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In this article we study the asymptotic behaviour of the eigenvalues of a family
of nonlinear monotone elliptic operators of the form Aε = − div(aε(x, ∇u)),
which are sub-differentials of even, positively homogeneous convex functionals,
under the assumption that the operators G-converge to an operator Ahom =
− div(ahom(x, ∇u)). We show that any limit point λ of a sequence of eigenvalues λε

is an eigenvalue of the limit operator Ahom, where λε is an eigenvalue corresponding
to the operator Aε. We also show the convergence of the sequence of first eigenvalues
λ1

ε to the corresponding first eigenvalue of the homogenized operator.

1. Introduction

Nonlinear monotone elliptic operators like the p-Laplacian operator,

− div(|∇u|p−2∇u),

are important in describing problems of nonlinear elasticity, reaction–diffusion, non-
Newtonian fluid mechanics, geophysics, etc., which, very often, need to be studied
over media having a highly non-homogeneous character. In practice, these problems
can be analysed numerically only by using the methods of the theory of homoge-
nization. In brief, the method consists of associating a limit problem, asymptotically
by letting the parameter which models the scale of material homogeneities tend to
zero. The solution of the homogenized limit problem serves as an approximation
to the solution of the the original physical problem. For an introduction and appli-
cations of this theory to a variety of physical problems, we refer the reader to the
texts [2, 9].

In this article, we study the eigenvalues of nonlinear monotone elliptic operators
in heterogeneous media by using the theory of homogenization. As is well known, a
knowledge of these eigenvalues can be useful in solving questions on bifurcation and
stability (see [17]). In view of the general philosophy that numerical calculations
are difficult to perform on models of heterogeneous media, the best way to obtain
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some knowledge of these eigenvalues is by using the eigenvalues of the homogenized
nonlinear operator as approximations.

There is a vast literature treating the question of homogenization of nonlinear
stationary elliptic equations: for variational problems involving a single equation or
systems in varying domains or non-varying domains, etc., and also for fully non-
linear equations in the set-up of viscosity solutions. Similarly, nonlinear eigenvalue
problems have been extensively studied since the 1950s because of their many appli-
cations. It is beyond the scope of this article to provide extensive references on any
of these topics, but we direct the reader to some relevant ones, by Pankov [14]
and Chiado Piat et al . [4] for the homogenization of nonlinear monotone elliptic
operators, and Browder [3], Rabinowitz [15], Coffman [5] and Lindqvist [12] for
nonlinear eigenvalue problems. Surprisingly, there seems to be very little literature
available on the homogenization of nonlinear eigenvalue problems (see [8]) in spite
of its apparent importance, although the homogenization of eigenvalue problems
for linear operators has been extensively studied, starting with Kesavan [10,11].

Let us now initiate the study of the problem.
Let Ω ⊂ R

m be a bounded domain having a Lipschitz boundary. Let c, α, β and
p be positive constants satisfying 0 < α < β and 1 < p < ∞. Let q be such that

1
p

+
1
q

= 1.

We consider nonlinear monotone operators A : W 1,p
0 (Ω) → W−1,q(Ω) of the form

− div(a(x,∇u)) whose coefficients a : Ω×R
m → R

m belong to the class of functions
satisfying the following hypotheses.

(H0) a(·, ·) is of Carathéodory type. Namely, a(x, ·) is a continuous function for
almost every x in Ω and a(·, ξ) is a measurable function for every ξ in R

m.

(H1) (monotonicity) 0 � (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) ∀ξ1, ξ2 ∈ R
m, almost every-

where (a.e.) x ∈ Ω.

(H2) (uniform ellipticity) α|ξ|p � a(x, ξ) · ξ ∀ξ ∈ R
m, a.e. x ∈ Ω.

(H3) (growth) |a(x, ξ)| � β|ξ|p−1 ∀ξ ∈ R
m, a.e. x ∈ Ω.

Let us define Φ(x, ξ1, ξ2) := a(x, ξ1) · ξ1 + a(x, ξ2) · ξ2 for all ξ1, ξ2 in R
m and for all

x in Ω. Let δ = min(1
2p, (p − 1)).

(H4) (equi-continuity)

|a(x, ξ1) − a(x, ξ2)| � cΦ(x, ξ1, ξ2)(p−1−δ)/p(a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2)δ/p

for all ξ1, ξ2 ∈ R
m, a.e. x ∈ Ω.

(H5) (positive homogeneity) a(x, tξ) = tp−1a(x, ξ) ∀ξ ∈ R
m, ∀t > 0, a.e. x ∈ Ω.

(H6) (oddness) a(x,−ξ) = −a(x, ξ) ∀ξ ∈ R
m, a.e. x ∈ Ω.

(H7) (cyclical monotonicity) The function a is said to be cyclically monotone if
n∑

i=1

〈a(x, ξi), ξi+1 − ξi〉 � 0

∀ξ1, . . . , ξn+1 ∈ R
m, ξn+1 = ξ1, ∀n ∈ N, a.e. x ∈ Ω.
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(H8) (strong monotonicity) Let γ = max(p, 2) and let Φ be as above. We say that
a is strongly monotone if it satisfies

α|ξ1 − ξ2|γΦ(x, ξ1, ξ2)1−(γ/p) � 〈a(x, ξ1) − a(x, ξ2), ξ1 − ξ2〉

∀ξ1, ξ2 ∈ R
m, a.e. x ∈ Ω.

