RECIPROCAL UPPER SEMICONTINUITY AND BETTER
REPLY SECURE GAMES: A COMMENT

BY ADIB BAGH AND ALEJANDRO JOFRE

A convex, compact, and possibly discontinuous better reply secure game has a Nash
equilibrium. We introduce a very weak notion of continuity that can be used to establish
that a game is better reply secure and we show that this notion of continuity is satisfied
by a large class of games.
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1. INTRODUCTION

THE CLASS OF BETTER REPLY SECURE GAMES was introduced by Reny (1999)
who showed the existence of a pure Nash equilibrium for games in this class.
Furthermore, Reny provided two conditions that, when combined, become suf-
ficient for a game to be better reply secure. The first condition is payoff secu-
rity, which means that given a joint strategy x, every player can find a strategy
that yields almost the same payoff at x, even when the other players slightly
deviate from x. The second condition is reciprocal upper semicontinuity (rusc).
This condition, roughly speaking, requires the payoff of one of the players to
jump up whenever the payoff of another player jumps down. We introduce
the notion of weak reciprocal upper semicontinuity (wrusc), a strict weakening
of rusc, and prove that a game that is wrusc and payoff secure is better reply
secure, and therefore has a pure strategy Nash equilibrium.

2. PRELIMINARIES

We consider a game G denoted by (X, u;)". This game consists of N play-
ers and each player i = 1,..., N has a compact and convex strategy set
X; Cc U,where U is a metric space. Each player has a bounded payoff function
u;: X — R, where X =[],_y X:;. We use the standard notation X_; = ]‘[Li X
and x_; = (Xq,..., X;i_1, Xiy1, ..., Xy) € X_;. We further assume that for every
x_;€X_;,u;(-,x_;) is quasiconcave. We call such a game a compact and quasi-
concave game. The graph of the game is I' = {(x, u) € X x RN |u;(x) = u;, Vi}.
The closure of I" in X x R” is denoted by I". The frontier of I', which is the sets
of points that are in I" but not in I', is denoted by FrI". We now review some
of the basic definitions introduced in Reny (1999).

DEFINITION 1: Player i can secure a payoff a € R at the point x € X, if
3X; € X; and 3V (x_;) is a neighborhood of x_; such that, for all x’ ; € V(x_,),
u; (%, X)) >oa.
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DEFINITION 2: A game (X, u;)" is better reply secure if for every (x*, u) € T,
the point x* is not an equilibrium implies that some player i can secure a payoff
strictly above u; at x*.

Theorem 3.1 in Reny (1999) shows that a game that is compact, quasicon-
cave, and better reply secure must have a pure strategy Nash equilibrium. One
can directly verify better reply security by checking the conditions of Defini-
tion 2. In most applications, however, it is more convenient to verify the fol-
lowing conditions:

DEFINITION 3: A game is reciprocally upper semicontinuous (rusc), if when-
ever (x,u) is in the closure of I' and u;(x) < u; for all i, then u;(x) = u; for
all 7.

DEFINITION 4: A game (X;, u;)" is payoff secure if the following holds for
every player i: for all x € X, Ve >0, 3%, € X;, IV (x_;) is a neighborhood
of x_;, such that for all x'; € V(x_;), u;(X;, x' ;) > u;(x) — &.

If a game (X, u;)" is payoff secure and rusc, then it is better reply secure
(Proposition 3.2 in Reny (1999)). However, the converse is not always true.

3. WEAK UPPER SEMICONTINUITY

We now introduce a modified definition of reciprocal upper semicontinuity.

DEFINITION 5: A game is weakly reciprocal upper semicontinuous (wrusc), if
for any (x, @) € Fr I', there is a player i and x; € X; such that u;(X;, x_;) > «;.

Unlike rusc, the preceding condition allows for the payoff functions of all
the players to jump down at some point x as long as the payoff of some player
jumps up, relative to his old payoff at x, somewhere in X. In some sense, the
relationship between wrusc and rusc is similar to the relationship between pay-
off security and lower semicontinuity. As we will demonstrate in Example 2,
a classic Bertrand price competition game with producers facing a lower semi-
continuous demand will be wrusc but not rusc (lower semicontinuous demand
functions are very common; consider all the items priced at $9.99). Further-
more, both rusc and wrusc are ordinal in the sense that they are preserved un-
der any continuous and strictly monotone transformation of the utility of each
player. In this note, we will use examples from timing games on the square to
illustrate the properties of weak reciprocal upper semicontinuity. This concept
of semicontinuity, however, is relevant to other types of discontinuous games.

Our first proposition shows that wrusc and payoff security are sufficient to
make the game better reply secure.
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PROPOSITION 1: If the game is payoff secure and wrusc, then it is better reply
secure.

