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Abstract

This paper concerns a frequency-based route choice model for congested transit networks, which takes
into account the consequences of congestion on the predicted flows as well as on the expected waiting and
travel times. The paper builds on the results presented in Correa [Correa, J., 1999. Asignación de flujos de
pasajeros en redes de transporte público congestionadas. Engineering thesis, U. de Chile, Santiago] and
Cominetti and Correa [Cominetti, R., Correa, J., 2001. Common-lines and passenger assignment in con-
gested transit networks. Transportation Science 35(3), 250–267], extending these to obtain a new character-
ization of the equilibria which allows us to formulate an equivalent optimization problem in terms of a
computable gap function that vanishes at equilibrium. This new model formulation can deal with flow
dependent travel times and is a generalization of the previously known strategy (hyperpath) based transit
network equilibrium models. The approach leads to an algorithm which has been applied successfully on
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large scale networks. Computational results for transit networks originating from practice demonstrate the
applicability of the proposed approach.
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1. Introduction

The planning of urban transit services relies on the use of transit assignment models for predict-
ing the way in which transit travellers choose routes from their origins to their destinations. While
much progress has been achieved in the past two decades, the issue of how to model the conse-
quences of congestion on the predicted flows in transit networks has received relatively little atten-
tion. The purpose of this paper is to build on the results of Correa (1999) and Cominetti and
Correa (2001), and extend these to the formulation of a solvable model for large scale transit net-
works. This topic was the subject of the doctoral thesis of Cepeda (2002).

It is worthwhile to review the contributions made to the study of transit route choice. The ear-
liest methods for finding paths in transit networks—such as Dial (1967), Fearnside and Draper
(1971) and Le Clercq (1972)—recognized that waiting time at stops served by several lines was
an important aspect of this problem, and proposed various heuristic ways to combine waiting
and travel times in computing shortest paths. The seminal paper of Chriqui and Robillard
(1975) introduced the notion that, on a simple network of one origin and one destination, passen-
gers can select a subset of attractive lines and board the first one of these that arrives at a stop in
order to minimize the expected sum of waiting plus travel times.

The ideas of Chriqui and Robillard were extended to general transit networks in two ways. Spi-
ess (1984) and Spiess and Florian (1989) introduced the notion of strategy, which is a choice of an
attractive set of lines at each decision point; that is, at each node where boarding occurs. The
resulting model and algorithm achieve the minimization of the expected value of the total travel
time which includes access, wait and in-vehicle time. Nguyen and Pallotino (1988) provided a
graph theoretic interpretation of a strategy as an acyclic directed graph, and denoted it as a hyper-
path. These models considered congestion aboard the vehicles by associating discomfort functions
with each segment of a transit line, so that the resulting equilibrium models can be solved by stan-
dard algorithms for convex minimization. However, the waiting times are underestimated since
they do not consider the fact that in a period of heavy congestion passengers may not be able
to board the first vehicle to arrive at a stop.

The results of Chriqui and Robillard were used in a different way by De Cea and Fernández
(1989) in a transit assignment model based on a restricted notion of strategy which allows choices
among multiple lines at a given stop only if they all share the next stop to be served (for a com-
parison with the strategy approach see De Cea et al., 1988). This model was extended by De Cea
and Fernández (1993) to heuristically incorporate the effects of congestion at bus stops and
aboard the vehicles, leading to an asymmetric equilibrium model which is solved by the Jacobi
method. The model works on a large augmented graph so that the computational effort is signif-
icant, and the resulting flows often exceed the capacity of the vehicles. A model in which passen-
gers that can not board are routed through spill-links was proposed in Kurauchi et al. (2003) and
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was tested on a small example. This model considers the risk-aversion of passengers to over-
crowded stations and combines the computation of common-line strategies with a Markovian ap-
proach in which the boarding probability is determined by the residual capacity of the transit
vehicles. On the other hand, the issue of the capacity of transit services is equally important
for schedule-based transit route choice models. A relevant contribution is that of Tong and Wong
(1999) who develop a stochastic dynamic model which is applied to the Hong Kong underground
services. A survey of contributions to schedule-based approaches to transit route choice can be
found in the proceedings of a conference held in Ischia and edited by Nuzzolo and Wilson (2004).

For the modeling of frequency-based transit services, a formal study of congestion at bus stops
based on queueing theory was initiated by Gendreau (1984) who was the first to formulate a gen-
eral transit assignment model with congestion. For more recent results on the waiting processes at
bus stops see Bouzaı̈ene-Ayari et al. (2001) and Cominetti and Correa (2001), as well as the recent
thesis by Cepeda (2002). As a consequence of these studies it became clear that the congestion at
bus stops does not only increase the waiting times but it also affects the flow share of each attrac-
tive line. In the case of bus lines with independent exponential interarrivals, the flow split is pro-
portional to the so-called effective frequency, that is to say, the inverse of the waiting time of each
line. The stop models are called semi-congested if they consider only the increase of waiting times,
and full-congested if they also include the effects on the flow split. Wu et al. (1994) considered a
semi-congested transit network model in which the time required to board a vehicle increases with
flow, but the distribution of flows among attractive lines is done in proportion to the nominal fre-
quencies. Bouzaı̈ene-Ayari (1996) and Bouzaı̈ene-Ayari et al. (1995) extended the latter to a full-
congested model which combines a fixed point problem in the space of arc flows with a variational
inequality in the space of hyperpath flows. An algorithm reminiscent of the method of successive
averages is also proposed in these works but the combinatorial character of hyperpaths seem to
limit its applicability to small networks. Moreover, the congestion functions are assumed finite
and the arc travel times are strongly monotone, excluding relevant cases such as constant travel
times or waiting times based on queuing theory which tend to infinity as the flows approach the
line capacities.