Example 1.1. The prototype for such functions is a(x, ξ) := |A(x)ξ·ξ|(p−2)/2A(x)ξ,
where A(·) is a measurable function with values in the set of m × m symmetric
matrices which satisfies

α′|ξ|2 � A(x)ξ · ξ, |A(x)ξ| � β′|ξ| ∀ξ ∈ R
m, a.e. x ∈ Ω (1.1)

for some positive constants α′ and β′. It can then be checked that the function a
verifies all the above hypotheses for some positive constants α and β which depend
on α′ and β′.

For a satisfying the above hypotheses, we consider the eigenvalue problem

− div(a(x,∇u)) = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

}
(1.2)

A real number λ such that the equation (1.2) admits a non-trivial solution u is
called an eigenvalue of the nonlinear, positively homogeneous monotone operator
− div(a(x,∇u)) and u is called a corresponding eigenfunction. In this case, by taking
u as a test function in the eigenvalue problem, we note that

λ =

∫
Ω

a(x,∇u) · ∇u dx∫
Ω

|u|p dx
. (1.3)

Thus, any eigenvalue of the problem is non-negative, owing to the monotonicity of
the function a. The infimum of these quotients will be called the first eigenvalue λ1

for the problem (1.2):

λ1 = inf
u∈W 1,p

0 (Ω),
u �=0

∫
Ω

a(x,∇u) · ∇u dx∫
Ω

|u|p dx
. (1.4)

This terminology is justified later, in § 3. In the case of the p-Laplacian, the first
eigenvalue is thus the reciprocal of the best constant C(p) in the Poincaré inequality

∫

Ω

|u|p dx � C(p)
∫

Ω

|∇u|p dx ∀u ∈ W 1,p
0 (Ω),

and this underlines the importance of studying the first eigenvalue problem in
general.

Let ε > 0 be a small parameter which represents the scale of heterogeneity.
We consider a family of functions aε satisfying hypotheses (H0)–(H8). For exam-
ple, we could describe a periodic heterogeneous medium (scale ε) using coefficients
aε(x, ξ) = a(x/ε, ξ) where a is a function satisfying (H0)–(H8) on R

m × R
m, which
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is in addition periodic (scale 1) in the variable x. Let λε be an eigenvalue of the
corresponding eigenvalue problem (1.5):

− div(aε(x,∇uε)) = λε|uε|p−2uε in Ω,

uε = 0 on ∂Ω.

}
(1.5)

We will study the asymptotic behaviour of such sequences of eigenvalues λε as the
parameter ε → 0.

This article is organized as follows. In § 2 we state the main results of our paper.
In § 3 we introduce some notation, definitions and general preliminary results that
will be used for proving these results, while the proofs themselves are given in § 4.

2. Main results

The problem of convergence of the eigenvalues of the nonlinear operators

− div(aε(x,∇u))

is related to the convergence of their respective inverse operators. We say, fol-
lowing [4], that a family of maximal monotone operators Aε := − div(aε(x,∇u))
G-converges to an operator Ahom := − div(ahom(x,∇u)) (where ahom is possibly
multi-valued) if the following property holds.

Proposition 2.1. For every sequence hε ∈ W−1,q(Ω) converging strongly to some
h ∈ W−1,q(Ω), and whenever vε is a weak solution in W 1,p

0 (Ω) of

− div(aε(x,∇vε)) = hε in Ω,

vε = 0 on ∂Ω,

}
(2.1)

we have vε ⇀ v weakly in W 1,p
0 (Ω) and aε(x,∇vε) ⇀ ahom(x,∇v) weakly in Lq(Ω).

This implies, of course, that v solves the equation (in the weak sense)

− div(ahom(x,∇v)) = h in Ω,

v = 0 on ∂Ω.

}
(2.2)

We write Aε
G−→ Ahom.

The main results of the paper can be now be stated as follows.

Theorem 2.2. Let us assume that the aε satisfy the hypotheses (H0)–(H7) and
that there exists a function ahom such that the operators Aε

G−→ Ahom. Let λε be an
eigenvalue of the operator Aε and let uε be a corresponding eigenfunction. Then
any limit point λ of the sequence λε is an eigenvalue of the limit operator Ahom
and there exists a subsequence of uε which converges weakly to an eigenfunction
corresponding to λ for the limit operator.

Theorem 2.3. The totality of the properties (H0)–(H8) is stable under G-conver-
gence, that is, if the aε satisfy (H0)–(H8) and ahom is such that Aε

G−→ Ahom, then
ahom also satisfies (H0)–(H8).
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Theorem 2.4. Assume that the aε satisfy the hypotheses (H0)–(H8) and that there
exists a function ahom such that Aε

G−→ Ahom. Let λ1
ε and λ1

hom be the first eigenval-
ues of the operators Aε and Ahom, defined using (1.4) with aε and ahom, respectively,
in place of a. The sequence λ1

ε then converges to λ1
hom as ε → 0.

