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Abstract. In the last few years there has been an increasing interest
in studying ontology evolution and versioning for the World Wide Web,
in particular, applied to OWL. However, little attention has been given
to the problem of Web services evolution, with a focus on OWL-S, an
ontology of services recently proposed. In this paper, we show that recent
work on Temporal RDF can be extended to support versioning of an
ontology of services. We introduce a formal model and a query language
that allow accessing different versions of an OWL-S specification. We
present the language semantics and discuss complexity issues. We show
how our proposal can be implemented within the OWL-S framework.

1 Introduction

OWL [19] is an ontology language for the Semantic Web, developed by the World
Wide Web Consortium (W3C). It allows the representation of information about
categories of objects, and how these objects interrelate. This information, in a Se-
mantic Web scenario, can help to develop efficient automated processes in order
to access information on the Web. OWL is built on top of the Resource Descrip-
tion Framework (RDF) [1,11], and extends RDF and RDFS, adding restrictions
on properties, and operations like disjunction and negation.

Web services are software applications that interact using Web standards.
Although Web service technology is rapidly gaining popularity, it still requires
more human involvement than may be wanted. Avoiding this would imply the
ability of automatically discovering and invoking Web services. Semantic Web
technology has helped to solve this problem by means of ontologies of services
that are used for representing a service profile (for describing services offered by
a Web site). These ontologies can be used by service-seeking agents. The efforts
for defining a standard for ontologies of services led to OWL-S [17], a language
that allows to describe what a service provides, what a service requires from the
users, how the service works, and how the service is used. OWL-S is aimed at
enabling efficient automatic Web service discovery, invocation, interoperation,
and execution monitoring.

� Partially supported by Millennium Nucleus Center for Web Research, Grant P04-
67-F, Mideplan, Chile, and Project Fondecyt No. 1050642.
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1.1 Motivation

Today’s business systems must be able to adapt to changes and so does the
Semantic Web. Most of the change management tasks are still being performed
manually [20], which is time-consuming and error prone. It would be desirable
to add change management capabilities to the Semantic Web. An example of
an evolving ontology is MeSH, a medical ontology used by MEDLINE, a huge
source of medical information on the Web. MeSH is frequently updated in order
to stay in line with the state-of-the-art in medical research. The changes that
MeSH goes through consist of the addition of new terms, and also reclassification
of such terms. It seems clear that there is need for ontology evolution support
on the Web, as it has been pointed out in [5,10,13,14], among other works.

Another real-life example that illustrates the need for Web services versioning,
is the area of mobile phones. Phone companies need to incorporate new services
continuously in order to keep competitive in the market. To achieve the required
flexibility and evolvability many of them are currently migrating their platforms
towards service oriented architectures [4] where each service is implemented as
a Web service. Each Web service may then provide a particular service with
as many diverse operations as different cell phone platforms need to access the
service. For example, the monotone ringtone service is different depending on
the phone model. As the cell phone technology advances rapidly, new phone
devices appear continuously and there is a need to provide support for them.
Also, it may be necessary to keep the service version history in order to provide
the service if holders of older phone models require it. Another typical use of
this version history keeping is to determine the time interval in which the cell
phone company supported the service for a certain phone model so that it can
charge the phone vendor for providing support for its devices.

There are many ways to address ontology changes. Stojanovic [20] classifies
ontology changes in four categories: (a) ontology management; (b) ontology mod-
ification; (c) ontology evolution, and (d) ontology versioning. There is limited
work on ontology evolution, but little has been done on ontology versioning [13].
In this paper we address a topic still more unexplored: versioning of Web services
ontologies. Versioning has been recognized as a relevant problem in Web service
development [2,3]. However, no formal study has been attempted. Developers
devise ad-hoc solutions when they need to deal with the problem of maintaining
different versions of their applications. A proper mechanism for version man-
agement would allow easy access to different versions of a Web service ontology
as of any point in time. Moreover, it would add flexibility, allowing to access
simultaneously multiple versions of a service [3].