PROOF: Suppose (x*, @) € I' and assume that x* is not an equilibrium. As-
sume first that (x*, @) € I'. Then, for all i, u;(x*) = «;. Whereas x* is not
an equilibrium, we must have that for some i, there exists x; € X; such that
u;(X;, x*;) > u;(x*) = a;. Payoff security implies that this player can secure a
payoff strictly higher than u;(x*) = a;. If (x*, @) € I' \ I', then wrusc implies
that there is a player i and X; € X; such that u;(X;, x*,) > «;, and again the
condition of payoff security implies that this player can secure a payoff strictly
higher than «;. Q.E.D.

PROPOSITION 2: Reciprocal upper semicontinuity implies weak reciprocal up-
per semicontinuity.

PROOEF: Let (x,a) eI’ \ I'. Suppose that Vi, u;(x) < «;. Then, rusc implies
u;(x) = a;, which contradicts the fact that (x, «) ¢ I'. Hence, there is a player i
such that u;(x) > «; and the game is wrusc. Q.E.D.

Note that to verify wrusc, we only need to check the frontier of the graph of
the game, which in general is a very small set. Consider, for example, a quasi-
concave game where the tie-breaking rule is the only source of discontinuity.
Such a game is wrusc as long as the tie-breaking rule is increasing on the di-
agonal. This is true no matter what type of discontinuity the tie-breaking rule
exhibits.

The following example shows that the condition of wrusc is strictly weaker
than rusc.

EXAMPLE 1: The following game is a special case of a class of timing games
on the unit square that was considered by Reny (1999). For i =1,2 and 0 <
t; <1, let the payoff functions for the players be given by

li(ti) =10 when <t
ui(ti, i) =1 @i(t) whent, =1, =t,
m,‘(t_,‘) =—10 when >t

Let ¢; be such that ¢; = ¢, = 1 when x; = x, and x; < 0.5, and ¢, =
¢, = 0 when x; = x; and x; > 0.5. Now consider the point (x}, x5, u}, u}) =
(0.5,0.5,1, 1). This point is in the closure of the graph of the game. However,
1;(0.5,0.5) < 1 for both players and so, contrary to the claim in Reny (1999),
the game is not rusc. This is due to the fact that both functions ¢; jump down
in the same direction at some point on the diagonal.! To show that this game

'This game is rusc if Vi, —10 < ¢; < 10 and ¢; is upper semicontinuous.
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is wrusc, consider a point (xy, xX,, a1, ay) € I'\I'. Because /; and m; are con-
tinuous and (x1, x,, a1, ay) is not in I', (x;, x,) has to be on the diagonal with
X, = x;. Moreover, whereas (xi, X, a1, ap) € I'\I", 3(x}, x5) — (x1, x,) such
that lim,, u;(x?, x" ;) = «; for all i. If this sequence is approaching (x;, x,) from
a direction off the diagonal, then we must have «; = —10 for some i. On the
other hand, if the sequence is approaching (x;, x,) along the lower half of the
diagonal, we must have a; = a, = 1. In the first case, for at least one i, one can
take 0 < X; < x; and obtain u;(x;,0.5) = 10 > «; = —10. In the second case,
and for any i, we can take ¥; = 0.25 and obtain u,;(%;,0.5) =10 > o; = 1. Note
that our sequence is not allowed to approach the point (xy, x,) along the upper
half of the diagonal because this would, contrary to our assumption, force the
point (x;, x5, @, ap) tobe in I'.

This game can also be easily shown to be payoff secure. Therefore, it is better
reply secure by Proposition 1.

The continuity assumptions on /; and m; in the previous example can be
weakened, yet the resulting game can still be wrusc and, in fact, better reply
secure. This point is illustrated in the next example.

EXAMPLE 2: Consider a two-player Bertrand price competition game on the
square [0, 4] x [0, 4]. Assume that the demand function is discontinuous and is
given by

8—p if0<p<2,
D(p)y=14 when p =2,
4—p when2<p<4.

The discontinuity in demand can result from nonconvex preferences, band-
wagon effects, network effects, or from a variety of other reasons. For more
details and examples on discontinuities in demand functions, see Baye and
Morgan (2002). The monopoly profits are given by

p8—p) if0<p<2,
m(p)=148 when p =2,
p(4—p) when2<p<4

and the payoff function of player i is
7m(p)  whenp; <p.

1
u(pi, p-i) = QW(P) when p;=p_; = p,
0 when p; > p_;.

This game is not rusc because the payoffs of both players jump down at (2, 2)
when we approach this point along the lower half of the diagonal. However,
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this game is wrusc. Consider a point ( py, p,, a1, ap) € I'\I'. Because this point
is not in I' and because the payoffs are continuous at any point with a zero
price, p; must be strictly positive for all i. If p; < p,, then a; =0 and any
pasuch 0 < p, < py will give us u,(p,, p1) > a,. A similar argument works if
p2 < pyorif p; = p, # 2 (again keeping in mind that (py, pa, @1, @) ¢ I'). If
p1= p>=2 and «; = 0 for some i, then we can still take any 0 < p;, < 2 and
obtain u;(p;,2) > 0. If p; = p, =2 and «; # 0 for all i, then for every i, we
either have a; = 6 or o; = 2. In either case, we can take p;, = 1 and we will have
u;(1,2)=7> a;.