Remark 2.5. In the statement of the above theorems we have assumed the G-
convergence of the operators. This is not restrictive, since if the aε are measurable
coefficients which satisfy (H1)–(H3), then the operators Aε G-converge (up to a
subsequence) to a maximal monotone operator Ahom whose coefficient ahom is mea-
surable and satisfies (H1)–(H3). We refer to [4, theorem 4.1] for this well-known
compactness result. On the other hand, the hypotheses (H4)–(H7) are all important
in the context of a well-posed eigenvalue problem. We assume (H8) for technical
reasons.

We will return to this remark later, in § 3. Let us now make some remarks on the
literature and possible open problems.

In the linear case aε(x, ξ) = Aε(x)ξ, when the Aε are symmetric matrices which
satisfy the coercivity and boundedness condition (1.1), the spectrum of the opera-
tor Aε is known to be a discrete sequence tending to infinity and the kth eigenvalue
is given by the Rayleigh–Ritz variational characterization

λk
ε := min

V ∈Fk

max
u∈V \{0}

∫
Ω

Aε(x)∇u · ∇u dx∫
Ω

|u|2 dx
,

where Fk denotes the set of all k-dimensional subspaces of H1
0 (Ω). It was shown, in

this case, by Kesavan [10,11] that the G-convergence of the sequence of operators Aε

implies the convergence of their spectrum and that the sequence of kth eigenvalues
λk

ε converges to the kth eigenvalue of the limit operator. In the nonlinear case,
precise knowledge of the set of eigenvalues of the nonlinear operator Aε does not
exist, and, besides, it is hard to extend the notion of spectrum. However, nonlinear
odd homogeneous maximal cyclically monotone operators like the p-Laplacian do
admit an infinite unbounded sequence of eigenvalues given as min–max critical
values of the corresponding Rayleigh quotient (see [4,12] for the precise definition).
An interesting open question is whether these min–max values converge to the
min–max values of the limit operator.

3. Preliminaries

3.1. Notation

We shall use the usual notations for Lp spaces, Sobolev spaces, smooth func-
tions with compact support, and the space of bounded continuous functions on a
domain Ω. The symbol | · |p will be used for the Lp norm and 〈·, ·〉 will be used
for the inner product in any inner product space or for any duality functional, for
example, between W−1,q(Ω) and W 1,p

0 (Ω). The inner product in R
m shall also be

denoted by ‘·’ for convenience. We shall denote the extended real line by R̄. The
symbol χA will denote the characteristic function of a set A. Namely, the function
which takes the value 1 on the set A and the value 0 on the complement of A. We
shall write ω ⊂⊂ Ω to mean that ω is a relatively compact subset of Ω. We shall
denote the Lebesgue measure of a measurable set A by |A|.
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3.2. On functions

Let X be a real reflexive Banach space (possibly R
m). Given a proper function F :

X → R̄, its sub-differential is a multi-valued function ∂(F ) : X ⇒ X∗ whose values
at a point x ∈ X is the set:

{x∗ ∈ X∗ : F (y) � F (x) + 〈x∗, y − x〉 for all y ∈ X}.

Clearly, ∂(F )(x) = ∅ if x /∈ dom(F ). The graph of a multi-function A : X ⇒ X∗,
denoted by Gr(A), is the set

{(u, h) ∈ X × X∗ : u ∈ dom(A), h ∈ A(u)},

where dom(A) := {u ∈ X : A(u) 
= ∅}. Recall that a multi-function A : X ⇒ X∗ is
monotone if and only if it satisfies the inequality:

〈η1 − η2, ξ1 − ξ2〉 � 0 ∀ξ1, ξ2 ∈ X and ∀ηi ∈ A(ξi), i = 1, 2.

It is said to be strictly monotone if the inequality is strict for all ξ1 
= ξ2. It is
cyclically monotone if and only if it satisfies the condition

n∑

i=1

〈ηi, ξi+1 − ξi〉 � 0, ∀ξ1, . . . , ξn+1 ∈ X, ξn+1 = ξ1, ∀ηi ∈ A(ξi), ∀n ∈ N.

It is easy to see that if A is cyclically monotone, then it is also monotone. A
multi-function A is said to be maximal (cyclically) monotone if it is (cyclically)
monotone and its graph is not strictly contained in the graph of another (cyclically)
monotone multi-function. We recall the following well-known characterization of
sub-differentials of convex functions for which we refer to [16, theorem 12.25] or [1,
proposition 3.64].

Lemma 3.1. A multi-valued function A : X ⇒ X∗ is the sub-differential of a lower
semi-continuous proper convex function f if and only if it is maximal cyclically
monotone. The function f is uniquely determined up to an additive constant.

