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Abstract

Magnetic nano-entities in their own or as parts of artificial structures have recently been the subject of a large research effort. In order

to understand their dynamic behavior, in particular their microwave response as well their spin-wave modes are of great interest. The

latter subject is fairly understood in the bulk and for ferromagnetic thin films, but is under development for nano-structures. One aspect

of interest is the influence of roughness on the spin-wave modes of these nano-entities. In this work this is studied in the magnetostatic

approximation for nano-wires of elliptical cross section that have rough surfaces. The method is based on a perturbation treatment of

extinction equations. The conclusion is that to first order surface roughness may well account for experimental frequency shifts of spin

modes of nano-wires.
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1. Introduction

Recently, a large research effort has been underway on
the magnetic properties of structured magnetic materials,
whose components have some dimensions on the nano-
scale. An issue associated with nano-structures, in which
we have been involved, is the description of the magnetic
response to microwave fields of several types of nano-
components like nano-wires [1] and nano-spheres [2], and
collections of them [3,4]. The linear response of such
entities is controlled by their spin-wave collective spectrum,
which was analyzed in detail in those References. The
description of the microwave response of bulk ferro-
magnets, as well as thin and ultra-thin ferromagnetic films
is well developed, while the analogous description in nano-
particles is under development: a few other representative
references are [5–10].

The present study focuses on one aspect of interest of
these nano-wires: the influence of their surface roughness
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on their spin-wave collective spectrum. As remarked in
Ref. [11], the influence of roughness on the micro-magnetic
properties of ferromagnetic particles has not been well
studied. To some varying degree, roughness will always be
present in these nano-structures, and one can envision an
important influence of roughness in some aspects of their
magnetic properties.
In this work, we determine analytical corrections to the

spin-wave collective spectrum of nano-wires with surface
roughness, within the magnetostatic approximation. The
technique used corresponds to a perturbation analysis of a
method based on the extinction equations theorem [12,13].
The latter is an effective method for determining the
eigenfrequencies and corresponding eigenvectors of spin
waves of nano-wires of arbitrary cross-sections (the nano-
wires are magnetized along their long axis with an applied
DC magnetic field H0).
The starting unperturbed cross section of the ferromag-

netic cylinder was chosen as elliptic since the magnetostatic
surface modes of these ferromagnetic cylinders do have
well separated frequencies in the long wavelength limit
along the long axis (k ¼ 0): they lie in the range O 2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þ 4pMsÞ

p
; ðH0 þ 2pMsÞg (g is the absolute value

of the gyromagnetic factor, Ms the saturation magnetiza-
tion). The nondegeneracy of the frequencies, simplifies the
analytic perturbation treatment, as is familiar from time
independent perturbation theory in Quantum Mechanics.

Explicit results, in terms of eigen-frequencies and eigen-
vectors, are obtained for surfaces whose roughness is
described by a single Fourier component: to first order only
selected modes will change their frequencies and shape.
Note that the effect of a more general surface roughness
can be described as a simple superposition of the results
obtained for a single Fourier mode.
2. The formalism

In this paper we confine our attention to nano-wires of
perturbed elliptical cross sections. Within the magneto-
static approximation, we look for spin-wave modes of
frequency O with infinite wavelength along the z direction
(k ¼ 0), i.e. Mðx; tÞ ¼Msẑþ Re½ðmxðrÞx̂þmyðrÞŷÞe

�iOt�,
with r � ðx; yÞ. Then the time-dependent dipolar field
generated by the spin motions is given by h ¼ �=jM, with
jMðrÞ the magnetostatic potential. The components
of transverse magnetization are 4pm ¼ ðm1ðOÞ � 1Þh�
im2ðOÞẑ� h, which result from the linear limit of
the Landau–Lifshitz equations (m1ðOÞ � 1þ OHOM=
ðO2

H � O2Þ, m2ðOÞ � �OOM=ðO2
H � O2Þ, OH � gH0, and

OM � 4pgMs). We derived a set of integral equations in
the form of contour integrals around the periphery of the
wire [13]. A homogeneous version of this set of equations
allows to determine in this periphery the magnetic potential
jMðrÞ, the only component (z) of the vector potential AðrÞ,
as well as the frequencies O of the modes (the magnetic
induction follows from the vector potential, i.e. B ¼

r� ðAẑÞ). The homogeneous equations are

0 ¼

I
C

dl½H0
t ðr; r

0ÞAðrÞ � B0
nðr; r

0ÞjMðrÞ�, ð1Þ

0 ¼

I
C

dl½HI
t ðr; r

0ÞAðrÞ � BI
nðr; r

0ÞjMðrÞ�, ð2Þ

where C is the boundary curve, r0 represents an arbitrary
point inside the sample for the first equation, and one
outside the sample for the second, and H0;I

t ðr; r
0Þ and

B0;I
n ðr; r

0Þ are Green’s functions terms [13]. A sensible
method of solution of the latter system of equations
requires a good choice of the r0. Once this homogeneous set
of equations is solved on C, the inhomogeneous equations
allow to calculate the magnetostatic potential of the
modes everywhere [13] (these equations take a particularly
simple form in terms of complex variables (z ¼ xþ iy,
z̄ ¼ x� iy)).

