bl < B.. Define $:(7) = {|lall 5] 111 B bos 41, B, /}. Now, we state a theorem from [2]
which bounds the solution of (1.1)—(1.2) and its derivatives in the interval D, which contains the
turning point x = 0.

Theorem 2.4 (Berger et al. [2]). Assume that f < 0. If u(x) is the solution of (1.1)~(1.2) and a,b
and f€€/(D), j > 0, then there exists a positive constant C depending only on S,(j) such that
u®(x)| < C, VxeD,, k=0(1)/.

Remark 2.5. The choice 6 = 1/2 can be found in [2].

2.1. Bounds for the smooth and singular components

Hereinafter, we denote the generic positive constant independent of the mesh size, mesh points
and the perturbation parameter ¢ by C.
We decompose the solution u of (1.1)—(1.2) into smooth and singular components as

u=uvy+ &y + w. (2.1)
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Here, v, satisfies the following reduced problem:

a(x)vg(x) — b(x)vp(x) = f(x), x€D. (2.2)

Now, applying the differential operator L and the boundary conditions as given in (1.1)—(1.2) to the
asymptotic approximation (2.1), we obtain

Lu(x) = Lvg(x) + eLyi(x) + Lwo(x) = f(x), (2.3)
u(=1)=wvo(—=1) +eyi(=1) +wo(—1) =4, (2.4)
u(1) =wo(1) + ey1(1) + wo(1) = B, (2.5)
where y; and wy satisfy the following problems, respectively:
Lyi(x)=—vy(x), x€D, (2.6)
»n(=1)=0, »()=0, (2.7)
Lwo(x)=0, xe€D, (2.8)
wo(—1) =4 —vo(—=1), wo(1) =B —vo(1). (2.9)

Now, we will bound the smooth and singular components and their respective derivatives separately.
In this section, the variable £ appears in the derivatives will take values in 0 < k& < 3, but one can
obtain a similar results for any finite value of k. Eq. (2.2) is independent of ¢, and having smooth
coefficients @, b and f. From these assumptions, one can have

\vgk)(x)] <C, VxeD UD;.

Further, the BVP (2.6)—(2.7) which defines y; is similar to the BVP (1.1)—(1.2), then from Theorem
2.3, we have the following bound:

C[1+ ¢ *ei(x,a0)], Vx€Dy,
7)) <
C[1 + ¢ *ex(x,a0)], Vx€Ds,

where e;(x,ap) = exp(—ao(1 + x)/¢) and ey(x,ag) = exp(—ao(1 — x)/¢).

Following the approach as found in [8], the bounds for the singular component w, and its deriva-
tives are obtained in D;. In a similar fashion, one can prove an analogous result in D;. Let us define
the two functions

PE(x) = [wo(—1)|er(x, ag) £ wo(x).

It can be easily verified that ¥*(—1) > 0, ¥*(—45) > 0, and L¥*(x) < 0. Then from the minimum
principle (Lemma 2.1), we have Y*(x) > 0, and hence

[wo(x)| < Cei(x,ap), Vxe€Dy.
Also wy(x) can be written as wo(x) = wo(—3)Pp(x) + wo(—1)(1 — ¢(x)), where

I exp(—A(2)/e) de ¥
d A(x)= ds.
[, exp(—A(r)/e)dt and - A(x) /1 a(s)ds

P(x) =
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Now wj(x) = [wo(—0) — wo(—1)]¢'(x), and so
‘W(/)()C)| < C‘(]S/(X)| < Cg_lel(x>a0)’ VXGDI.

The second and third derivatives of wy can be estimated immediately by using earlier results in Eq.
(2.8). Thus, we have

\w(()k)(x)| < Cefei(x,a0), VxeD,.

Since, u®) = vf)k) + sygk) + w(()k), the earlier estimates yield,
1087 + ey < C[1 4 e Pey(x,a0)],  VxeDy,
|w6k)\ < Ceei(x,a0), VxeD,.

In particular, this shows that the smooth component vy + ¢y; and its first derivative are bounded
for all values of ¢. However, y; can now be decomposed in the same manner as was u, leading
immediately to y; = v; + év; + w;, where one has

|U§k)(x)| <G, ‘ng)(x” < C[1+ ¢ *ei(x,a0)]l,  Vx €D,
|W§k)(x)| < Ce*ey(x,a9), VxeD.