We now state some properties, which we need, for functions defined on R
m,

though some of these hold equally for infinite-dimensional reflexive Banach spaces.
It will be useful to remember that a continuous (cyclically) monotone function is
necessarily maximal (cyclically) monotone (cf. [16, example 12.7]). Another well-
known result on convex functions says that if f is a convex function, then its
sub-differential a is single valued at a point if and only if it is differentiable there
(see [15, theorem 25.1]). Also, recall that a function f : R

m → R is said to be even
if f(−ξ) = f(ξ) for all ξ ∈ R

m. We now prove a result useful in the remainder of
the paper.

Proposition 3.2. Let f be a differentiable function on R
m whose gradient is a.

We have the following properties:

(i) if a is strictly monotone, then f is strictly convex;

(ii) if f is positively homogeneous of degree p, then pf(ξ) = a(ξ) ·ξ for all ξ ∈ R
m;
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(iii) letting f(0) = 0, a is positively homogeneous of degree p − 1 if and only if f
is positively homogeneous of degree p;

(iv) a is odd if and only if f is even;

(v) if a satisfies the conditions (H2), (H3) and (H5), then α|ξ|p � pf(ξ) � β|ξ|p
for all ξ ∈ R

m;

(vi) if f is convex and a satisfies (H3), then

|f(s) − f(s′)| � β(|s|p−1 + |s′|p−1)|s − s′| ∀s, s′ ∈ R
m. (3.1)

Proof. (i) This property is well known and can be deduced very easily, for example,
from [7, theorem 5.3.1, ch. I].

(ii) We obtain the identity by differentiating the relation f(tξ) = tpf(ξ) with respect
to t and then setting t = 1.

(iii) We have

f(ξ) =
∫ 1

0

d
ds

(f(sξ)) ds =
∫ 1

0
a(sξ) · ξ ds.

From this it follows that if a is positively p − 1 homogeneous, then f is positively
p homogeneous. The converse is straightforward to prove by differentiating f(tξ) =
tpf(ξ) with respect to ξ.

(iv) The arguments for the proof of this property are similar to the arguments
for (iii).

(v) This, again, follows from (ii) and the hypotheses on a.

(vi) The property being symmetric in s and s′, it is sufficient to estimate f(s)−f(s′).
Since f is convex, its tangent always lies below its graph. Using the tangent at s
we have

f(s) − f(s′) � −a(s) · (s′ − s).

Therefore, using the hypothesis on a, we obtain

f(s) − f(s′) � |a(s)||s′ − s| � β|s|p−1|s′ − s| � β(|s|p−1 + |s′|p−1)|s′ − s|.

This completes the proof.

We obtain the following lemma as an immediate corollary to lemma 3.1 and
proposition 3.2 using the fact a in the lemma is single valued.

Lemma 3.3. Given any a satisfying (H0)–(H8) there exists a Carathéodory func-
tion f which is even, positively p-homogeneous strictly convex and differentiable in
the variable ξ satisfying α|ξ|p � pf(x, ξ) � β|ξ|p for all ξ ∈ R

m a.e. x in Ω such
that ∇ξf(x, ξ) = a(x, ξ). It can be normalized such that it satisfies f(x, 0) = 0.

We now calculate the sub-differential of some functionals for later use.
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Lemma 3.4. Let f : Ω × R
m → R be a measurable function which is differentiable

and convex function with respect to ξ satisfying a p-growth condition. Suppose also
that its derivative a (with respect to ξ) satisfies (H3). Let F : Lp(Ω) → R̄ be defined
by

F (u) =

⎧
⎪⎨

⎪⎩

∫

Ω

f(x,∇u) dx if u ∈ W 1,p
0 (Ω),

+∞ otherwise,
(3.2)

and let G be its restriction to W 1,p
0 (Ω). Then, the following are true.

(i) G is weakly lower semi-continuous on W 1,p
0 (Ω). It has a Gateaux derivative

A everywhere on W 1,p
0 (Ω) given by the operator − div(a(x,∇u)).

(ii) F is proper, convex and lower semi-continuous for the strong topology on
Lp(Ω). The sub-differential ∂(F ) has the domain

dom(∂(F )) = {u ∈ W 1,p
0 (Ω) : − div(a(x,∇u)) ∈ Lq(Ω)}. (3.3)

Furthermore, one has ∂(F )(u) = − div(a(x,∇u)) for all u ∈ dom(∂(F )).

Proof. (i) The weak lower semi-continuity is a standard fact (see [6, example 1.24]).
Let us calculate the Gateaux derivative of the functional G in the direction ϕ ∈
W 1,p

0 (Ω) at a given u ∈ W 1,p
0 (Ω). For any t > 0, using proposition 3.2(vi), we get

g(t, x) :=
f(x,∇(u + tϕ)) − f(x,∇u)

t
� β(|∇u|p−1 + tp−1|∇ϕ|p−1)|∇ϕ| a.e. x.

Since, f is differentiable g(t, x) → a(x,∇u) ·∇ϕ a.e. x as t → 0. On the other hand,
|g(t, x)| is bounded above by the integrable function β(|∇u|p−1 + tp−1|∇ϕ|p−1)|∇ϕ|
a.e. in Ω. So, by the Lebesgue dominated convergence theorem, we have

lim
t→0

G(u + tϕ) − G(u)
t

= lim
t→0

g(t, x) dx =
∫

Ω

∇ξf(x,∇u) · ∇ϕ dx.

