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The collective dynamics of a quasi-two-dimensional suspension jet, of non-Brownian particles,
confined in a thin cell and driven by gravitational force is studied both numerically and theoretically.
We present a theoretical scheme aimed to describe such a system in the Stokes regime. We focus on
the dynamics of the interface between the suspension and the pure fluid. Numerical simulations
solving Newton’s equations for all particles show that the jet free surface becomes unstable: the
fastest growing modes at small sizes coarsen up to the largest structures reaching the jet lateral scale.
In the bulk, structural waves develop and travel at slightly slower speed than the jet average fall. An
analytical model, based on hydrodynamic-like equations for the suspension, is derived and predicts
the development of the interfacial instability. It captures in essence the collective effects driving the
interface destabilization, i.e., the long-range hydrodynamic interactions coupled with the abrupt
interface, and no relation to surface tension is found. 
I. INTRODUCTION

Understanding the dynamics of non-Brownian suspen-
sion in the low Reynolds number regime has been a long-
lasting and difficult issue. Long-range hydrodynamics forces
create a complex particle dynamics,1,2 and up to now, no
rigorous closed-form formulation of the problem has existed
at moderate densities. For example, difficulties remain with
regard to explaining particle sedimentation, dispersion, and
mixing in a finite-size container �see Ref. 3 and references
therein�. In particular, a complete description of the collec-
tive, or macroscopic, effects that emerge from the hydrody-
namics interactions is still lacking.

Recently, the miniaturization of hydrodynamics
devices,4,5 which is necessary to develop microfluidic appa-
ratus performing at low Reynolds number, mixing, or sepa-
ration, has brought to the forefront the importance of bound-
ary confinement of suspensions. In fact, numerous devices
have the form of narrow channels or Hele-Shaw cells with
one direction reaching only a few particle sizes.6,7

Note that experimentally quasi-two-dimensional �2D�
Brownian and non-Brownian suspensions have also been
studied in the case in which the cell gap was almost the
particle size.8–10 These systems allow us to study simulta-
neously the microstructure and the individual processes as
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well as the collective phenomena.11 In the case of Brownian
suspensions, it has been observed that their velocity distribu-
tion is non-Gaussian12 and they show anomalous diffusion.10

Also, computer simulations have been used to elucidate the
relation between microstructure and global flows as in
sedimentation.13 Finally, confined geometries are being used
to study the collective dynamics of active suspensions.14,15

The flow confinement in a Hele-Shaw geometry changes
the bulk hydrodynamic interaction between particles and
leads to the existence of antidrag correlations due to fluid
recirculation around each grain. These interactions were ex-
perimentally identified in Ref. 10 and their collective effects
in the spreading of a cluster were studied in Ref. 16.

To get a better description of the mixing process that
takes place in microfluidic apparatus, an important basic is-
sue is to capture the evolution of an interface between a
suspension and a particle-free fluid �the pure fluid�. This
problem is also related to many studies done to understand
miscible interfaces dynamics, either from two different
fluids17 or a fluid in contact with a suspension falling under
gravity.18–20

Here, we describe the evolution of the interface between
a suspension and the free fluid for a jet of suspended par-
ticles in a thin cell—quasi 2D confinement—driven by gravi-
tational forces. The suspension is non Brownian and the hy-
drodynamic forces between particles are obtained in the

Stokes regime. Numerical simulations that solve the Newton
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equations for all particles follow the evolution of the jet free
surfaces. We present an analytical model, based on
hydrodynamic-like equations for the suspension, that is able
to predict the development of the instability and its origin in
the long-range forces. We present and extend a scheme that
was developed recently, in the context of a 2D suspension
cluster falling down16 and also presented briefly in Ref. 21 in
the context of a jet. The relative simplicity of the model,
focusing on the actual effect of long-range hydrodynamic
forces, allows us to discuss the dominant physical features of
the interface dynamics.

II. MODEL

We consider a system of N solid particles that move
through an incompressible Newtonian fluid of viscosity �.
The fluid is confined between two parallel plates separated at
a distance 2d in the z direction, being infinite in the other two
directions. To simplify the computation of the hydrodynamic
interaction forces, and to focus on the effect of their
long-range nature, we consider cylindrical particles of height
L �slightly smaller than 2d� and diameter � that have planar
motion only. Particles are thin, i.e., 2d��, and their mass
is m.