1.2 Problem Statement and Contributions

We address the problem of Web service versioning and we show that OWL-S,
as a language for describing Web service ontologies, can be extended in order to
support versioning. In this way, we are able to query and use past states of a
service ontology. For this purpose, we use the approach in [6,7] for RDF.
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A proper version management mechanism requires a temporal data model to
support it. Thus, this paper proposes a temporal data model supporting ver-
sioning of Web services. We define an abstract model for OWL-S, and extend
its components with temporal labels that indicate their intervals of validity,
leading to a temporal OWL-S graph. This temporal model, denoted OWL-S(T),
allows to manage versioning at two levels: version and state (i.e., within a version
different states can be supported). We then define a notion of OWL-S(T) con-
sistency, based on the framework proposed in [9], and we show how consistency
can be checked in a temporal setting, ensuring that a document is consistent at
any point in time. We propose a query language that supports typical temporal
queries, and allows to retrieve versions of an OWL-S(T) document as of any
instant in time. We give the semantics an complexity of the language. Finally,
we sketch how our proposal can be implemented in the OWL-S framework.

Section 2 discusses related work. Section 3 gives an overview of temporal con-
cepts and the OWL-S notions used in the paper; we also introduce the abstract
model for OWL-S. Section 4 presents the model for introducing time in OWL-
S and Section 5 a proposal for a query language. Section 6 discusses how the
introduced concepts could be implemented within the OWL-S framework. We
conclude in Section 7.

2 Related Work

The Ontology Web Language (OWL) [19] was developed by the W3C Web Ontol-
ogy Working Group. Many of its features come from its predecessor DAML+OIL,
and from the fields of Description Logic and Knowledge Representation. Hor-
rocks et al [12] detail the evolution of OWL. OWL is built on top of RDF [16], a
metadata language for the Semantic Web. Several languages for querying ontolo-
gies have been proposed and implemented, some of them in the lines of traditional
database query languages, others based on logic and rule languages [8,15].

Although temporal management has been recently studied for semistructured,
XML, and RDF data, little has been done to this respect in the Semantic Web
setting. Among the four categories in which Stojanovic [20] classified ontology
changes, we are particularly interested in evolution and versioning. Stojanovic
addressed the first problem, and defined the requirements for an efficient ontol-
ogy evolution system. This approach was implemented in the so-called KAON
framework. The problem of preserving consistency upon an evolving ontology
was studied by Haase et al [9]. This work provides a comprehensive overview
of the state-of-the-art in ontology evolution [10]. Finally, Flouris et al [5] claim
that the current approaches for ontology evolution lack formality, and propose
a model that generalizes and applies the AGM postulates.

In the field of ontology versioning, Klein et al [13] present a system, called Onto
View, that helps specifying relations between different versions of an ontology
(but does not keep track of the history). Visser et al [22] propose a temporal
reasoning framework for the Semantic Web, applied in BUSTER, an ontology-
based prototype supporting the so-called concept@location in time type of query.
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Huang et al propose a reasoning framework for ontology versioning, based on
temporal logic; they claim that ontology evolution is well-understood, although
ontology integrity is still an open research field. Their multi-version reasoning
framework is aimed at discovering inconsistencies caused by ontology evolution.
It is defined as an extension of linear temporal logic (LTL), denoted LTLm.

There is a clear need for version management in the design of Web ser-
vices [2,3]. Brown et al [2] classified changes in Web services in two broad classes:
backward-compatible and non-backward-compatible. In the former, we have the
addition of new WSDL operations and new XML schema types. In the latter,
they include: removing/renaming operations, changing the parameters of an op-
eration, and changing the structure of a complex data type. In spite of this there
is still no study of temporality issues in OWL-S ontologies and query languages.

3 Preliminaries

3.1 Temporal Issues

The existing approaches to ontology versioning are based on developing a new
physical version of the ontology each time a change occurs. In [6], they propose a
different approach for the evolution of RDF specifications, which can be seen as
a logical theory. They timestamp the RDF triples with their interval of validity.
In order to introduce the time dimension into OWL-S, we are faced with the
same question: should we maintain a snapshot of each state of the graph or,
should we label the elements of the OWL-S specification that are subject to
changes? Although both models are equivalent, the first one appears to be not
suitable for queries of the form: “all time instants where some condition Φ holds
in the specification”. It is well-known [21] that there are at least two temporal
dimensions to consider: valid and transaction times. Valid time is the time when
data is valid in the modeled world; transaction time is the time when data is
actually stored in the database. The snapshot approach captures transaction
time, while labeling is mostly used when representing valid time. The approach
we present in this paper can support both time dimensions.

