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SUMMARY

Typical small hospital and laboratory equipment and general supplies cannot be anchored to resist
earthquake motions. In order to protect these non-structural components, a common procedure is to
provide barriers to restrain overturning of objects on shelves and other furniture. In many cases this
option is not available, especially for hospital equipment, because of other functional requirements.
This work presents an alternative approach. The method proposed here does not avoid overturning,
but controls the direction of overturning by providing an inclination to the support base so that the
overturning occurs in a preferential direction towards a safe area. For example, objects on shelves, could
overturn towards the inside or a wall, and equipment on tables could overturn away from the edge. In
both cases this would not only reduce the damage to the particular items, but reduce the amount of
debris on the �oor.
In order to determine the proper inclination of the base, speci�c rigid bodies are analytically evaluated

for bi-directional excitation obtained from 314 earthquake records, in approximately 7500 cases. For each
case, several inclination angles are evaluated. Finally, a parametric curve is adjusted to the data, given
a relation between angle of inclination and percentage of controlled overturning cases. In all cases a 7◦
angle gives more than 98% con�dence of controlled overturning. The design expressions were later
compared with experimental results obtained on a six-degree-of-freedom shake table; con�rming the
analytical expressions.
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INTRODUCTION

By seismic excitation, an unanchored object may enter a rocking state which could cause it
to �nally overturn. If we think of all the unanchored objects that rest on shelves, racks and
tabletops, and consider the eventual possibility of them overturning or collapsing, then we
would understand the importance of developing a system that can increase our security by
preventing them from overturning in an unsafe way.
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The method suggested here, would not prevent objects from overturning, but will force
them to overturn in a desired direction. This means we can make objects overturn towards
a safe zone where no damage will be done. In order to force this e�ect we induce a small
slope to the plane where the objects lay, in the direction that we want them to overturn.

PREVIOUS RESEARCH

According to Ishiyama [1], the dynamic behaviour of a rigid block over an oscillating surface
has been the subject of investigation since 1881 with the works of Milne and Perry for
horizontal acceleration and in 1924 with Mononobe including vertical in�uence. Housner [2]
established overturning criteria for tall, slender structures subject to horizontal acceleration,
motivated by the observed behaviour in water towers during the Chilean earthquake of 1960.
He proposed an energy balance equation to determine the pseudo-velocity Sv needed to obtain
a 50% of overturning rate.
Yim et al. [3] investigated the rocking response for an unanchored rigid body that cannot

slide. They use horizontal and vertical accelerations to determine the e�ects that the properties
of the acceleration have over the behaviour of the body. They determined that the rocking
state of a rigid body is very sensitive to the geometric properties of the body as to the
properties of the acceleration applied.
Ishiyama [4], classi�ed and studied the di�erent dynamic stages that describe the behaviour

of the rigid body under seismic excitation: rest, slide, jump, rotate, slide and rotate, and
impact. He determined the movement equations for each case and the criteria to establish the
boundaries between them. Uematsu et al. [5] present factors that can be included to improve
the similarities between the analytic and experimental response. Shenton [6], studied in depth
some of the boundary criteria of the di�erent dynamic stages.
Recent works of Fierro and Perry [7], Kaneko and Hayashi [8] and Boroschek and Romo [9]

are oriented to obtaining design criteria in order to solve the overturning of unanchored
rigid bodies under seismic excitation. In the works of Fierro and Perry [7], the in�uence
of the geometric properties of the body and input displacement on its overturning are pre-
sented. Boroschek and Romo [9], included asymmetric bodies and reestablished the overturning
criteria for these cases. On the other hand, Kaneko and Hayashi [8] studied the overturning
behaviour of di�erent bodies and proposed an equation to obtain the overturning ratio for a
speci�c body, which depends on the geometric properties of the body and the properties of
the input excitation.
All the works previously mentioned studied the response of unanchored objects on a hor-

izontal plane, although there is one work by Plaut et al. [10] that included inclined planes.
The work described the fractal behaviour that can be found in the overturning of a body,
subject to its chaotic response.