The result follows by integration by parts in the last expression.

(ii) The convexity follows from the convexity of f and it is proper because of the p-
growth assumption. We refer, once again, to [6, example 1.24 and proposition 2.10]
for the lower semi-continuity of F .

Now, we calculate the sub-differential of this convex function. Let us denote the
set on the right-hand side of (3.3) by V.

Claim (1). V ⊂ dom(∂(F )) and − div(a(x,∇u)) ∈ ∂(F )(u) for any u ∈ V.

To prove this claim, for any v ∈ W 1,p
0 (Ω), the (sub-)differentiability of the convex

function f gives

F (v) − F (u) =
∫

Ω

(f(x,∇v) − f(x,∇u)) dx

�
∫

Ω

∇ξf(x,∇u) · (∇v − ∇u) dx.
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Since v and u belong to W 1,p
0 (Ω), after integrating by parts in the last inequality

we get

F (v) � F (u) −
∫

Ω

div(a(x,∇u))(v − u) dx.

On the other hand, the above inequality holds trivially for v ∈ Lp(Ω), so the claim
is proved.

Claim (2). dom(∂(F )) ⊂ V and, for any u ∈ dom(∂(F )), one has ∂(F )(u) =
− div(a(x,∇u)).

Let us prove this claim. Let u ∈ dom(∂(F )) and s ∈ ∂(F )(u). Therefore, by
definition,

F (v) − F (u) � 〈s, v − u〉Lq(Ω),Lp(Ω) ∀v ∈ Lp(Ω).

Clearly, u ∈ W 1,p
0 (Ω). We fix any ϕ ∈ W 1,p

0 (Ω) and any t > 0, and choose v = u+tϕ
in the above inequality, to obtain

∫

Ω

f(x,∇(u + tϕ)) − f(x,∇u)
t

dx � 〈s, ϕ〉Lq(Ω),Lp(Ω).

We can pass to the limit, as t → 0, on the right-hand side, by part (i) of lemma 3.4,
and we obtain ∫

Ω

∇ξf(x,∇u) · ∇ϕ dx � 〈s, ϕ〉Lq(Ω),Lp(Ω).

By changing ϕ to −ϕ in the above inequality we obtain, in fact, an equality for
every ϕ ∈ W 1,p

0 (Ω). Therefore, we have − div(a(x,∇u)) = s in the distributional
sense. But s ∈ Lq(Ω) to begin with. This proves the second claim.

The proof is complete owing to claims 1 and 2.

3.3. On the eigenvalue problem (1.2)

Our purpose, here, is to give a useful characterization of eigenvalues of (1.2) for
any a that satisfies (H0)–(H8). Besides, we show the existence of eigenvalues by
showing that λ1 defined by (1.4) is the least eigenvalue for (1.2).

Using lemma 3.3 and proposition 3.2(ii), we first rewrite (1.4) in a convenient
form:

λ1 = inf
u∈W 1,p

0 (Ω)
u �=0

R(u), where R(u) :=
p

∫
Ω

f(x,∇u) dx∫
Ω

|u|p dx
. (3.4)

We make the following important observation.

Proposition 3.5. There is a one-to-one correspondence between the eigenvalue
problem (1.2) and the Euler–Lagrange equation at critical points of the functional
R, defined above in (3.4), on W 1,p

0 (Ω)\{0}. The eigenvalues are the critical values.
The infimum λ1 of R on W 1,p

0 (Ω) \ {0}, if it is attained, is the least eigenvalue.

Proof. It follows from lemma 3.4(i) that R has a Gateaux derivative on W 1,p
0 (Ω) \

{0}. It can be seen that

∇GR(u) = 0 ⇐⇒ − div(a(x,∇u)) = R(u)|u|p−2u.
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Therefore, clearly if u is a critical point then R(u) is an eigenvalue. Conversely,
if (λ, u) satisfy (1.2) for some non-zero u ∈ W 1,p

0 (Ω), then, by (1.3), λ = R(u).
Therefore, by the above equivalence we have ∇GR(u) = 0. This proves the first
part.

In particular, if λ1 = minW 1,p
0 (Ω)\{0} R, then it is not only an eigenvalue but the

least eigenvalue, since any eigenvalue is in the range of R.

The following lemma, together with the proposition above, implies that λ1 of (1.4)
is the least eigenvalue for the problem (1.2).

Lemma 3.6. The infimum in the definition (1.4) is attained.

Proof. We need to show that the infimum is attained in (3.4). Take a minimizing
sequence un in W 1,p

0 (Ω). We may assume, without loss of generality, that |un|p = 1
thanks to the fact that both the numerator and denominator in (3.4) are positively
p-homogeneous. The quotients

p
∫

Ω
f(x,∇un) dx∫
Ω

|un|p dx

form a bounded sequence of real numbers. So, using the ellipticity property (H2),
we obtain

α|∇un|p � C.