2.1. Rough elliptical cross section

Since the goal is to solve for the frequencies and shape of
long wavelength modes of wires with cross sections close to
elliptical, we performed a conformal transformation to
elliptical coordinates [13], z ¼ xþ iy ¼ ðc=2Þ coshðxþ iyÞ.
Contours of constant x ¼ x0 are ellipses centered at the
origin, with semi major axis a ¼ ðc=2Þ cosh x0 (along the x

axis) and semi minor axis b ¼ ðc=2Þ sinh x0 (along y).
Starting from Eqs. (1) and (2) written in complex variables,
and after some steps that use appropriately the freedom of
choice of the r [13], one obtains the following set of
extinction equations in elliptical coordinates:

0 ¼

Z 2p

0

dy exp½�mðxðyÞ � iyÞ�½BðyÞ �HðyÞ�, (3)

0 ¼

Z 2p

0

dy cosh½mðxðyÞ � iyÞ�fðh� oÞBðyÞ

� ðhþ 1� oÞHðyÞg ð4Þ

with m a positive integer, BðyÞ ¼ idAðyÞ=dy and HðyÞ ¼
djMðyÞ=dy, xðyÞ describes the curve C, and dimensionless
measures of frequency and applied magnetic field
o ¼ gO=4pMs, and h ¼ H0=4pMs were introduced.
Since Eqs. (3), (4) involve angular integrations over

unknowns and functions that depend on the angle variable
y, we introduce angular Fourier representations for
them. We define f �jmjðyÞ � exp½�jmjxðyÞ� and expand it, as
well as BðyÞ and HðyÞ, in terms of Fourier series, i.e.
BðyÞ ¼

P
lBl expðilyÞ, etc. Then, the extinction equations

(3), (4) become equations on the unknown Fourier
coefficients, i.e. the B0ls and H 0ls.
Furthermore, defining X 2jlj�1 � H�jlj, X 2jlj � H jlj,

Y 2jlj�1 � B�jlj and Y 2jlj � Bjlj, with l40, the pair of
extinction equations (3) and the pair (4) are written as
matrix equations, respectively:

0 ¼ PY �QX , ð5Þ

0 ¼ ðhV � oDÞY þ ððhþ 1ÞD� oV ÞX , ð6Þ

with P, Q, V and D, matrices that depend on the shape of
the boundary (on the f �jmjðjÞ

0s), and where the dependence
on frequency o and applied field h has been shown
explicitly. Inverting Eq. (5) and replacing it into Eq. (6),
one obtains the following eigenvalue problem for the
eigenfrequencies and eigenvectors of the modes:

0 ¼ ðM � oSÞY . (7)
3. The perturbation scheme

The idea is to solve perturbatively Eq. (7) for the
frequencies and eigenvectors of the modes.

Order zero: The zeroth order problem corresponds to an
unperturbed elliptic cross section, for which the eigenvalue
problem of Eq. (7) becomes

0 ¼ ðMð0Þ � oð0ÞSð0ÞÞY ð0Þ. (8)

The matrix M ð0Þ � oð0ÞSð0Þ is block diagonal, with blocks of
2� 2. The nth block easily renders the frequencies of the
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perfect elliptical cross section

oð0;nÞ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ 1=2Þ2 � e�4jnjx0=4

q
. (9)

Likewise, the eigenvectors Y
ð0;nÞ
� corresponding to the

frequencies oð0;nÞ� have only two nonzero components:

ðYþ2jnj�1;Y
þ
2jnjÞ ¼ ðpn; qnÞ, and ðY

�
2jnj�1;Y

�
2jnjÞ ¼ ðqn; pnÞ, with

pn � e�jnjx0 and qn � 2ðhþ 1=2þ oð0;nÞþ Þe
jnjx0 .