Combining these two decompositions, we get u = v+ w, where v =1y + ev; + &2v, and w=wy + ew.
Since, u®) = v® 4+ w®  and the above estimates yield

B )| < C[1 + e Pei(x,a0)], VxeDy,
|w(k)(x)\ < Cetei(x,a9), VxeD.

The following theorem provides bounds for the smooth and singular components as given above.

Theorem 2.6. One can decompose the solution u of the TPP (1.1)+(1.2) as
Uu=v-+w,
where, for 0 < k < 3, the smooth component v satisfies
B @) < C[1 + e®Pe(x,a)], VxeD
and the singular component w satisfies
W (x)| < Ce*e(x,a), VxeD,
where e(x,a) = e|(x,a) + ex(x,a).
Proof. Theorem 2.4 guarantees that the solution of the TPP (1.1)-(1.2) and its derivatives are

smooth in the interval D,. Hence, the proof is an immediate consequence of the above estimates on
v®)(x) and wH(x). O

In Farrell et al. [5], it has been proved that the classical finite-difference schemes on uniform
meshes are not globally parameter uniform convergence for singularly perturbed two-point boundary
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value problems. This motivates us to devise the piecewise-uniform mesh for the TPP (1.1)—(1.2).
The details are given in the following section.

3. Difference scheme on a piecewise uniform mesh

In this section, we show that one can obtain e-uniform convergence for the classical scheme, if it
is applied on piecewise uniform meshes, known as Shishkin meshes. Consider the classical upwind
scheme on a piecewise uniform mesh DY, N >4 which is constructed by dividing the domain D
into three subintervals Dy =[ — 1,—1+ 1], De =[— 14+ 1,1 — 1] and Dgr =[1 — 7, 1] such that
D =D, UDcU Dg.

The transition parameter 7 is chosen to be

r:min{i,KglnN}, K > !

> ———— in D. 3.1
min{ag, by} n G.1)

Then DY is obtained by putting a uniform mesh with N/4 mesh elements in both D; and Dy,
and a uniform mesh with N/2 elements in D¢. Let us denote DY = {x;}¥'~'. The resulting fitted
finite-difference scheme for the TPP (1.1)—(1.2) is given below:

LNU(xi) = 852U(xi) + a(x;))D*U(x;) — b(x)U(x:) = f(xi), X GDiva (3.2)
U)=4, U(l)=85, (3.3)
where
Ziy1— 7Z; Zi—7Z;_ 2D Z; — D Z;
prz =t g ATl gy A ),
Xit1 — X Xi — Xi—1 Xit+1 — Xi—1

D+Z[ if a(xi) > 0,
Dz, =
D_Zi if a(x,-) < 0.

In this section, we follow the approach of [8] for the error analysis of the above numerical scheme.
First, we shall prove the following discrete minimum principle and then a uniform stability result,
similar to the continuous one as given in Lemmas 2.1 and 2.2.

Lemma 3.1. Assume that the mesh function Y; satisfies Yo = 0, Yy = 0. Then LNY; <0, for 1 <i <
N — 1 implies that Y; >0, VO <i < N.

Proof. Let us choose £ in such a way that Y; = min; ¥;. If ¥} > 0, then there is nothing to prove.
Suppose that ¥, < 0, then the proof is completed by showing that this leads to a contradiction. From
the boundary values, it is clear that k & {O,N}, Y,y — ¥, >0 and Y; — ¥;—; < 0. Hence,

2 <Yk+l_Yk Yk_Yk1> (Yk+1—Yk

X = Xg—1 \ Xk+1 — Xk X — Xk—1 Xi+1 — Xk

2 <Yk+l_Yk Yk_Yk—l> <Yk_Yk—1
~ T
X — Xg—1 Xk — Xg—1

>_kak>O ifak>0,
VY, =

>—kak>O if a, <0
Xk+1 — Xk X — Xg—1
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with a strict inequality if ¥; — Y, <0 and Y, — Y; > 0. But this contradicts the assumption that
LVY; <0 for 1 <i<N — 1. Hence, Y;,; = Y = Y;_,. Repeating the same argument by replacing
k—1by k—2, and so on, we have Yo=Y, =Y, =--- =Y, = Vi <0, which is the required
contradiction. Hence, it follows that Y, > 0, and we have ¥; >0, VO<i<N. O

Lemma 3.2. If Z; is any mesh function such that Zo = Zy = 0. Then

1
Z| < — max |LVZ, Y0<i<N,
]
a*1<j<N—1

I<j<

where

*

—ay if 0<i<NJ2,
ap if (N2)+1<i<N.