Thus, in addition, un is bounded in W 1,p
0 (Ω). Assume, without loss of generality,

that un ⇀ u weakly in W 1,p
0 (Ω). Furthermore, by the compact inclusion of W 1,p

0 (Ω)
in Lp(Ω), it follows that un → u strongly in Lp(Ω) and hence, limn→∞|un|p =
|u|p = 1. Thus, by the lower semi-continuity property (see lemma 3.4(i)) we have

p
∫

Ω
f(x,∇u) dx∫
Ω

|u|p dx
� lim inf

n→∞

p
∫

Ω
f(x,∇un) dx∫
Ω

|un|p dx
,

whereas, un being a minimizing sequence, the right-hand side in the above inequality
is exactly λ1. This shows that the minimum in (3.4) is attained for the above u.

3.4. Comments on hypotheses (H0)–(H8)

We have seen in remark 2.5 that the hypotheses (H0)–(H3) ensure the G-con-
vergence of the operators. In principle, the G-limit could be a multi-valued operator
whose coefficient ahom is a multi-valued function. We avoid this by assuming (H4),
which is stable with respect to G-convergence (see [4, § 7]), and which implies that
the coefficients are locally Hölder continuous with exponent δ/(p−δ). On the other
hand, the positive homogeneity and cyclical monotonicity conditions, (H5) and
(H7), respectively, are used in the previous subsection to put the eigenvalue prob-
lem in a nice framework and to show existence. The structure of the eigenvalue
problem has a richer structure if f is even and strictly convex, in which case the
quotient functional admits an unbounded infinite sequence of min–max type criti-
cal values (see [4]). We can guarantee this, owing to proposition 3.2(i), by assum-
ing (H6) and (H8). The advantage is that (H8) is stable under G-limits and can
be used in proving the stability of the properties (H5)–(H7). Another use of (H8)
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lies in the fact that this implies the uniqueness of the solution to the stationary
problem (2.1).

We add that the conditions (H0)–(H8) are not completely independent of each
other. It can be seen easily that (H8) implies (H1)–(H2) and that (H4) implies (H3)
in addition to the continuity of the coefficient.

3.5. On the convergence of operators and functionals

We refer to [1] for a discussion of the following notions. Let X be a real reflexive
Banach space and let X∗ denote its topological dual.

A family of maximal monotone operators Aε : X ⇒ X∗ is said to graph converge
to an operator A : X ⇒ X∗ if and only if the following property holds.

For every (u, h) ∈ Gr(A) there exists a sequence (uε, hε) ∈ Gr(Aε) such that
(uε, hε) converges to (u, h) strongly in the product topology.

We shall denote the graph convergence of the operators by Aε
graph−−−→ A.

Let Fε be a family of functionals defined on a real reflexive Banach space X
into R̄. It is said that Fε Mosco converges to a functional F : X → R̄ if and only if
the following two conditions are fulfilled:

(i) uε ⇀ u weakly in X implies that lim infε→0 Fε(uε) � F (u),

(ii) for every u ∈ X there exists a sequence uε → u strongly in X such that
lim supε→0 Fε(uε) � F (u).

We write Fε
Mosco−−−−→ F .

We end this section by recalling the following well-known and powerful theorem
(see [1, theorem 3.66]) connecting Mosco convergence of convex functionals and the
graph convergence of their differentials.

Proposition 3.7. Let X be a reflexive Banach space. For any sequence of lower
semi-continuous, proper, convex functions Fε (normalized so that Fε(0) = 0) the
following are equivalent:

(i) Fε
Mosco−−−−→ F ,

(ii) ∂Fε
graph−−−→ ∂F .

4. Proof of the main results

We start by proving theorem 2.2.

Proof of theorem 2.2. Let λε be a sequence of eigenvalues where, for each ε > 0, λε

is an eigenvalue of the nonlinear operator Aε, and let uε be a corresponding eigen-
function. We may assume without loss of generality that uε has been normalized,
so that |uε|p = 1. Let us suppose that λ is a limit point of the sequence λε. We
shall show that λ is an eigenfunction of the limit operator Aε.

Since |uε|p = 1 we conclude that hε := λε|uε|p−2uε is a bounded sequence in
Lq(Ω). By the compact inclusion Lq(Ω) → W−1,q(Ω) we conclude that hε → h
strongly in W−1,q(Ω) for a subsequence which we continue to index by ε. Therefore,
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using the assumption that Aε
G−→ Ahom, we conclude that uε converges weakly in

W 1,p
0 (Ω) to the solution u of the equation:

− div(ahom(x,∇u)) = h in Ω,

u = 0 on ∂Ω.

To complete the proof, we show that h = λ|u|p−2u and u 
= 0. First, note that
the compact inclusion of W 1,p

0 (Ω) into Lp(Ω) together with the weak convergence
uε ⇀ u in W 1,p

0 (Ω) implies that uε → u strongly in Lp(Ω). By passing to a sub-
sequence, if necessary, we may assume that uε → u a.e. in Ω. Let δ > 0 be any
positive number. Then, using Egoroff’s theorem, we can find a measurable subset
Ωδ satisfying |Ω \ Ωδ| < δ such that uε → u uniformly on Ωδ. Let χΩδ

be the
characteristic function of the set Ωδ and let ϕ be any bounded continuous function
on Ω. Therefore, by passing to the limit in

∫

Ω

χΩδ
hεϕ dx =

∫

Ω

χΩδ
λε|uε|p−2uεϕ dx,

we obtain
∫

Ω

χΩδ
hϕ dx =

∫

Ω

χΩδ
λ|u|p−2uϕ dx.