PHYSICAL THEORY

By developing the static equilibrium equations of an unanchored object placed on an inclined
plane, we can determinate the acceleration needed to initiate a rotation over the body.
We de�ne h and b as the geometric dimensions of the body, where � is the plane inclination

and ayg, axg are the corresponding �oor accelerations, Figure 1. The equation for the horizontal
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Figure 1. Diagram of a rigid body on an inclined plane, subject to vertical and horizontal accelerations.
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Figure 2. Minimum acceleration needed to initiate rotation of the body in the same
and opposite direction of the plane inclination.

acceleration needed to initiate rocking may be written as

axg=
(ayg + g)

(
b
h

− tan �
)

(
1 +

b
h
tan �

) (1)

Figure 2 shows the values for the acceleration of three di�erent bodies (b1[b=h=0:2],
b2[b=h=0:25], b3[b=h=0:3]). It shows the minimum acceleration needed to initiate rotation
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in the opposite direction of the plane, ‘Amin−’, and the minimum acceleration needed to ini-
tiate rotation in the same direction of the plane, ‘Amin+’. As we can see in this �gure, for
greater slopes, a greater acceleration is needed to rotate the body in the opposite direction
of the slope, while for the same direction, a lower acceleration is needed. From this, we can
propose a method to control the overturning direction of a body subject to seismic accelera-
tion by applying a speci�c inclination to its supporting plane. We must also consider that by
doing this we also increase the probability of overturning.

ROCKING CONTROL

To describe the dynamic behaviour of an unanchored body we will use two analytic methods:
the �rst one consists of the solution of the speci�c rocking equation and the other consists
of the solution of a general equation for the di�erent dynamic stages of the body.

Rocking equation

The speci�c equation that describes the rocking behaviour of an unanchored object on a hori-
zontal plane has been previously studied and it is well discussed in the works of
Yim et al. [3]. We have modi�ed this equation in order to extend its application to non-
horizontal planes, resulting in:

��r =− p2
[
sin(� sign(�r)− �r + �) ·

(
1 +

ayg
g

)
+
axg
g
cos(� sign(�r)− �r + �)

]
(2)

where p=
√
3 g=4 r; ayg is the vertical acceleration; � the plane inclination; axg the horizontal

acceleration; �= tan−1(b=h); r2 = (b2 + h2)=4; sign(�r)= + 1 or −1 depending on the sign
of the angle �r . sign(0)= + 1; �; b; h are as shown in Figure 1; Xr; Yr; �r correspond to the
coordinate system associated to the inclined plane as shown in Figure 1.

General equation

For a second method we have solved the equations of the di�erent dynamic stages of a body
subject to ground acceleration presented by Ishiyama [4], which result in a faster method for
resolving the dynamic response of the unanchored object.
The di�erent stages proposed are: rest, slide, rotation, jump, rotation with sliding, and

impact. These equations have been modi�ed in order to use them on an inclined plane and
are shown as follows:

Rest:

Ry = (ayg + g) cos�+ axg sin �¿0 (3)

Rx = axg cos�+ (ayg + g) sin � (4)

where Ry and Rx are the reactions by unit of mass of the body over the foundation.
Pure slide:

�xr =− (ayg + g)(sign(ẋr) cos��k + sin �)− axg(cos�+ sign(ẋr) sin ��k) (5)
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Pure rotation:

��r=
r

i2g + r2

⎡
⎣cos(�− |�r|)[(ayg + g) sin �+ axg cos�]−

s1 sin(�− |�r|)[(ayg + g) cos�+ axg sin �]

⎤
⎦

s1=sign(�r); �r �=0

s1=sign(�̇r); �r =0 ∧ �̇r �=0

s1=sign[axg cos�+ (ayg + g) sin �]; �r =0 ∧ �̇r =0

(6)

Pure jump:

�xr =−axg cos� − (ayg + g) sin � (7)

�yr =−(ayg + g) cos� − axg sin � (8)

Rotation with displacement:

��r =
s′′r[rc�̇

2
r − (ayg + g) cos� − axg sin �][s+ s′s′′�kc]

r2s[s+ s′s′′�kc] + i2g
(9)