Proof. Let us define

MT = max |LVZ].

1

a*1<j<N—1

Introduce the two mesh functions Y,-jE defined by Y,-jE =MTx; + Z;. Clearly YOjE >0, Yl\j,E >0 and
IVYE =MT(a; — bix;) £ LVZ; <0,

since a; = ap >0, Vx; <0, 1 <i<N/2,and a¢; < —ap <0, Vx; >0, (N2)+ 1 <i<N —1. The

discrete minimum principle (Lemma 3.1) then implies that ¥; > 0, for 0 <i < N. O

With the above continuous and discrete results, we are in a position to provide the e-uniform
convergence result in the following.

Theorem 3.3. Let u and U be, respectively, the solutions of (1.1)~(1.2) and (3.2)—(3.3). Then, for
sufficiently large N, we have the following estimate:

sup ||u — U|| < CN"!(InN)>.

0<e<l

Proof. The solution U of the discrete problem is decomposed in an analogous manner as that of
the continuous solution u. Thus U =V + W, where V is the solution of the inhomogeneous problem
given by

L"V=f V(=1)=v-1), V(1)=v(l)
and W is the solution of the homogeneous problem
INW =0, W(=1)=w(=1), W(l)=w(l).
The error can be written in the form
U—-u=—-v)+ (W—w)

and so the errors in the smooth and singular components of the solution can be estimated separately.
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The estimate of the smooth component is obtained using the following stability and consistency
argument. We consider the local truncation error

2
LN(V—v):(L—LN)v:8<d—52>v+a<d—D*> v.
dx

dx?

Then, by local truncation error estimates, we obtain

I a(x; .

S (xipr — Xi—1)|U(3)‘ =+ ( )(xi-H - xi)|U(2)‘ if a(x;) >0,
LY=oy < { (2 :

I a(x; .

g(xm - Xi—1)|U(3)\ + N (x; — xi—l)|v(2)| if a(x;) <0

and Theorem 2.6 yields,
ILN(V—v)(x;)] < CN 1.
Now, applying Lemma 3.2 to the mesh function (V—v)(x;), we can easily obtain
|(V—v)(x;)| < CN 7. (3.4)

To estimate the local truncation error of the singular component LY(W—w), the argument depends
on whether t=1/4 or t=KelnN.

The mesh is uniform in the first case and also Keln N > 1/4. Therefore, the local truncation error
is bounded in the standard way as done above. More precisely,

& a(x; .
; 2 — x|+ (2)(xi+1—xi)\w<2>! if a(x) > 0,
L™ (W— )| <
LY (W=w)(x)] ()

g(xiﬂ —xi_l)\wm\ + T(x,» — xi_l)]w(z)] if a(x;) <O.
Application of Theorem 2.6 to the above inequalities gives
ILN(W—w)(x;)| < Ce 2N,
But in the present case, ¢! <4KInN and so
ILY (W—w)(x;)] < CN"'(InN )2
Now, applying Lemma 3.2 to the mesh function (W—w)(x;), we then have
|(W—w)(x;)] < CN~'(InN)>. (3.5)

In the second case the mesh is piecewise uniform with the mesh spacing 4t/N in the subintervals
Dy, Dr and 2t/N in the subinterval D¢. A different argument is used to bound |W—w| in each of
these subintervals.

In the subinterval with no boundary layer De=[—141,1—1], both # and w are small, and because
|W—w| < |W|+ |w|, it suffices to bound W and w separately. Actually Dc=[—1+1,0]U[0,1 — 1],
but here, we consider only the subinterval [0, 1 — 7] for our discussion since one can obtain a similar
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estimate in the same way for the subinterval [ — 1 4 7,0]. Note first that in the subinterval [0, 1 — 7]
wo(x) wo(0)
wo(1) wo(1)

Thus wy(0)/wo(1) is positive and increasing in the interval (0, 1). It follows that for all x € [0, 1 — 1]

o < Wo(0) _ wo(1—1)
S wo(D) T we(D)

—[1 — exp(—ap/e)]¢'(x) >0 and

= exp(—dao/e)-

and so
[wo(x)| < |wo(1 —1)|.
The same is true for w; and since w = wy + ewy, it follows that
wx)| < w1l —-1)|, Vxel0,1—r1].
Using the estimate of |w| and the relation = Keln N it follows that
lw(x)| < Ce™ @ =CN~!, Vxe[0,1—1]. (3.6)