We can now pass to the limit as δ → 0, using the fact that |Ω \ Ωδ| → 0 when
δ → 0, to conclude that

∫

Ω

hϕ dx =
∫

Ω

λ|u|p−2uϕ dx

for all ϕ ∈ Cb(Ω). This shows that h = λ|u|p−2uϕ a.e. in Ω. It is also clear that
|u|p = 1 owing to the strong convergence of uε in Lp(Ω) and the fact that |uε|p = 1
for all ε > 0. This concludes the proof.

We will need the following lemma for the proof of theorem 2.3. It is an example
of an application of the compensated compactness principle (see [13, 18]) in its
simplest form.

Lemma 4.1. Suppose that Aε
G−→ Ahom. Let h ∈ W−1,q(Ω) be given and vε be the

solution of (2.1) (with hε = h). Then, given any sequence wε ⇀ w weakly in
W 1,p

0 (Ω) and any function ϕ ∈ D(Ω), we have
∫

Ω

aε(x,∇vε) · ∇wεϕ dx →
∫

Ω

ahom(x,∇v) · ∇wϕ dx, (4.1)

where v is the solution of the homogenized equation (2.2) with right-hand side h.

Proof. We can write, using wϕ as test function in the equation for vε, that
∫

Ω

aε(x,∇vε) · ∇wεϕ dx = 〈h, wεϕ〉 −
∫

Ω

aε(x,∇vε) · ∇ϕwε dx. (4.2)

Then, since aε(x,∇vε) ⇀ ahom(x,∇v) weakly in Lq(Ω) owing to the G-convergence
assumption and wε → w strongly in Lp(Ω), thanks to Rellich’s theorem, we can
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pass to the limit on the right-hand side to obtain

lim
ε→0

∫

Ω

aε(x,∇vε) · ∇wεϕ dx = 〈h, wϕ〉 −
∫

Ω

ahom(x,∇v) · ∇ϕw dx

=
∫

Ω

ahom(x,∇v) · ∇wϕ dx,

where the last identity follows by taking wϕ as test function in the equation for v.

Proof of theorem 2.3. It has already been shown by Chiado Piat et al . that proper-
ties (H1)–(H4) and (H8) are stable under G-convergence [4, theorems 4.1 and 7.9].
In particular, by (H4), the function ahom is single valued, and continuous in the
variable ξ for a.e. x ∈ Ω, showing that it also satisfies (H0).

Let us now prove that ahom satisfies (H5). Our proof uses a localization method
introduced by Tartar [18] and Murat [13] in the linear case for deducing properties
of the coefficients of the homogenized operator. Let ξ ∈ R

m and t > 0 be given. Let
ω be any open set with ω ⊂⊂ Ω. It is enough to prove that (H5) holds a.e. ω for any
such ω. Let u be any W 1,p

0 (Ω) function which is identically equal to the function ξ ·x
on ω. Then, − div(ahom(x,∇u)) belongs to W−1,q(Ω), since ahom(x,∇u) ∈ Lq(Ω),
owing to the growth condition (H3). Now, let uε be the solution of

− div(aε(x,∇uε)) = − div(ahom(x,∇u)) in Ω,

uε = 0 on ∂Ω.

Then, by the G-convergence of the operators Aε, we find that

aε(x,∇uε) ⇀ ahom(x,∇u′)

weakly in Lq(Ω), where u′ is the weak limit in W 1,p
0 (Ω) of the sequence uε. However,

from the equation for u′ and the strict monotonicity of ahom (implied by (H8)) we
have ∇u′ = ∇u. This implies that u = u′, since u and u′ are equal to zero on ∂Ω.
So, using the positive homogeneity of aε, we have

aε(x, t∇uε) ⇀ tp−1ahom(x,∇u) weakly in Lq(Ω). (4.3)

On the other hand, again owing to the homogeneity of the coefficient aε, tuε is the
solution of

− div(aε(x,∇(tuε))) = −tp−1 div(ahom(x,∇u)) in Ω,

tuε = 0 on ∂Ω.

So, using the G-convergence of the operators Aε once again, we have

aε(x,∇(tuε)) ⇀ ahom(x,∇(tu)) weakly in Lq(Ω). (4.4)

From (4.3) and (4.4) we conclude that ahom(x, t∇u) = tp−1ahom(x,∇u) a.e. in Ω.
Restricting to ω, we obtain immediately that ahom(x, tξ) = tp−1ahom(x, ξ) a.e. in ω.
By the arbitrariness of ω we obtain the same result on Ω. This completes the proof
of (H5). Property (H6) is proved in a similar manner and will be left to the reader.