The hydrodynamic forces between the cylinders in the
confined geometry have been computed in Ref. 16 in the
Stokes regime for a dilute suspension. First, the force over
the ith particle has a drag component given by −�m /�1�u� i,
where u� i is the in-plane velocity of particle i and �1

=md /��2� is the relaxation time of a single particle. Also,
the presence of the other particles induces hydrodynamic
forces over each other. When particles are far apart, the force
on i due to the presence of k is

F� ik
F = −

m

8�1
K�R� ik�u�k, �1�

where R� ik=R� i−R� k is the relative distance between particles,

R� i being the position of the center of mass of the ith particle
and the tensor K is given by

K�R� � = ��/R�2�I − 2R� R� /R2� . �2�

This force depends both on the direction of the velocity u�k

and on the relative distance R� ik. When u�k is parallel to R� ik,
the interaction force on i is parallel to u�k �drag�, and if u�k is

perpendicular to R� ik, the force turns out to be in an opposite
direction to u�k �antidrag�.

On the other hand, when particles are close to each other,
lubrication forces appear producing the net force on particle
i due to the presence of k,16

F� ik
N = 2�d�

1
��

1

Rik
2 �Rik

2 I − R� ikR� ik�u� ik

+
3

2
2�d�

d2

�2

1

�

u� ik · R� ik

Rik
2 R� ik, �3�

where �=Rik /�−1 is the gap between the particles and u� ik

=u� i−u�k is the relative velocity between particles. The force

depends on the relative velocities between the pair and it
respects the action-reaction principle. Therefore, it does not
change the total momentum of the pair, but reduces the rela-
tive velocity.

The cutoff for using either expression �1� or �3� is rather
arbitrary. We adopt the convention that when the pair is
closer than Rlubr, the lubrication force �3� is used, when the
distance is larger than Rfar, the far force �1� is used, and in
between a linear interpolation between the two is computed.

The result is the interaction force F� ik
I .

There is also an extra drag force produced by the flow
between the particles and the plates.16 This force is of the
form −�u� i, where � depends on the gap size and on the
particular experimental setup. This term can be added to the
other drag force −mu� i /�1, simply modifying the prefactor. In
order to simplify the analysis, in what follows we will disre-
gard the presence of this term, but in case it is relevant to
some experimental configuration, it can be trivially included,
modifying only quantitatively the results presented here.

In summary, the dynamical equations for the suspended
particles are

m
du� i

dt
= −

m

�1
u� i + �

k

F� ik
I + mg� , �4�

which constitute a complex system of equations that will be
solved numerically.

Although the tensor �2� diverges at close distances, it has
the remarkable property that its integral over the direction of

R� vanishes. This implies that if a particle is surrounded by a
homogeneous distribution of suspended particles, all moving
with equal velocities, the far-field contribution to the hydro-
dynamic force vanishes.

The long-range nature of the forces between particles
makes it computationally expensive to perform direct nu-
merical simulations where all pairs of forces are computed.
However, the expressions �1� and �2� for the far-field contri-
bution to the hydrodynamic forces suggest that a mean-field
approximation can be done. In fact, if particles in a region
move with similar velocities, they exert similar forces to a
target particle; it is natural then to group them altogether and
compute the total force made by the group on any target

particle. We define the coarse-grained current J� on a cell c as

J�c =
1

�S
�
i�c

u� i, �5�

where �S is the area of each cell.
Then, if the system is nearly homogeneous in each cell,

the far-field contribution to the force �1� can be approxi-
mated by

F� i = −
m

8�1
� �SK�R� i − R� c�J�c, �6�
c
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where the sum runs on all cells and R� c is the position of the
center of each cell. This expression allows us to study sys-
tems of many particles at reasonable cost. Note that the van-

ishing integral of K�R� � over the angles implies that �6� can
be applied down to neighboring cells without producing di-
vergences, but the mean-field approximation can be inaccu-
rate for near cells. Local inhomogeneities are not completely
taken into account by the mean field and unrealistic vanish-
ing forces can be obtained. To solve this problem, the mean-
field approximation of the far-field force is applied only to
cells that are separated by a distance larger than Rmf, other-
wise the direct summation on the pair of particles is per-
formed. Finally, the values chosen for performing the simu-
lations are Rlubr=1.3�, Rfar=2.0�, Rmf=5.66�. We have tried
different values for these parameters: changing Rmf only af-
fects the computational speed while preserving the accuracy
as shown in Ref. 16; the effect of changing Rlubr and Rfar is to
modify slightly the near-field dynamics, but the collective
dynamics and the instability described below remain un-
changed. This numerical method was shown to give accurate
results in the study of the spreading of a falling cluster.16