To obtain a similar bound on W an auxiliary mesh function ¥ is defined analogous to W except
that the coefficient a(x) in the difference operator LV is replaced by its lower bound ay. Then, from
Lemma 7.5 of [8],

W) < |W(xi)|, YO<i<N.
Furthermore, the same lemma leads immediately to

|W(x) <CN~!', VN/2<i<3N/4 (3.7)
From the estimates obtained in (3.6) and (3.7), we have in the subinterval [0,1 — 7]

|(W—w)(x;)| < CN~', VN/2 <i<3N/4. (3.8)

On the other hand in the subinterval Dy the classical argument once again leads to the following
estimate of the local truncation error for (3N/4)+ 1 <i< N — 1:

ILN(W—w)(x))| < Ce2|xip1 —x_1]| =2Ce 2N 1,

Also, [W(1) —w(1)| =0 and |W(x3na) — w(xsna)| < [W(xsna)| + [wiana)| < CN™! from (3.8).
Introducing the barrier function

O, =(x;— (1 —1)Cie 2N '+ N !
it follows that for a suitable choice of C; and C, the mesh functions
PE =@ £ (W—w)(x;)
satisfy the inequalities ‘FchM =0, ‘Pﬁ =0 and
INPE <0, (BN/4)+1<i<N-—1.
Application of Lemma 3.1 to the function ‘P;JE yields
PE>0, (BNM4)+1<i<N



S. Natesan et al.

and it follows that

|(W=—w)(x;)| < &; < Cre >N~ '+ N
Since t = Keln N, we have

|(W—w)(x;)| < CN~'(InN)?. (3.9)
Combining the estimates as given in (3.8) and (3.9), we obtain

|(W—w)(x;)| < CN"'(InN)*, VN/2 <i<N. (3.10)
A similar estimate as that of (3.10) can be obtained for the subinterval [ — 1,0], that is, for
0 <i < N/2. Since

|U —u| < |V—u|+ |W—w|,
inequalities (3.4) and (3.10) then gives the required result. [

4. Numerical examples

This section presents two numerical examples to show the applicability and efficiency of the
method. The numerical results are given in the form of tables. The maximum nodal errors and order
of convergence are estimated by using the exact solution (when it is available) and the double mesh
principle (in the absence of exact solution). Both of the following examples have a turning point at
x=1/2.

Example 4.1. Consider the following singularly perturbed turning point problem [7]:
eu (x) —2(2x — D (x) — 4u(x) =0, x€(0,1),
w0)=1, u(l)=1.

The exact solution is given by

u(x) — e—2x(l—x)/s.

The exact solution is used to calculate the maximum nodal error, more precisely, we determine the
maximum error as

EY = max |u(x;)) — UN(x;)| and EY =maxEY,
x; €DV &

&

where u denotes the exact solution, and U” stands for the numerical solution obtained by using N
mesh intervals in the domain DY. In addition, the rate of convergence is calculated by

EY
pP= 10g2 EPW .

The estimated maximum pointwise error and the rate of convergence are presented in
Tables 1 and 2.



S. Natesan et al

Table 1
Maximum pointwise errors EY, and ¢ uniform errors £V for Example 4.1
€ Number of mesh points N
16 32 64 128 256 512 1024

1.0e-00 0.0079 0.0038 0.0019 0.0009 0.0005 0.0002 0.0001
1.0e-01 0.1354 0.0785 0.0432 0.0229 0.0118 0.0060 0.0030
1.0e-02 0.1753 0.1156 0.0786 0.0487 0.0293 0.0170 0.0096
1.0e-03 0.1792 0.1176 0.0798 0.0494 0.0298 0.0172 0.0097
1.0e-04 0.1796 0.1177 0.0800 0.0495 0.0298 0.0172 0.0097
1.0e-05 0.1796 0.1178 0.0800 0.0495 0.0298 0.0172 0.0097
1.0e-06 0.1796 0.1178 0.0800 0.0495 0.0298 0.0172 0.0097
1.0e-07 0.1796 0.1178 0.0800 0.0495 0.0298 0.0172 0.0097
1.0e-08 0.1796 0.1178 0.0800 0.0495 0.0298 0.0172 0.0097
1.0e-09 0.1796 0.1178 0.0800 0.0495 0.0298 0.0172 0.0097
EN 0.1796 0.1178 0.0800 0.0495 0.0298 0.0172 0.0097