For evolving OWL-S specifications, labeling may do better in scenarios where
changes are frequent and only affecting a few elements. In this situation, creating
a new physical version of the graph each time an update occurs may lead to large
overheads when processing temporal queries that span multiple versions. Thus,
labeling will be our approach. We work with the point-based temporal domain
for defining our data model and query language, but we encode time-points in
intervals whenever possible, for the sake of clarity. We consider time as a discrete,
linearly ordered domain, as usual in virtually all temporal database applications.
As usual in temporal databases, the (moving) current instant is denoted Now.

3.2 OWL-S Overview

Software agents that access Web services need a description of the available ser-
vices to perform an efficient service lookup. This description is provided by OWL-
S [17]. At a high level of abstraction, OWL-S can be seen as an ontology structure
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Fig. 1. Running example

whose instances are the OWL-S specifications. This structure or schema is com-
posed of three classes: ServiceProfile, ServiceModel and ServiceGrounding. These
classes are related to the Service class by the properties presents, describedby, and
supports, respectively. These properties have also their inverse. For simplicity we
focus on the properties serviceName, textDescription, has parameter, has
input, has output for the class Profile; from the Process class (a subclass of
ServiceModel), we use the has input, has output, parameterType and label
properties; from ServiceGrounding we use the wsdlDocument property, which is
the URI of the WSDL operation corresponding to an atomic process. We have
chosen these properties because they give a good intuition of the problem, and
their instances are likely to change over time.

Throughout the paper we use the service ontology depicted in Figure 1,
adapted from [18]. This is an abstract representation of an OWL-S specification
for a Web service that receives a pair city-state, and returns the corresponding
zip code (for brevity, we only partially show the Grounding part). The service
Profile tells what the service does, the Process Model tells the service clients
how to use the service, and the Grounding specifies how an agent can access the
service. WSDL operations bind the ontology to the implementation of the Web
service. In the example of Figure 1, we have included the types and names of
the service input and output parameters. The following fragment corresponds to
the abstract graph in Figure 1.

...

<grounding:WsdlAtomicProcessGrounding rdf:ID=‘‘ZCFProcessGrounding’’>

<grounding:owlProcess rdf:resource=‘‘#ZipCodeFinderProcess’’/>

<grounding:wsdlDocument>

‘‘http://www.dcc.uchile.cl/2005/ws/docum/ZipCode-v1.0.asmx?WDSL’’

</grounding:wsdlDocument>

.... >
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3.3 Abstract Model of OWL-S

In what follows, we adopt an abstract model for an instance of an OWL-S spec-
ification and we describe it as a graph (from now on, an OWL-S graph). We are
not interested in the OWL-S structure, given that we will consider this structure
static. Thus, we do not need our model to represent relations like subpropertyOf,
subclassOf, and so on. Figure 2 (a) shows an abstract model for an OWL-S in-
stance. The nodes represent resources (domain and range of each property). The
edges represent OWL-S properties, which include properties provided by the
OWL-S ontology such as presents, serviceName, hasInput, and hasOutput.
Although we have denoted the properties pi with different names, this may not
always be the case. Edges denoted inv(pi) represent the inverse property of pi,
like in the case of describes and describedBy in Figure 1. Note that this graph is
analogous to an RDF graph.

Definition 1 (OWL-S graph). An OWL-S graph is a set of RDF triples
(a, p, b), where p is an OWL-S property.

We next incorporate OWL-S constraints and consistency in our model. We de-
note Σ the set of OWL constraints given in the OWL-S specification. As an
example, we have in Σ a constraint that states that all property p is equivalent
to inv(p), and a constraint that isDescribedBy has max cardinality 1.

Definition 2 (OWL-S Consistency). An OWL-S graph is consistent if an
only if it satisfies the set of OWL-S constraints Σ.

4 Introducing Time into OWL-S

As mentioned in Section 3, we consider the schema (i.e., OWL-S ontology) as
fixed. Thus, the instances of the ontology are the only elements subject to
change. We extend the graph in Definition 1 with temporal labels, yielding a
temporal OWL-S graph, and we state consistency conditions these graph must
satisfy.