Furthermore, this game is payoff secure because each player can secure his
payoff at a given nonzero price vector by slightly lowering his own price. If
the initial price of a player was zero, then his payoff of zero can be secured
by keeping his initial price. Using Proposition 1, we conclude that this game is
actually better reply secure.

Better reply security is more permissive than the combination of payoff se-
curity and wrusc (rusc). Therefore, it is always possible to show that a game
is better reply secure without using Proposition 1, and for that matter without
using Proposition 3.2. of Reny (1999). However, there are games where using
Proposition 1 provides a more systematic and a more convenient approach for
proving better reply security than a direct proof based on the definition. The
following example illustrates this point.

EXAMPLE 3: Consider another variation on our initial timing game on the
unit square [0, 1] x [0, 1]: The payoff of player i is given by the functions (for
i=1,2)

B when x; =x_; =0,
ui(x;, Xx_;) = filxi)
filx) + foi(x2y)

This game can be interpreted as a rent seeking competition between two play-
ers, where x; represents the effort exerted or resources expended by player i
to win a prize that is normalized to 1. The function (f;(x;))/(f:(x;) + f_i(x_:))
represents the probability that player i wins the prize, and g;(x;) represents the
cost of the effort exerted by this player. The variable B; represents the share
of the prize player i can obtain when both players do not exert any effort. This
type of rent seeking game is often used to represent political contests such as
running for an office, lobbying, or military conflicts. It is also used to model re-
cruitment of talent, lotteries, advertisement, and patent races (Tullock (1980),
Nitzan (1994), and Paul and Wilhite (1990)). Traditionally, the existence of a
pure strategy Nash equilibrium in these applications is established using first-
order conditions under the appropriate differentiability assumptions.

Rather than assuming that u; is differentiable, we will assume the following
conditions for every i:

—gi(x;) otherwise.
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(a) The function u; is bounded on [0, 1] x [0, 1], and u;(-, x_;) is quasi-
concave. Moreover, u; is continuous except possibly at the origin, f;(0) =0,
f: is strictly increasing, and g; is continuous at 0 with g;(0) = 0.

(b) Wehave B; <land B;+B_; <1.

The requirement that u; is continuous in the interior of the unit square can be
weakened by allowing the “right” type of discontinuities as we did in Exam-
ple 2. In many applications, it is natural to assume that 3, + 3, is strictly less
than 1. This means that, in the case where both players do not exert any effort,
a fraction of the prize will be divided between the players in some fashion while
the rest of the prize will be lost. We finally note that conditions (a) and (b) are
both satisfied by the original rent seeking game suggested by Tullock (1980) as
well as by many of the more recent variations on it.

The foregoing game is payoff secure. The payoff functions are continuous
everywhere except at the origin. Furthermore, at the origin, and for every i,
assumptions (a) and (b) imply that 3%; € (0,1] such that u;(X;,0) =1 —
g:(X;) > Bi. Moreover, u; is continuous at (X;,0). Hence, for any & > 0, 3V
is a neighborhood of 0 such that u;(x;, x" ;) > u;(0,0) = B; for all x’ ; € VV and,
therefore, the game is payoff secure at the origin.

If B; < 1 for both players, then the preceding game is not necessarily rusc.
This is due to the fact that lim, ., u;(x) can be anything between 0 and 1, de-
pending on the exact forms of f; and g; as well as on the direction we use to
approach (0, 0). Take for example the case where f; = f; and 8, = B_;, =0,
and consider a sequence that approaches the origin along the diagonal of unit
square. Following such a sequence, the payoffs of both players will jump down
at the origin from ; to 0, and the game is not rusc. This preceding game, how-
ever, is always wrusc under assumptions (a) and (b). Because the origin is the
only point of discontinuity, any point in I'\I" has to be of the form (0, 0, a1, @),
where for some x" — 0 and for every i, we have limu;(x") = «;. Whereas
a; + o = 1, we must have «; < 1 for some i. Without loss of generality, sup-
pose a, < 1. Because lim,,_ u,(x,,0) = 1, there exists 0 < X, < 1 such that
le()/(\fz, 0) > .

The combination of wrusc with payoff security gives us better reply security.

Using simple examples of timing games on the square, one can show that
the conditions of payoff security and wrusc are independent in the sense that
a compact and quasiconcave game can satisfy one without satisfying the other.
Finally, the concepts of better reply security, payoff security, and rusc can be
generalized in a natural way to extended games (games with mixed strategies).
Moreover, every game that is rusc and payoff secure in the extended sense has
a mixed strategy Nash equilibrium, even if the payoff functions are not quasi-
concave (Corollary 5.1 in Reny (1999)). Similarly, the definition of wrusc can be
easily generalized to extended games. Moreover, the combination of extended
wrusc and extended payoff security implies the existence of a Nash equilibrium
in mixed strategies without requiring the payoff functions to be quasiconcave.
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