III. SIMULATIONS OF A FALLING JET

The long-range forces �1� vanish when a particle is sur-
rounded by a homogeneous medium, but in the presence of
inhomogeneities the force is finite. The effect of inhomoge-
neities is clearly seen when there is a separation line between
a region with suspended particles and a region without them;
it was shown in Ref. 16 that the force is enhanced if the
separation line is curved, making it possible to produce in-
stabilities. As our description is for the dynamics of the sus-
pended particles, and not for the surrounding fluid, it is sen-
sible to call the separation line between a region with
suspended particles and the pure fluid the free surface.

In order to study the effect of long range-forces on the
free surfaces and, in particular, to determine if they can lead
to unstable motion, we consider a falling jet of particles im-
mersed in a fluid.

A jet of falling particles is studied numerically. Initially,

FIG. 1. Numerical simulation of a suspension jet of N=24000 particles
falling by the action of a gravitational field. The initial size of the jet is
90��600�. From the left to the right: t=200, t=2000, and t=4000. Units
are described in the text.
a jet of N=24000 particles is placed randomly at rest in a
rectangle of width Lx=90� and height Ly =600�. They fall
down due to the action of a gravitational field pointing in the
positive y direction. To produce a continuous flowing jet, the
vertical direction is periodic and the force computation uses
the minimum image convention.22 Alternatively, instead of
the minimum image convention, a sum of all periodic images
would be necessary to mimic an infinite system. Units are
chosen such that the particle diameter �, particle mass m,
and the relaxation time �1 are set to 1. The gravitational force
is mg=1.0 and therefore the limiting velocity for a single
particle V1

	=g�1=1.0 �see Eq. �4��.
Figure 1 shows three successive snapshots of the jet.

They show that the free surfaces become unstable, showing
the appearance of waves. At the beginning the surface waves
are characterized by short wavelengths, but later as the am-
plitude of the perturbations growth, the characteristic wave-
lengths grow also. A coarsening process is developed leading
to larger structures. Once the size of this structure is compa-
rable to the jet width, interactions between the two surfaces
are observed and in-phase surface oscillations are obtained.
Figure 1 shows also that the surface waves are also accom-
panied by modulations of the particle density.

Figure 2 shows the average vertical velocity of the fall-
ing jet as a function of time. It is seen that the jet rapidly gets
an asymptotic velocity that is larger than the one for a single
isolated particle. At much larger times, as the jet develops
large structures and the particles separate, the falling velocity
decreases and approaches V1

	=1.0. The vertical jet velocity
in the initial quasistationary state �when the jet velocity is
almost constant� is homogeneous in the y direction and its
dependence on x is shown in Fig. 3. It is seen that it is almost
homogeneous except for small boundary effects.

To describe in more detail the coarsening process, the
x-averaged density 
�y , t� and the jet width ��y , t� for each
altitude y are studied in their time evolution. They are com-
puted in terms of the instantaneous number particle density

FIG. 2. Instantaneous average of the vertical velocity as a function of time
�continuous line�. The dashed line is the asymptotic theoretical value of the
jet if it does not deform, Vjet

	 =1.165. Inset: evolution for longer times.
n�x ,y , t� as
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�y,t� =� �� n�x,y,t�dx	3

12� n�x,y,t��x − x̄�y,t��2dx

, �7�

��y,t� =�12� n�x,y,t��x − x̄�y,t��2dx

� n�x,y,t�dx

, �8�

expressions that for a rectangular density profile give pre-
cisely the average density and width, respectively. x̄�y , t� is
the instantaneous center of mass for each altitude y. In Fig. 4,
spatiotemporal plots of 
�y , t� and ��y , t� are presented in the
reference frame falling with the same instantaneous velocity
of the jet.