Order one: The mode to be perturbed to first order is the
nth mode Y

ð0;nÞ
� with positive frequency oð0;nÞþ , its correction

to first order is called Y ð1Þ. Thus, to first order Eq. (7)
implies:

0 ¼ ðM ð0Þ � oð0;nÞþ Sð0ÞÞY ð1Þ

þ ðMð1Þ � oð0;nÞþ Sð1ÞÞY
ð0;nÞ
þ � oð1ÞSð0ÞY ð0;nÞþ . ð10Þ

Y ð1Þ is expanded in terms of the set of the zeroth order

eigenmodes Y
ð0;jÞ
� , i.e. Y ð1Þ ¼

PL
�;j¼1a

�
j Y
ð0;jÞ
� . The members

of this basis set are mutually orthogonal through the

matrix Sð0Þ, i.e. ðY
ð0;jÞ
� Þ

T
� Sð0Þ � Y

ð0;lÞ
� � U

jl
�� ¼ 0 if j; l are

different, and the � signs differ. Multiplying Eq. (10) by
ðY
ð0;nÞ
þ Þ

T on the left, one obtains the first order correction to
the frequency of order n

oð1Þn ¼
V nn
þþ

Unn
þþ

, (11)

with Vnn
þþ an appropriate matrix element. Similarly, multi-

plying Eq. (10) by ðY
ð0;lÞ
� Þ

T on the left, with lan,
expressions for the coefficients aþl are obtained, i.e. Y ð1Þ

is determined.
Application to a single mode roughness: The results of

the previous perturbation scheme, are applied now to
the simplest type of roughness, i.e. one described in
terms of a single Fourier spatial mode. Thus, we assume
that the perturbed elliptical cross section is given by
xðyÞ ¼ x0 þ xje

ijy þ x�je
�ijy, with j a given integer. Using

Eq. (11), corrections to the frequency to first order are

oð1Þn ¼
np2

n

2oð0;nÞþ
½Dx0p2

ndj0 � ReðxjÞdjð2nÞ�, (12)

with Dx0 the change of x0 (j ¼ 0). Except for the special
case j ¼ 0 (which amounts to an elliptical cross section of
different semi-axis), it is clear that the frequency of the nth
mode is perturbed by a single Fourier mode of order j such
that j ¼ 2n.
One can also obtain explicit expressions for the expan-

sion coefficients a�l of the first order correction of the
eigenvectors (Y ð1Þ): to first order, the nth mode only
acquires a correction of an lth Fourier mode type, if
l ¼ j � n, or l ¼ n� j, with j the Fourier index of the
perturbation of the surface.
One can then run some numerical estimates of these first

order changes of frequencies for a reasonable surface
roughness: for parameters corresponding approximately to
the experiments of Ref. [14] one gets frequency shifts of the
order of 0.1GHz, over frequencies which are of the order
of 10GHz, thus showing the order of magnitude to be
expected from the effect of roughness on the frequency
spectrum.

Acknowledgements

This work was supported by FONDECYT (Chile),
Grant no. 1040788.

References

[1] R. Arias, D.L. Mills, Phys. Rev. B 63 (2001) 134439.

[2] R. Arias, P. Chu, D.L. Mills, Phys. Rev. B 71 (2005) 224410.

[3] R. Arias, D.L. Mills, Phys. Rev. B 67 (2003) 094423.

[4] R. Arias, D.L. Mills, Phys. Rev. B 70 (2004) 104425.

[5] C. Mathieu, J. Jorzick, A. Frank, S.O. Demokritov, A.N. Slavin,

B. Hillebrands, B. Bartenlian, C. Chappert, D. Decamini,

F. Rousseaux, E. Cambril, Phys. Rev. Lett. 81 (1998) 3968.

[6] S.O. Demokritov, B. Hillebrands, A.N. Slavin, Phys. Rep. 348 (2001)

441.

[7] J. Jorzick, S.O. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon,

K.Y. Guslienko, A.N. Slavin, D.V. Berkov, N.L. Gorn, Phys. Rev.

Lett. 88 (2002) 047204.

[8] K.Y. Guslienko, R.W. Chantrell, A.N. Slavin, Phys. Rev. B 68 (2003)

024422.

[9] M. Grimsditch, G.K. Leaf, H.G. Kaper, D. Karpeev, R.E. Camley,

Phys. Rev. B 69 (2004) 174428.

[10] M.P. Kostylev, A.A. Stashkevich, N.A. Sergeeva, Phys. Rev. B 69

(2004) 064408.

[11] A. Aharoni, Physica B 301 (2001) 1.

[12] R. Arias, D.L. Mills, Phys. Rev. B 70 (2004) 094414.

[13] R. Arias, D.L. Mills, Phys. Rev. B 72 (2005) 104418.

[14] K.Y. Guslienko, S.O. Demokritov, B. Hillebrands, A.N. Slavin,

Phys. Rev. B 66 (2002) 132402.


	Influence of roughness on the magnetostatic modes of �ferromagnetic nano-wires
	Introduction
	The formalism
	Rough elliptical cross section

	The perturbation scheme
	Acknowledgements
	References