Table 2

Rate of convergence for Example 4.1

€ Number of mesh points N

16 32 64 128 256 512

1.0e-00 1.0559 1.0000 1.0780 0.8480 1.3219 1.0000

1.0e-01 0.7865 0.8617 0.9157 0.9566 0.9758 1.0000

1.0e-02 0.6007 0.5565 0.6906 0.7330 0.7854 0.8244

1.0e-03 0.6077 0.5594 0.6919 0.7292 0.7929 0.8264

1.0e-04 0.6097 0.5570 0.6926 0.7321 0.7929 0.8264

1.0e-05 0.6084 0.5583 0.6926 0.7321 0.7929 0.8264

1.0e-06 0.6084 0.5583 0.6926 0.7321 0.7929 0.8264

Example 4.2. Consider the nonhomogeneous TPP [10]:
eu (x) —2(2x — D/ (x) — du(x) = 4(4x — 1), x€(0,1),
w0)=1, wu(l)=1.

The exact solution of this problem is not available, in order to calculate the maximum pointwise
error and rate of convergence, we use the double mesh principle. Define the double mesh differences
to be

GY = max |UY(x;) — U™(x;)] and G" =maxGY,
. N &

x €D
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Table 3
Maximum pointwise errors G, and ¢ uniform errors G" for Example 4.2

€ Number of mesh points N
16 32 64 128 256 512 1024
1.0e-00 0.0098 0.0048 0.0023 0.0012 0.0006 0.0003 0.0001
1.0e-01 0.1693 0.1065 0.0609 0.0332 0.0174 0.0089 0.0045
1.0e-02 0.1334 0.1094 0.0832 0.0591 0.0360 0.0221 0.0127
1.0e-03 0.1390 0.1126 0.0848 0.0600 0.0365 0.0224 0.0129
1.0e-04 0.1396 0.1129 0.0849 0.0601 0.0366 0.0225 0.0129
1.0e-05 0.1396 0.1129 0.0850 0.0601 0.0366 0.0225 0.0129
1.0e-06 0.1396 0.1129 0.0850 0.0601 0.0366 0.0225 0.0129
1.0e-07 0.1396 0.1129 0.0850 0.0601 0.0366 0.0225 0.0129
1.0e-08 0.1396 0.1129 0.0850 0.0601 0.0366 0.0225 0.0129
1.0e-09 0.1396 0.1129 0.0850 0.0601 0.0366 0.0225 0.0129
GV 0.1396 0.1129 0.0850 0.0601 0.0366 0.0225 0.0129
Table 4

Rate of convergence for Example 4.2

€ Number of mesh points N
16 32 64 128 256 512

1.0e-00 1.0297 1.0614 0.9386 1.0000 1.0000 1.5850
1.0e-01 0.6687 0.8063 0.8753 0.9321 0.9672 0.9839
1.0e-02 0.2861 0.3950 0.4934 0.7152 0.7040 0.7992
1.0e-03 0.3039 0.4091 0.4991 0.7171 0.7044 0.7961
1.0e-04 0.3063 0.4112 0.4984 0.7155 0.7019 0.8026
1.0e-05 0.3063 0.4095 0.5001 0.7155 0.7019 0.8026
1.0e-06 0.3063 0.4095 0.5001 0.7155 0.7019 0.8026

where U"(x;) and U*V(x;), respectively, denote the numerical solutions obtained using N and 2N
mesh intervals. Further, we calculate the parameter-robust orders of convergence as

GN
q = log, <(;281V) :

The numerical results for the present example are presented in Tables 3 and 4.

5. Discussion

The proposed numerical method uses the classical upwind difference scheme on a piecewise-uniform
mesh (Shishkin mesh). In general, the numerical treatment of TPPs is much more complicate than
singular perturbation problems without turning points. This is mainly because the convection coeffi-
cient a(x) vanishes inside the domain of interest. To preserve the stability of the difference scheme
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we use both the forward and backward difference schemes depending on the sign of a(x). The
present method dose not require any information about the asymptotic approximation, and easy to
implement. Finally, one can notice the efficiency and accuracy of the present method from the max-
imum pointwise error, and the rate of convergence as provided in the previous section, which reflect
the theoretical error estimates derived in this article.
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