FIG. 3. Solid line: vertical velocity profile as a function of the horizontal
coordinate, averaged over the vertical coordinate and in the time window
40� t�60. Dashed line: average vertical velocity of the jet.
It is seen that besides a global jet widening and the cor-
responding density decrease, there are spatial modulations of
the density and the width. The size of the structures associ-
ated with these modulations grows in time, showing the
coarsening process. An anticorrelation between density and
width is observed: the wider regions are more dilute. Also,
the structures propagate in the negative y direction; as the
plot is presented in the reference frame of the falling jet, it
indicates that the perturbations fall at a slightly smaller ve-
locity than the jet.

IV. GLOBAL MODEL

The behavior observed in the numerical simulations sug-
gests an instability like that observed when two immiscible
fluids in contact move with a relative velocity �Kelvin-
Helmholtz instability�.23

To describe the appearance of the surface instability, we
build a global model, similar to hydrodynamic equations. We

consider the particle number density n�R� � and the particle

mean velocity V� �R� �. The average force density over the sus-
pension, produced by the drag force, the far force contribu-
tion �1�, and the gravity acceleration is

F� �R� � = −
1

�1
J��R� � −

1

8�1
n�R� � � dR� �K�R� − R� ��J��R� ��

+ n�R� �mg� , �9�

where J� =mnV� is the mass current density.
In a Euler-like global model such as the one proposed,

the lubrication force contribution can be neglected because
its effect is to reduce velocity fluctuations, but it does not
modify the mean velocity as it only affects the relative ve-
locity. Eventually, its effect would be to produce an addi-
tional effective viscosity as obtained in kinetic theory.24

FIG. 4. Spatiotemporal diagrams of
the average density 
�y , t� �left� and
the jet width ��y , t� �right� in the ref-
erence frame of the falling jet. Time is
on the vertical axis and increasing up-
ward. The horizontal axis is the y co-
ordinate, with periodic boundary con-
ditions, and the gravitational
acceleration points to the right. The
gray scale is proportional to the value,
with lighter regions representing
smaller values. The minimum and
maximum represented densities are

min=0.041 and 
max=0.707, respec-
tively, and the minimum and maxi-
mum represented widths are �min=50
and �max=346, respectively. The
simulation parameters are the same as
in Fig. 1 and the total simulation time
is t=6152.
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Therefore, the global equations of motion for the suspen-
sion can be written as

�n

�t
+ � · �nV� � = 0, �10�

nm
 �V�

�t
+ V� · �V�� = F� . �11�

Before analyzing the development of the instabilities, let
us consider the evolution of an unperturbed homogeneous
jet. For a thin jet of width Lx and height Ly, with periodic
boundary conditions in y, if the particle current is assumed to

be homogeneous J��R� , t�=Jjet�t�ŷ, the integral term in �9� is
almost independent of x and can be well approximated by
�see Eq. �A2��

� dR� �K�R� − R� ��J�jet = 2�2�arctan�Ly/Lx�

− arctan�Lx/Ly��Jjetŷ , �12�

independent of R� . Therefore, Eqs. �10� and �11� admit a so-
lution of an approximately homogeneous falling jet, with
velocity

Vjet�t� = g�jet�1 − e−t/�jet� , �13�

where the jet relaxation time is

�jet =
�1

1 − n0�2�arctan�Ly/Lx� − arctan�Lx/Ly��/4
�14�

and n0 is the jet number density. The homogeneity of the jet
velocity is verified in the simulation as shown in Fig. 3.

Note that the asymptotic velocity and the relaxation time
are different from the ones of a single falling particle, �1 and
V1

	=g�1, respectively. A peculiar feature is that the modifi-
cation of the falling velocity depends only on the system
shape, but not on its size. A similar phenomenon was ob-
served in the case of a falling circular cluster.16 In fact, this
effect is due to the tensorial behavior shown by the hydro-
dynamic interactions �Eqs. �1� and �2��. For a thin jet �Lx

Ly�, the particles are located such that most of their rela-
tive distances are parallel to the falling velocity. Equation �1�
indicates that particles exert a positive drag, in the direction
of the motion, increasing the falling velocity. On the other
hand, if the jet were wide �Lx�Ly�, most of the relative
distances between particles would be perpendicular to the
falling velocity, and the dominant contribution of the hydro-
dynamic forces would be the antidrag, reducing the jet fall-
ing velocity. In the case of the jet we are considering, the
theoretical values for the falling jet velocity and relaxation
time are Vjet