�xr = s′�k[r�̇
2
r c − s′′r ��rs− (ayg + g) cos� − axg sin �]− axg cos� − (ayg + g) sin � (10)

with

s′ = sign(ẋro) if ẋro �=0

s′ = sign(−axg cos� − (ayg + g) sin �) if ẋro=0 and axg �=0

s′ = sign(−�r(�− |�r| − sign(�r)�)) if ẋro=0 and axg=0

s′′ = sign(�r) if �r �=0

s′′ = sign(�̇r) if �r =0 and �̇r �=0

s′′ = sign(axg cos�+ (ayg + g) sin �) if �r =0 and �̇r =0

c= cos(�− |�r|)

s= sin(�− |�r|)

ANALYTICAL RESULTS

All the analytic study was developed considering a plastic impact, i.e. using a coe�cient
of restitution equal to zero. The equations do not present this term because it only de�nes
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Table I. Dimensions of the 12 bodies used in the analytical study.

Body 1 2 3 4 5 6 7 8 9 10 11 12

Base (m) 0.04 0.05 0.06 0.10 0.13 0.15 0.18 0.20 0.25 0.30 0.30 0.38
Height (m) 0.20 0.20 0.20 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.50 1.50
b=h (dimensionless) 0.20 0.25 0.30 0.20 0.26 0.30 0.36 0.20 0.25 0.30 0.20 0.25
r (m) 0.10 0.10 0.10 0.25 0.26 0.26 0.27 0.51 0.52 0.52 0.76 0.77
� (rad) 0.20 0.24 0.29 0.20 0.25 0.29 0.35 0.20 0.24 0.29 0.20 0.25
# Records (dimensionless) 258 196 158 258 188 158 116 258 196 158 258 196

Figure 3. Analytical results corresponding to body #1 (b:0.04, h:0.2).

borders conditions between motion stages. In the case of the general equation we used a high
frictional coe�cient in order to avoid the body from sliding, which represent a more critical
case to study the rocking behaviour.
To build the analytical results, we studied the response of 12 bodies (Table I), subject to

314 earthquake records obtained from the following earthquakes: Taiwan 1999, Kern County
1952, Northridge 1994, Chile 1985, Kobe 1995, Kocaeli 1999, Landers 1992, Loma Prieta
1989, Imperial Valley 1979, Morgan Hill 1984, San Fernando 1971, Borego Mountain 1968,
Palm Springs 1986, Sierra Madre 1991 and Whittier 1987. The records were entered with their
horizontal and vertical components and the horizontal direction was analysed for both signs.
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Figure 4. Analytical results corresponding to body #4 (b:0.10, h:0.5).

The number of records that generated overturning were counted for each body, classifying
them according to the overturning direction. By this procedure we obtained an overturning
rate in the desired direction for each body along with its respective plane inclination. In order
to decrease the processing time for each analysis, only the records that satisfy the minimum
acceleration criteria (1) for the horizontal plane were used. The corresponding results are
presented in Figures 3–6.
As seen in these �gures, the results obtained by both methods are very similar. In general

we can observe that the di�erence between them is smaller than 4% for all the experiments.
The use of one or the other method depends on utilization advantages, like simplicity or
processing speed rather than for the results. Figure 6 shows the average results for all the
bodies using both methods. In this �gure we can distinguish a characteristic behaviour of the
curves for all the bodies. They have a predictable behaviour that can be represented by an
analytic expression. The behaviour of the curves is very similar for the di�erent bodies. If we
obtain an average curve for all the bodies and compare it with the results we found di�erences
lower than 15% for the worst case. Because of this we propose to model the percentage of
controlled overturning rate with two di�erent analytic expressions: the �rst one corresponds
to the average behaviour for all the bodies (general controlled overturning rate, GCOR), and
the second includes the dimensions of the body as one of its variables (speci�c controlled
overturning rate, SCOR).
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Figure 5. Analytical results corresponding to body #12 (b:0.38, h:1.5).