We assume the existence of three finite sets: intervals I, timestamps T , and
versions V , and two functions: init : I → T and end : I → T , which return the
starting and ending timestamps of an interval, respectively.

Definition 3 (Temporal OWL-S graph). A temporal OWL-S graph H is a
tuple (G, V, ρ), where G is an OWL-S graph whose triples are annotated with
intervals in I, V ⊆ V is a set of versions, and ρ : V → I is a function that
assigns to each version an interval (lifespan of the version). The intervals in
ran(ρ) do not appear in G.

Note that the model only supports single intervals. This introduces some limi-
tations on the model’s expressive power. However, the model can be extended
to support sets of intervals. Figure 2 (b) shows a temporal OWL-S graph.
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Fig. 2. (a) An abstract OWL-S graph. (b)The corresponding t-OWL-S graph.

Definition 4 (Lifespan of a node). Given a temporal graph H, the lifespan
of a node n of it, denoted lifespan(n) is the interval i such that init(i) =
Min({init(i′) : (a, p, n)[i′] ∈ G} ∪ {init(i′) : (n, p, b)[i′] ∈ G}) and end(i) =
Max({end(i′) : (a, p, n)[i′] ∈ G} ∪ {end(i′)(n, p, b)[i′] ∈ G}).

Definition 5 (Snapshot). Given a temporal OWL-S graph G, a snapshot of
G at time t, denoted G(t), is an OWL-S graph, with triples (a, p, b) such that
(a, p, b)[t] is in G.

Definition 5 provides the link between OWL-S with versioning, and temporal
OWL-S. A specification has as many versions as different snapshots can be
obtained at different instants. Thus, all versions of an OWL-S specification are
embedded in a single document.

4.1 Updates

We consider the following subset of the changes proposed in [2]: (a) add a new
WSDL operation; (b) remove an WSDL operation; (c) change the parameters of
an operation. However, note that the abstract model defined above hides most of
the non-temporal semantics of OWL-S. In this way, the update operations can be
implemented as operations over the graph, as follows: (1) adding a new operation
at time t is the insertion of a new edge (and the corresponding node), with
temporal label [t, Now]; (2) removing (at time t) an existing WSDL operation
(indicated by and edge with label [ts, Now]) is implemented replacing the label
by [ts, t] (thus, the history is retained); (3) changing some parameter implies
the following operations over the graph: (a) remove, at time t − 1, the edge to
be modified; (b) add an edge with the new parameter, at time t. For example,
suppose we want to update property p7, at time t = 100, replacing the range
URI h, by r, in the graph in Figure 2. The edge (b, p7, h)[0, Now] is replaced by
(b, p7, h)[0, 99], and a new edge (b, p7, g)[100, Now] is inserted.
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This definition of updates shows that we can partition the time line (i.e.
the temporal document’s lifespan) in a set of intervals such that, within these
intervals, all the snapshots remain the same.

Definition 6 (Interval Partition). The interval partition P of a set of inter-
vals i1, . . . , in, is the smallest set of intervals P = P1, . . . , Pn, such that all the
Pi’s in P are pairwise disjoint and P contains a partition of every interval ij.

4.2 Consistency

Hasse et al [9] studied the problem of keeping an evolving ontology consistent
through its different states. They defined three different notions of consistency,
respectively denoted κS , κL, and κU : (a) structural; (b) logical; (c) user-defined.
We are interested in extending OWL-S consistency for the temporal model.
Therefore we show how the set of OWL-S constraints Σ, which captures struc-
tural and logical consistency, can be applied in the temporal setting.

Definition 7 (Consistency). A temporal OWL-S graph G is consistent if and
only if every snapshot G(t) is consistent.

Given a temporal OWL-S graph G and an interval i, we denote G(i), the (non-
temporal) OWL-S graph with triples (a, b, c) such that (a, b, c) : i ∈ G.

Theorem 1. A temporal OWL-S graph G is consistent if and only if for every
interval i in the partition of the intervals of G, G(i) is consistent.

Proof. (sketch) Follows from defining the partition of the sets of intervals in the
graph. The document is consistent within the set of timestamps defined by each
interval in the partition.