	 =1.165 and �jet=1.165, which are larger than the
values for a single particle. In Fig. 2 it is seen that the jet
rapidly gets this velocity, and afterward, when it starts de-
forming, the velocity slowly decreases approaching V1

	=1.0.
This long-time value is consistent with Eqs. �13� and �14�
when the jet density decreases. An exponential fit to the
early-time evolution of the velocity of the jet gives the same

relaxation time as predicted.
In the presence of a free surface, an additional equation
must be added to describe the evolution of the free surface
position ��y , t� �see Fig. 5�. The mean suspension velocity at
the surface must be equal to the surface velocity23

� ��

�t
+ Vy�

x=�

� ��

�y
= Vx�

x=�

. �15�

V. LINEAR STABILITY ANALYSIS

The stability of the free surface of the jet is analyzed
using the global equations �10�, �11�, and �15�. To simplify
the problem and assuming that at the beginning the two free
surfaces do not interact strongly, we will consider the simpler
case of a single free surface, limiting a semi-infinite homo-
geneous suspension in the x0 region, of density n0. In this
geometry, the velocity of the unperturbed jet is exactly inde-

pendent of x, taking the value V� 0=g�1ŷ / �1+�0 /4�, where
�0=��2n0 /4 is the area fraction of the suspension �see Eq.
�A3��. Note that in this geometry V0V1

	.
We consider small perturbations of the free surface. In-

troducing a formal parameter ��1, the fields are written as

V� �R� �=V� 0+�V� 1�R� �, n=n0+�n1�R� �, and �=��1�y�. The domain
� over which the integration in �9� must be done is split into
the initial domain �0 :x�0, plus a perturbation domain
�1 :0x���y , t� �see Fig. 5�. Keeping terms up to linear
order in �, the equations read

�n1 + � · �n0V� 1 + n1V� 0� = 0, �16�

FIG. 5. Sketch of the semi-infinity suspension. �o is the unperturbed do-
main, �1 is the perturbation domain, and � is the perturbation in the x
direction.
�t
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�V� 1

�t
+ V� 0 · �V� 1 = −

1

�1
V� 1�R� � −

1

8�1
�

�0

dR� �K�R� − R� ��

��n0V� 1�R� �� + n1�R� ��V� 0�

−
1

8�1
�

−	

	

dy�K�R� − y�ŷ�n0V� 0��y�� ,

�17�

� ��

�t
+ V0y�

x=0
� ��

�y
= V1x�

x=0
. �18�

The deformed surface has a long-range effect of the fluid
motion, as reflected by the last term in Eq. �17�.

This integro-differential system of equations does not
have an evident analytic solution. However, an estimation of
the instability modes can be obtained as follows. A Fourier

expansion of the fields A1�R� , t�= Â1�k� , t�eik�·R� is performed. As
the Fourier basis is not a solution of the system �particularly
because of the integral terms in �17��, we obtain an estima-
tion by evaluating the equations at x=0. Defining dimension-

less variables 
=n1 /n0, U� =V� 1 / �g�1�, �=� / �g�1
2�, q� = �g�1

2�k�,
and s= t /�1, the equations read

�


�s
= − iq� · U� − iq� · U� 0
 , �19�

�U�

�s
= − U� − i�q� · U� 0�U� − Q1�U� + 
U� 0� − Q2U� 0� , �20�

��

�s
= Ux − i�q� · U� 0�� , �21�

with the following defined tensors �see Eq. �A5��:

Q1 =
�0

2

1 0

0 − 1
� +

�qy�
iqx + �qy�


− 1 i

i 1
�� , �22�

Q2 =
�0

2
�qy�
− 1 i

i 1
� . �23�

We recall that the dimensionless jet falling velocity is U� 0

= ŷ / �1+�0 /4�.
The tensors Q1 and Q2 capture the effect of the long-

range forces produced by the perturbations, when they are
integrated in the semi-infinite volume. Q1 describes the inter-
action of the perturbations with the bulk and Q2 the interac-
tion with the free surface. Remarkably, Q2 is proportional to
q and not to q2, therefore the effect of a curved surface
cannot be described in terms of an effective surface tension.
Note also that Q1 is independent of the magnitude of q� and
depends only on its direction. This fact has an important
consequence because in the limit of perturbations of small
wave vectors the effect of the hydrodynamic interactions
does not vanish. In fact, in the limit q→0 the linear system
of equations �21� has a Jordan-block structure and admits a
solution of the form �at first order in �0�

−1

 = 2AU0 �− cos � + i�sin ��� , �24�
Ux = A�0�sin �� , �25�

Uy = − A�0 cos � , �26�

� = A�0�sin ��t , �27�

where A is an arbitrary coefficient given by the initial con-
dition and � is the angle between the wave vector q� and the
x̂ direction. The solution shows a linear, instead of exponen-
tial, increase in time of the surface oscillations.

For larger values of q, the system of equations loses its
Jordan-block structure and solutions in the form exp��s� are
looked for. The eigenvalues � for q�1, �0�1, and 0�
� �sin ��0� are

�1 = − iU0q�1 + �0/4�sin � +
�3

4
�0U0q sin � + O�q2� ,

�28�

�2 = − iU0q�1 + �0/4�sin � −
�3

4
�0U0q sin � + O�q2� ,

�29�

�3 = − 1 −
�0

2
�cos � + i sin �� + O�q� , �30�

�4 = − 1 +
�0

2
�cos � + i sin �� + O�q� , �31�

and similar results for ��2� �sin �0�.
Two of the eigenvalues, �3 and �4, have negative real

parts for small q and therefore correspond to damped motion.
However, the real part of �1 ��2 for ��2�� is positive.
Therefore, an instability is predicted. The analysis shows that
the system becomes unstable for any strength of the gravita-
tional force and, coming back to the original units, the insta-
bility rate is directly proportional to V0k. In the limit k�1,
the real parts of �1 and �2 are proportional to the wave vec-
tor. It is reasonable to expect that a more detailed model,

including terms proportional to gradients of V� or the viscous
effect due to the lubrication forces, will mean that for high
enough wave vectors, the real part of the eigenvalues be-
comes negative again. Hence, it is expected that the system
is unstable for a range of wave vectors going from zero to a
finite value, showing the coarsening process observed in the
simulation.25

The eigenvalues �1 and �2 also have an imaginary part.
The dominant one with respect to q and �0 is �1I=−iqU0�1
+�0 /4�sin �. It corresponds to a wave in the form
exp�iq sin ��y−U0�1+�0 /4�t�+ iq cos �x�, which propa-
gates in the +y direction, with phase velocity U0�1+�0 /4�
=1. That is, the structures propagate at the same velocity as
a single falling particle. This phase velocity is larger than the
jet falling velocity by a factor O��0�. As a consequence, the
unstable structures should move faster than the jet. In the
simulations, we actually find the opposite: the structures
move slower than the jet. This change of character can be

due to the different geometries that are considered, as it also
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happens to the jet falling velocity that in one case is faster
than V1

	, while in the other case was found slower.
The linear stability analysis for a jet with two free sur-

faces as in the simulations is much more involved. One extra
equation must be added and the long-range interactions in
this geometry give more complex expressions, as can be seen
in the case of the falling velocity. Nevertheless, we expect
that the analysis presented here, showing that the surface is
unconditionally unstable and the growth rates are propor-
tional to the wave vectors, is preserved.

We have studied numerically the growth rate for differ-
ent wave vectors in the jet. For each wave vector we have
performed new simulations, with an initial condition similar
to the one described previously for the jet except that the x
coordinates are modulated in such a way as to create two
waves of vectors ky =2�ny /Ly in the surface positions. In
practice, we map the initial x coordinates of the original rect-
angular jet as �0,Lx�→ �−A cos�kyy� ,Lx+A cos�kyy��. In each
simulation, we compute the evolution of the Fourier
amplitudes �n=N−1��i�xi−Lx /2�2e2�inyi/Ly�=N−1��
�x ,y��x
−Lx /2�2e2�iny/Ly� with the same wave number as the initial
perturbation. These Fourier amplitudes measure, at linear or-
der, the amplitude of ��ky�. Figure 6 shows the results of the
Fourier amplitudes for the simulations done with ny

=1,2 ,3 ,4. For ny =1, a linear increase of � is observed
while for ny �2, an exponential increase of the �’s are ob-
tained, until nonlinear interaction between modes appears.
The growth rates are ��ny =2�=1.21�10−3, ��ny =3�=1.82
�10−3, and ��ny =4�=2.19�10−3, which are roughly in the
ratio 2:3:4, confirming the linear proportionality with k.
However, no direct comparison with the prediction can be
made because only ky was fixed but not kx, therefore the
angle � takes all possible values. Larger values of ny give
very noisy results.