The values for the GCOR can be seen in Figure 6. The expression is the following:

GCOR= tanh
(
�
c1

)
c2 + 0:5 (11)

With c1=0:048, c2=0:48, and � being the plane inclination (rad).
The results obtained using this expression are shown in Table II. This analytic expression

corresponds to the average behaviour for any body, independently of its dimensions. Figure 7
shows the values of this equation in comparison with the average of the analytic results. The
percentage of error displayed in Figure 7 is obtained using the following expression:√∑

(Xi − Xf)2∑
X 2f

(12)

where Xi refers to the analytical results and Xf to the values obtained by the GCOR expression.
Figure 7 shows that the proposed curve has a conservative behaviour for small inclinations.
In addition, from Figure 6 we can say that generally the values obtained by this equation
result in a conservative response for bigger bodies.
The second equation proposed corresponds to a more speci�c expression in which the

dimensions of the body are considered, de�ned as SCOR. In this way we obtained a more
representative response for each particular body, although that this expression is applicable
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Figure 6. Average results for all the bodies using both analytical methods, the
rocking equation and the general equation.

Table II. Controlled overturning rate obtained by using the GCOR equation for inclinations from 0 to 7◦.

Angle (◦) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
% 50 59 67 75 81 85 89 92 94 95 96 97 97 97 98

only when the body dimensions are known. This equation is used for the design of a support
base for a speci�c body; its expression is the following:

SCOR= tanh
(
�
c1

)
c2 + 0:5 (13)

with c1=0:1136(b=h)−0:0283r+0:0279, c2=0:48, � the plane inclination (rad), b the width
(m), h the height (m), r=

√
(b=2)2 + (h=2)2 (m).

In order to compare both expressions, we can observe in Figures 8 and 9 the values for
these expressions for the di�erent bodies and their respective analytic results.
Table III shows some error estimators used to compare both equations, where ‘GCOR’

refers to the average equation and ‘SCOR’ refers to the characteristic equation.
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Figure 7. Comparison between the GCOR equation, and the average behaviour for all the bodies’
dimensions obtained from the analytical study.

The improvement obtained by using the SCOR equation is better observed in Figure 9,
where the particular cases can be seen. In general, the most signi�cant improvements occur for
the bigger bodies; also we can observe that for those bodies the equations have a conservative
estimation.
In view of the fact that the di�erence between both equations is not relevant, the use of

one or the other will depend solely on the �nal application.
Throughout the study we could observe that for a given aspect ratio, increasing the size

of the body made it easier to control its direction of overturning. We can observe this phe-
nomenon in Figure 10, where the response of di�erent bodies with equal aspect ratio is
shown.

EXPERIMENTAL RESULTS

In order to verify the results obtained from the analytical study, an experimental research
was also performed. We studied the behaviour of seven bodies previously studied with the
analytical method. The selection criterion was based on the aspect ratio of the bodies in order
to ensure the study of relevant cases. The height of the bodies selected was limited to a
maximum of 1m to avoid test accidents due to the weight that these bodies represent. To
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Figure 8. The results obtained from the analytical method, from the GCOR equation and from
the SCOR equation for bodies 1–6 are shown.

simulate the seismic excitation in the base of the bodies, we used a shaking table with six
degrees of freedom as shown in Figure 11. The table has a load capacity of 10 kN and its
nominal dynamic limitations are shown in Table IV.
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Figure 9. The results obtained from the analytical method, from the GCOR equation and from the
SCOR equation for bodies 7–12 are shown.
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Table III. Error estimators used to compare both equations proposed, the GCOR equation and the SCOR
equation, using the analytical results as reference.

Geometric properties Max di�erence Absolute area Error

GCOR SCOR GCOR SCOR
Body Base Height b=h r � (%) (%) GCOR SCOR (%) (%)