The theorem yields an algorithm to verify consistency, which consists of two
steps: (i) compute the partition of the intervals of G; (ii) compute G(i) for each
interval i in the partition and check satisfiability of the constraints in G(i). Step
(i) can be done by building intervals from consecutive timestamps mentioned in
the intervals of G. Satisfiability can be checked using any OWL reasoner.

5 Querying Temporal OWL-S

The temporal OWL-S graph can be fully queried using the notion of temporal
RDF [6,7]. Here we sketch a query language that allows to query different versions
of OWL-S(T) specifications, along with changes inside versions themselves.

In order to capture changes inside versions, we introduce the notion of a state.
Therefore, our query language augment standard RDF querying with the notions
of version and state. Intuitively, a state is a maximal interval inside a version for
which the OWL-S specification does not change.

Definition 8 (State). Given an OWL-S(T) graph H = (G, V, ρ), the set S of
states of H is the smallest interval partition of the intervals in ρ(V ) such that
for each interval i ∈ S and for every pair of timestamps t1, t2, where init(i) ≤
t1, t2 ≤ end(i), we have H(t1) = H(t2).
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5.1 Queries by Example

Both, states and versions have “init” and “end” timestamps. We use the func-
tions init and end to refer respectively to them. As an example, init(s2) =
end(s1), says that s2 is a successor of s1, and by end(v) = end(s) we restrict
s to be the last state of version v. We also include standard arithmetic built-in
predicates (<, ≤, =, ≥, >) to compare timestamps. For instance, init(s2) < 2
tells that s2 started before timestamp 2.

Now, let us begin with a simple query: “Find the inputs of the Web service
ZipCodeFinderService in the last state of version v1”.

(ZipCodeFinderService , hasInput , ?U)[?S] ←
(?X, hasInput , U?)[?S][v1], end(?S) = end(v1)
(ZipCodeFinderService , presents, ?X)[?S][v1].

Annotations inside brackets in the queries represent variables that range over
states and versions. The following query returns “the profiles and states of version
v1 of Web service ZipCodeFinderService”.

(ZipCodeFinderService , presents, ?Z)[?S] ←
(ZipCodeFinderService , presents, ?Z)[?S][v1].

Now consider the query “Find the versions of Web services that output a Zip
code”. We express it as the following query:

(?V, versionOf, ?Y ) ← (?Y, hasOutput , zipcode)[?S][?V ], (?S, presents , ?Y )[?S][?V ].

5.2 Semantics

We consider the following disjoint sets of variables: a set Vr of RDF variables,
a set Vv containing version variables, and a set Vs of state variables. Individual
variables are denoted ?X , ?Y , ?Z, etc.

A query is a tableau, which is a pair (H, B ∪ A), where H and B are graph
patterns, and the set A has the usual arithmetic predicates over timestamps
and applications of the functions init and end. A graph pattern is a set of
expressions of the form (a, b, c)[s][v], where (a, b, c) is an RDF triple where some
elements may be variables in Vr, s ∈ Vs is a state variable, and v may be a
version variable in Vv or a constant for a version name.

We adopt a notion of safe rule similarly to Datalog to prevent operations on
infinite predicates. A rule is safe if each of its variables appear as an argument
in a non-built-in predicate of the body.

In order to give the semantics of a query we transform a temporal OWL-
S graph H = (G, V, ρ) into an RDF graph whose triples are annotated with
versions and states. This annotated graph, denoted VS(H), is a set contain-
ing triples (a, b, c)[s][v], which establishes that (a, b, c) holds in a state s of
H , and s arises within a version v ∈ V (i.e., init(s) ≤ init(v) and
end(v) ≤ end(s)).
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Given an interval i and a set of intervals S, we denote CoverSet(i, S) the set
containing the intervals i′ ∈ S such that init(i′) ≤ init(i) and end(i) ≤ end(i′).
Then, the set VS(H) is obtained as follows. Let S be the set of states of H , and
let U be the set of intervals in G. For each interval i ∈ S, and version v that
contains i, we annotate with [i][v] all the triples in

⋃
i′∈CoverSet(i,U) H(i′), and

add them to VS(H).
The semantics is similar to temporal RDF [6]. Given a query (H, B ∪ A) and

a OWL-S(T) graph H , for each matching of the graph pattern B in VS(H),
pick the values of the variables for versions and states, and check if they satisfy
the built-in predicates in A. If this is the case, construct a pre-answer, which is
the graph resulting by substituting the values of the variables in the head. The
answer of the query is the union of all pre-answers.