VI. CONCLUSIONS

In conclusion, we investigated the dynamical evolution,
in the Stokes regime, of a jet of falling particles confined in
a Hele-Shaw cell. The free surfaces of the jet are shown to
become unstable and a coarsening process takes place from

FIG. 6. Evolution of the Fourier amplitudes �n computed with the same
wave number n as the perturbation made on the surface. n=1, continuous
line; n=2, dotted line; n=3, dashed line; and n=4, dash-dotted line.
the smallest sizes up to the largest structures.
A continuous Euler-like hydrodynamic model for the
suspension is presented that describes the main features of
the jet flow. In particular, the model predicts a geometry-
dependent falling velocity for the jet �thin jets fall faster than
thick jets�.

The theoretical analysis shows that the free surface is
unstable to any gravitational force and any wave vector. The
growth rates are proportional to the wave vectors, a result
that is consistent with the coarsening process observed in the
simulations. Finally, the model predicts that the structures
move with a velocity slightly different from the jet’s velocity,
as observed in the simulations but with a different sign pre-
diction. In this problem, we find that the interface dynamics
is quite different from the usual immiscible fluid case in
which the surface tension plays a leading role such as to
select and stabilize structures. For the present jet, the particle
hydrodynamic interactions create a surface instability essen-
tially due to long-range effects caused by flow recirculation
around a particle. A crucial point is that this effect is scale-
free. We observe at the end of the simulations a partial mix-
ing due to flow structuration as well as hydrodynamic dis-
persion causing a diffuse interface.

Finally, we pose a question on the relation between this
model and the dynamics of actual non-Brownian suspensions
in a confined cell. Although we have here a situation that is a
bit artificial as the problem is solved in the case of particle
sizes �diameter� larger than the cell gap, we believe that all
the features dealing with scales larger than the gap �essen-
tially the long-range interactions� will survive at the qualita-
tive level.
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APPENDIX: KERNEL INTEGRALS

Some integrals of the kernel K�R� � �2� used in the manu-
script are as follows:

�a� Homogeneous integral for the jet,

I1 = �
−Lx

Lx

dx��
−Ly

Ly

dy�K�R� − R�� �

= 2�2�arctan
 Ly

Lx − x
� − arctan
Lx + x

Ly
�	
1 0

0 − 1
� ,

�A1�

where R� =xx̂+yŷ is any vector in the interior of the integra-
tion domain and we have used periodic boundary conditions
in y, with the minimum image convention, consistently with
the simulations. When Ly �Lx, the integral depends slightly

on x and its horizontal average is in that limit
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I1 � 2�2�arctan�Ly/Lx� − arctan�Lx/Ly��
1 0

0 − 1
�

+ O��Lx/Ly�3� . �A2�

�b� Homogeneous integral for the semi-infinite system,

I2 = �
−	

0

dx��
−	

	

dy�K�R� − R� �� = −
��2

2

1 0

0 − 1
� , �A3�

with R� =xx̂+yŷ any vector with x0 and we have used pe-
riodic boundary conditions in y.

�c� Fourier transform for the semi-infinite system,

I3 = �
−	

0

dx��
−	

	

dy�K�R� − R� ��eik�·R��

= ��2�
1 0

0 − 1
� +

�ky�
ikx + �ky�


− 1 i

i 1
�	 , �A4�

with R� =xx̂+yŷ any vector with x0 and we have used pe-
riodic boundary conditions in y.

�d� Fourier transform for the interface line,

I4 = �
−	

	

dyK�xx̂ + yŷ�eiky

= ��2��x�
1 0

0 − 1
� + �k�e−�kx�
− 1 i

i 1
�� . �A5�

The Dirac delta appears when K is evaluated up to the origin,
which physically cannot happen because the interaction is
replaced by the lubrications forces. Therefore, this term will
be eliminated in the evaluation of the kernel integrals.