1 0.04 0.2 0.20 0.10 0.20 3 −2 5.01 5.21 1 1
2 0.05 0.2 0.25 0.10 0.24 9 10 15.57 8.22 3 2
3 0.06 0.2 0.30 0.10 0.29 −7 5 16.83 5.86 3 2
4 0.10 0.5 0.20 0.25 0.20 9 7 12.39 13.22 3 3
5 0.13 0.5 0.26 0.26 0.25 −3 −3 9.23 5.87 2 1
6 0.15 0.5 0.30 0.26 0.29 −5 −2 13.90 6.65 3 2
7 0.18 0.5 0.36 0.27 0.35 −37 −29 63.12 40.98 13 9
8 0.20 1.0 0.20 0.51 0.20 14 8 31.50 11.65 6 3
9 0.25 1.0 0.25 0.52 0.24 10 7 17.61 9.23 4 2
10 0.30 1.0 0.30 0.52 0.29 7 6 12.39 12.35 3 3
11 0.30 1.5 0.20 0.76 0.20 14 4 41.16 6.04 8 1
12 0.38 1.5 0.25 0.77 0.25 7 −16 15.13 14.91 4 3

Three column shows the di�erent estimators used: Max di�erence, correspond to the maximum di�erence
observed between each equation and the analytical results. Absolute Area, correspond to the absolute area
between each equation and the analytical results. Error, correspond to the error between each equation and
the analytical result using Equation (12).
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Figure 10. Results obtained for di�erent bodies with the same aspect ratio (h=b = 5).

To build the bodies we used agglomerated wood in order to obtain a relatively homogeneous
mass distribution, the respective sizes and positions of their centre of mass are shown in
Table V. The depth of each body was as a minimum twice its width, in order to avoid a
torsional motion. To keep the bodies from sliding, rough surfaces were used to generate a
high static friction coe�cient to ensure a rocking state of the body before sliding.
Figure 12 shows a picture of the bodies used along with the table assembly. The rectangular

objects shown over the table correspond to shock absorbers, which were used to prevent the
bodies from hitting the table.



R. BOROSCHEK AND A. IRURETAGOYENA

Figure 11. General view of the shaking table. Test procedure.

Table IV. Shaking table motion nominal limits.

Axis Displacement (m) Velocity (m=s) Acceleration (g)

Surge ± 0:25 ± 0:5 ± 0:6
Lateral ± 0:25 ± 0:5 ± 0:6
Heave ± 0:18 ± 0:3 ± 0:7

Table V. Dimensions of the seven bodies used in the shaking table study.

Centre of gravity
Aspect ratio b=h

Body Base (mm) Height (mm) Depth (mm) (dimensionless) Mass (kg) bcg (mm) hcg (mm)

1 99 493 201.2 0.20 5.22 51.5 243
2 130 500 305 0.26 13.11 65 254
3 152 500 301.5 0.30 15.31 76.5 251.5
4 39 200 81 0.20 0.36 19.5 100
5 49 200 109 0.25 0.56 25 100
6 200 998 410 0.20 54.96 100 495
7 248 995 490 0.25 65.14 124 499

The earthquake records used correspond to a selection of 25 records out of the total 314
used in the analytic research. The selection was based on those that resulted in a greater
number of overturned objects, which in most cases were the ones with greater acceleration
values. Unfortunately, some of these records surpass the physical limits of the shaking table,
so it was necessary to scale some of them down. The records used and their corresponding
scale factors are shown in Table VI.
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Figure 12. Bodies used in the experimental analysis, along with the shaking table assembly.

Table VI. Earthquake records and scales.