L. Baffico, C. Conca and M. Rajesh

Property (H7) for ahom may be proved similarly, as above. Let

ξ1, ξ2, . . . , ξn, ξn+1 ∈ R
m

be given, with ξn+1 = ξ1 and ω as above. For i = 1, . . . , n, we take ui ∈ W 1,p
0 (Ω)

such that ui(x) = ξi · x a.e. on ω and set un+1 = u1. As above, for any ε > 0, let
ui,ε be a solution of equation (2.1) whose right-hand-side member is

− div(ahom(x,∇ui)).

This choice implies, as before, that ui,ε ⇀ ui weakly in W 1,p
0 (Ω). Let ϕ be any

non-negative function in D(ω). Then, owing to hypothesis (H7) on aε, we have
n∑

i=1

∫

Ω

aε(x,∇ui,ε) · (∇ui+1,ε − ∇ui,ε)ϕ dx � 0.

We can pass to the limit directly, using lemma 4.1, in the above inequality to
conclude that

n∑

i=1

∫

Ω

ahom(x,∇ui) · (∇ui+1 − ∇ui)ϕ dx � 0.

As ϕ vanishes outside ω and ui = ξi · x on ω, we have
n∑

i=1

∫

ω

ahom(x, ξi) · (ξi+1 − ξi)ϕ dx � 0 ∀ϕ ∈ D(ω).

This yields the desired conclusion. Thus, we have proved (H7) and this completes
the proof of the theorem.

We need the following lemma before proving theorem 2.4. Since aε and ahom
satisfy (H0)–(H8), by lemma 3.3 we can find fε and fhom with the properties therein
such that aε(x, ·) = ∇ξfε(x, ·) and ahom(x, ·) = ∇ξfhom(x, ·) a.e. x in Ω.

Lemma 4.2. Let the functionals Fε and Fhom be defined as in (3.2) using, respec-
tively, the integrands fε and fhom. Then ∂(Fε)

graph−−−→ ∂(Fhom) and therefore, Fε

Mosco-converges Fhom.

Proof. Let (u, h) ∈ Gr(Fhom), which means h = − div(ahom(x,∇u)). Let uε ∈
W 1,p

0 (Ω) be the (unique) solution to the equation h = − div(aε(x,∇uε)). Then
uε ∈ dom(∂(Fε)), since h ∈ Lq(Ω) and (uε, h) ∈ Gr(Fε). The G-convergence of the
operators Aε to the operator Ahom and the uniqueness of solutions to the stationary
problem (2.1), thanks to (H8), imply that uε converges weakly in W 1,p

0 (Ω) to the
function u. This, of course, implies that uε converges strongly to u in Lp(Ω). Thus,
we have verified that ∂(Fε)

graph−−−→ ∂(Fhom).
The Mosco convergence follows immediately from proposition 3.7, since we have

the graph convergence ∂(Fε)
graph−−−→ ∂(Fhom).

Proof of theorem 2.4. The thesis of the theorem will be established if we show that
there exists u ∈ W 1,p

0 (Ω) such that
∫

Ω
pfhom(x,∇u) dx∫

Ω
|u|p dx

� lim inf
ε→0

λ1
ε (4.5)
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and

lim sup
ε→0

λ1
ε �

∫
Ω

pfhom(x,∇v) dx∫
Ω

|v|p dx
∀v ∈ W 1,p

0 (Ω). (4.6)

We prove these inequalities by applying the Mosco convergence result Fε
Mosco−−−−→Fhom

established in the above lemma. For each ε > 0, let uε be a function in W 1,p
0 (Ω) for

which the minimum is attained in the definition (3.4) of λ1
ε with fε in the place of f .

We know that it exists, by proposition 3.6 and it can be chosen such that |uε|p = 1.
Let λ be any limit point of the family λ1

ε and assume further that λ = limε′→0 λ1
ε′

for a subsequence ε′ → 0. The fact that

λ1
ε = Fε(uε) =

∫

Ω

pfε(x,∇uε) dx � α|∇uε|p dx

and the sequence λ1
ε is bounded implies that uε is bounded in W 1,p

0 (Ω). We choose a
subsequence uε′′ such that uε′′ converges weakly in W 1,p

0 (Ω) and, therefore, strongly
in Lp(Ω). This implies that |u|p = limε′′→0 |uε′′ |p = 1. On the other hand, by the
defining property (i) of Mosco convergence, we have

λ = lim
ε′′→0

∫

Ω

pfε′′(x,∇uε′′) dx �
∫

Ω

pfhom(x,∇u) dx = Fhom(u).

Thus, we obtain (4.5). In order to prove the inequality (4.6), given v ∈ W 1,p
0 (Ω), we

choose a sequence vε → v strongly in Lp(Ω) such that the property (ii) of Mosco
convergence holds. Therefore, we have

lim sup
ε→0

λ1
ε = lim sup

ε→0

∫

Ω

pfε(x,∇uε) dx

� lim sup
ε→0

∫
Ω

pfε(x,∇vε) dx∫
Ω

|vε|p dx
�

∫
Ω

pfhom(x,∇v) dx∫
Ω

|v|p dx
.

This proves the second inequality.
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