1J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, with
Special Applications to Particulate Media �Prentice-Hall, London, 1965�.

2J. F. Brady and G. Bossis, “Stokesian dynamics,” Annu. Rev. Fluid Mech.
20, 111 �1988�.

3A. J. C. Ladd, “Effect of container walls on the velocity fluctuations of
sedimenting spheres,” Phys. Rev. Lett. 88, 048301 �2002�.

4S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected
Applications, Series in Chemical Engineering �Butterworth-Heinemann,
Stoneham, 1991�.

5
H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small
devices: Microfluidics towards a lab-on-chip,” Annu. Rev. Fluid Mech.
20, 111 �2004�.

6B. H. Weigl and P. Yager, “Microfluidic diffusion-based separation and
detection,” Science 283, 346 �1999�.

7G. M. Whitesides and A. D. Stroock, “Flexible methods for microfluid-
ics,” Phys. Today 54�6�, 42 �2001�.

8F. Rouyer, J. Martin, and D. Salin, “Structure, density, and velocity fluc-
tuations in quasi-two-dimensional non-Brownian suspensions of spheres,”
Phys. Rev. Lett. 83, 1058 �1999�.

9J. Santana-Solano and J. Arauz-Lara, “Hydrodynamic interactions in
quasi-two-dimensional colloidal suspensions,” Phys. Rev. Lett. 87,
038302 �2001�.

10B. Cui, “Anomalous hydrodynamic interaction in a quasi-two-dimensional
suspension,” Phys. Rev. Lett. 92, 258301 �2004�.

11A. H. Marcus, J. Schofield, and S. A. Rice, “Experimental observations of
non-Gaussian behavior and stringlike cooperative dynamics in concen-
trated quasi-two-dimensional colloidal liquids,” Phys. Rev. E 60, 5725
�1999�.

12F. Rouyer, J. Martin, and D. Salin, “Non-Gaussian dynamics in quasi-two-
dimensional noncolloidal suspensions,” Phys. Rev. Lett. 83, 1058 �1999�.

13E. Kuusela, J. M. Lahtinen, and T. Ala-Nissila, “Sedimentation dynamics
of spherical particles in confined geometries,” Phys. Rev. E 69, 066310
�2004�.

14X.-L. Wu and A. Libchaber, “Particle diffusion in a quasi-two-
dimensional bacterial bath,” Phys. Rev. Lett. 84, 3017 �2000�.

15J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, “Transport and
collective dynamics in suspensions of confined swimming particles,”
Phys. Rev. Lett. 95, 204501 �2005�.

16A. Alvarez and R. Soto, “Dynamics of a suspension confined in a thin
cell,” Phys. Fluids 17, 093103 �2005�.

17P. Petitjeans, C. Y. Chen, E. Meiburg, and T. Maxworthy, “Miscible quar-
ter five-spot displacements in a Hele-Shaw cell and the role of flow-
induced dispersion,” Phys. Fluids 11, 1705 �1999�.

18J. M. Nitsche and G. K. Batchelor, “Break-up of a falling drop containing
dispersed particles,” J. Fluid Mech. 340, 161 �1997�.

19G. Machu, W. Meile, L. C. Nitsche, and U. Schaflinger, “Coalescence,
torus formation and breakup of sedimenting drops: Experiments and com-
puter simulations,” J. Fluid Mech. 447, 299 �2001�.

20M. Nicolas, “Experimental study of gravity-driven dense suspension jets,”
Phys. Fluids 14, 3570 �2002�.

21A. Alvarez, R. Soto, and E. Clement, “Free surface instability in a con-
fined suspension jet,” Physica A 356, 196 �2005�.

22M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids �Oxford
Science, New York, 1990�.

23S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Interna-
tional Series of Monographs on Physics �Dover, Oxford, 1981�.

24S. Chapman and T. G. Cowling, The Mathematical Theory of Non-
Uniform Gases, 3rd ed. �Cambridge University Press, New York, 1970�.

25P. Politi and C. Misbah, “When does coarsening occur in the dynamics of

one-dimensional fronts?” Phys. Rev. Lett. 92, 090601 �2004�.