Earthquake record Scale

Kobe 1995, KJMA 090 - up 0.68
Northridge 1994, Sylmar 142 - up 0.57
Chi-Chi 1999 Taiwan, TCU068E - up 0.35
Imperial Valley 1979, Bonds Corner 140 - up 0.26
Imperial Valley 1979, Imperial Valley College, El Centro Array #7, CA S50W - up 0.49
Northridge 1994, Castaic - Old Ridge Route 090 - up 0.96
Loma Prieta 1989, Corralitos - Eureka Canyon Rd. 000 - up 0.91
Loma Prieta 1989, Corralitos - Eureka Canyon Rd. 090 - up 1
Northridge 1994, Castaic - Old Ridge Route 360 - up 0.92
Chile 1985, Llolleo 10 - up 0.67
Chile 1985, Melipilla EW - up 1
Imperial Valley 1979, James Rd., El Centro Array #5, CA S50W - up 0.53
Landers 1992, Lucerne 270 - up 0.58
Loma Prieta 1989, Gilroy #1 - Gavilan College, Water Tank 090 - up 1
Whittier 1987, Bell - Bulk Mail Facility 280 - up 1
Loma Prieta 1989, Gilroy #3 - Gilroy Sewage Plant 000 - up 1
Imperial Valley 1979, Anderson Rd., El Centro Array #4 S40E - up 1
Chile 1985, Llay-Llay N80W - up 1
Imperial Valley 1979, Cruickshank Rd., El Centro Array #8, CA S40E - up 0.95
Kocaeli 1999 Turkey, DZC 270 0.93
Chile 1985, Llay-Llay S10W - up 1
Imperial Valley 1979, Imperial Valley College, El Centro Array #7, CA S40E - up 1
Northridge 1994, Arleta - Nordho� Ave Fire Station 090 - up 0.91
Loma Prieta 1989, Gilroy #2 - HWY 101=Bolsa Rd. Motel 000 - up 1
Loma Prieta 1989, Gilroy #2 - HWY 101=Bolsa Rd. Motel 090 - up 1

The inclination angles studied correspond to a range around the inclination angle that
resulted from the analytical research, which ensure an overturning control of 95%. In general,
this range corresponds to angles between 4 and 5:5◦; we also studied the response for the
horizontal plane to obtain a basic reference. The angles generated by the table were checked
using topographic equipment. The basic output data obtained from this experimental study
corresponds to the occurrence of overturning and its direction.
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Figure 13. Comparison between the analytical and experimental research, using the
average results for all the bodies studied.

In order to correlate the analytical and experimental results, we put accelerometers over the
shaking table to record the actual table motion. With these values we developed the analytical
results for the respective bodies and compared them with the experimental results. To compare
the analytical and the experimental results, the overturning results obtained for each inclination
angle and for each body for all the earthquake records were considered. In Figure 13, the
experimental and the analytical results are compared for di�erent angles and several bodies.
In this �gure the average overturning rate for each angle is presented. A maximum of 5%
di�erence was found from the overturning rate for a given angle and speci�c body indicating
the good agreement between analytical and experimental results.

CONCLUSIONS

The two analytical methods used in this work to describe the behaviour of an unanchored
rigid body on a inclined plane show similar results and correlate well with the experimental
results. Although they do not show signi�cant di�erence in the results, each one has di�erent
programming advantages that must be considered.
In the results we can visualize the chaotic behaviour that represents the rocking motion of

the bodies. In spite of this it was possible to control their overturning direction. In general
we can observe that it was easier to control bigger bodies, as these needed smaller plane
inclinations for the same overturning control rate.
It must be considered that all the results presented here are based on the fact that the bodies

studied do, in fact, overturn. This means that the controlled overturning rate presented, indi-
cates in which direction the body will overturn assuming that it will overturn. This important
issue reduces the in�uence of the bodies’ dimensions over the overturning results.
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Two equations are determined to obtain the overturning rate direction, depending on their
application. The �rst one corresponds to an equation independent of body dimensions.

GCOR= tanh
(
�
c1

)
c2 + 0:5

With c1=0:048, c2 = 0:48, and � being the plane inclination (rad).
The second equation corresponds to a more precise result in which the in�uences of body

dimensions are considered.

SCOR= tanh
(
�
c1

)
c2 + 0:5

With c1=0:1136(b=h)−0:0283r+0:0279, c2=0:48, b the width (m), � the plane inclination
(rad), h the height (m), r=

√
(b=2)2 + (h=2)2 (m).

The estimation error observed using the �rst expression corresponds to an 8% in the worse
case, in contrast with a 3% by using the second expression. By using these expressions we
can estimate the angle of inclination needed for a plane to control the overturning direction
of a rigid body, with a given probability factor associated.
Note that this study only considered overturning without sliding, and the records used

correspond to ground-level acceleration.
By forcing items to overturn in a preferential direction we can improve the safety of many

unanchored objects in laboratories, hospital and public places. We could reduce both damage
to the items and collateral damage due to debris on �oors or obstructed corridors by falling
items.
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