5.3 Complexity

We now show that the query language proposed does not increase the complexity
of temporal RDF.

Lemma 1. Given an OWL-S(T) graph H = (G, V, ρ), for each state s of H,
there are intervals i, i′ in H such that init(i) = init(s) and end(i′) = end(s).

This lemma gives a simple procedure to compute states. We need to order all
the timestamps that limit the intervals in H , and search for maximal intervals
that have these timestamps as limits, within which the temporal OWL-S graph
does not change. This procedure takes O(N2M), where N is the size of H ,
and M is the number of intervals in H . It also shows that VS(H) has size in
O(NM).

To get the complexity of query processing, we consider the problem of testing
emptiness of the query answer set in the following forms: (1) Query complexity
version: for a fixed database D, given a query q, is q(D) non-empty? (2) Data
complexity version: for a fixed query q, given a database D, is q(D) non-empty?

Theorem 2. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the data complexity version.

The proof is similar to temporal RDF and is based on the fact that the graph
VS(H) over which the search for matching is done is of polysize in H .

6 Temporal OWL-S Implementation

Now we sketch how the concepts introduced in the paper can be embedded
in an actual OWL-S specification. For this, we propose two mechanisms: (1)
slightly extend the OWL-S vocabulary, specifying a new profile; (2) timestamp
the elements of the OWL-S specification.

Versioning Profiles. The first extension we need is a small OWL-S vocabulary
in order to define a fourth component of a OWL-S(T) specification (along with
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profile, process model, and grounding), that we will call a versioning profile.
The vocabulary of this new profile includes the classes versioningprofile,
version, interval, date, and the properties hasVersion, spans (and its inverse
isSpannedBy), lifeSpan, init and end. The constraints for the versioning pro-
file are: (a) the domain of lifeSpan is version, and its range is interval; (b) the
domain and range of init and end are interval and date, respectively; (c) the
domain and range of hasVersion are versioningprofile and version, respec-
tively; (d) the domain and range of spans are Service and versioningprofile,
respectively;(b) the cardinality of the lifeSpan property is 1-1.

In our running example, for instance, we would have the following triples stat-
ing that v1 is a version of the OWL-S(T) specification and its lifespan lies within
the interval i, whose limits are 1 and 2:

(ZCFS, isSpannedBy, ZCFSV ersioningProfile), (ZCFSV ersioningProfile,
hasVersion, v1), (v1, lifeSpan, i), (iinit, 1), (i, end, 3).

OWL-S Timestamping. Assume that from 2005 on, a new version of the process
which implements the service of our running example was released. The corre-
sponding timestamped OWL-S specification would look as follows:

<rdf:RDF xmlns:owl=‘‘http://www.w3c.org/2002/07/owl#’’?>

xmlns:Time=‘‘http://www.dcc.uchile.cl/db/time’’

...

<grounding:WsdlAtomicProcessGrounding rdf:ID=‘‘ZCFProcessGrounding’’>

<grounding:owlProcess Time:FROM=‘1999-01-01’ Time:TO=‘Now’

rdf:resource=‘‘#ZipCodeFinderProcess’’/>

<grounding:wsdlDocument Time:FROM=‘1999-01-01’ Time:TO=‘2004-12-31’>

‘‘http://www.dcc.uchile.cl/2005/ws/docum/ZipCode-v1.0.asmx?WDSL’’

</grounding:wsdlDocument>

<grounding:wsdlDocument Time:FROM=‘1999-01-01’ Time:TO=‘2004-12-31’>

‘‘http://www.dcc.uchile.cl/2005/ws/docum/ZipCode-v2.0.asmx?WDSL’’

</grounding:wsdlDocument>

....

7 Conclusion

Versioning of Web services ontologies has not yet been studied by the Semantic
Web community. We introduced OWL-S(T), a formal model for OWL-S, along
with a query language supporting a two-level versioning scheme for OWL-S
specifications. Our model and query language allow, for instance, simultaneously
accessing different versions of the same specification.

A lot of research and practical issues remain open. Among these problems, the
development of efficient algorithms for checking consistency, and fixing inconsis-
tent specifications is required. Future work also includes the implementation of
our proposal.
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