More recently, Cominetti and Correa (2001) analyzed a full-congested version of the common-
lines problem of Chriqui and Robillard, and used it to develop a frequency-based transit equilib-
rium model which can deal with general arc travel times as well as more realistic waiting time
functions with asymptotes at bus capacity. The latter are introduced by considering effective fre-
quency functions that vanish when the flows exceed the capacity of the line. Although they estab-
lish the existence of a network equilibrium, it fails to propose an algorithm to compute it.
Nevertheless, since the model is stated as a fixed point in the space of arc flows only, it opens
the way to deal with large scale networks.

The purpose of the present paper is precisely to describe an alternative formulation for the full-
congested frequency-based transit equilibrium model proposed in Cominetti and Correa (2001),
and to derive from it a solution algorithm for large scale networks. The paper is organized as fol-
lows. The common-lines problem is revisited in Section 2 and the alternative formulation for the
general network model is described in Section 3. Some special cases of the model are discussed in
Section 3.3 and in the appendix at the end of the paper. The solution algorithm, as well as some
comments on the difficulty of the problem and numerical tests on real size networks are given in
Section 4.
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2. The congested common-line problem revisited

Let us recall the common-line problem with congestion described in Cominetti and Correa
(2001) (Fig. 1). Consider a simple network consisting of an origin O connected to a destination
D by a finite set of bus lines A = {a1, . . . ,an}. Each line a 2 A is characterized by a constant in-
vehicle travel time ta 2 R and a smooth effective frequency function fa : ½0;�vaÞ ! ð0;1Þ with
f 0aðvaÞ < 0 and fa(va)! 0 when va ! �va. The effective frequency is supposed to be decreasing in
order to reflect the increment in waiting time induced by an augmentation of flow, and the con-
stant �va > 0 (eventually �va ¼ 1 for some links including the walking links) is called the saturation
flow of the line. The case of flow-dependent travel times as well as more general effective frequency
functions will be considered in Section 3.

For the purpose of travelling from O to D, each passenger selects a non-empty subset of lines
s � A, called the attractive lines or strategy, boarding the first incoming bus from this set with
available capacity. Thus, the total flow x P 0 splits among all possible strategies s 2S so that
x ¼

P
s2Shs where hs P 0 denotes the flow on strategy s 2S. Assuming that a passenger using

strategy s boards line a 2 s with probability ps
a ¼ faðvaÞ=

P
b2sfbðvbÞ, it turns out that each strat-

egy-flow vector h ¼ ðhsÞs2S induces a unique vector of line-flows v = v(h) through the system of
equations
ðEÞ va ¼
X

s2S: a2s

hs
faðvaÞP
b2sfbðvbÞ

8a 2 A.
This line-flow vector v determines in turn the expected transit time of each strategy
ðTÞ T sðvÞ ,
1þ

P
a2stafaðvaÞP

a2sfaðvaÞ
.

Invoking Wardrop�s principle, a strategy-flow vector h P 0 with
P

s2Shs ¼ x is said to be an equi-
librium iff all strategies carrying flow are of minimal time, that is to say,
ðWÞ hs > 0) T sðvðhÞÞ ¼ sðvðhÞÞ;

where sðvÞ , mins2ST sðvÞ. The set of equilibria is denoted Hx, while Vx stands for the set of in-
duced line-flows v(h) corresponding to all h 2 Hx.

Notice that (E) and (T) presuppose that the arrivals of the different lines are independent and
exponentially distributed. This assumption is somewhat restrictive, but to date this seems the only
Fig. 1. The common-line problem.
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arrival distribution which is analytically tractable. For details on the modeling assumptions be-
hind these equations, as well as for possible analytic expressions for fa(va), the reader is referred
to Bouzaı̈ene-Ayari et al. (2001), Cominetti and Correa (2001) and Gendreau (1984).

The set Vx was characterized in Cominetti and Correa (2001) as the optimal solution set of an
equivalent optimization problem which implies the existence of a constant ax P 0 such that v 2 Vx

if and only if v P 0 with
P

a2Ava ¼ x and
ðC0Þ
va

faðvaÞ

¼ ax if ta < sðv̂ðaxÞÞ;
6 ax if ta ¼ sðv̂ðaxÞÞ;
¼ 0 if ta > sðv̂ðaxÞÞ;

8><
>:
where v̂aðaÞ is the inverse function of va # va/fa(va). Our first result provides a simpler description
of Vx which will be used in Section 3 to derive an optimization problem that characterizes the
equilibrium in the case of general transit networks. Formally the condition looks similar to
(C0) but it avoids the functions v̂aðaÞ. Note also that the constant ax which is common to all v 2 Vx

is now allowed to change for each v 2 Vx (though in fact it will not!).

Theorem 2.1. v 2 Vx if and only if v P 0 with
P

a2Ava ¼ x and there exists a P 0 such that
ðC1Þ
va

faðvaÞ

¼ a if ta < sðvÞ;
6 a if ta ¼ sðvÞ;
¼ 0 if ta > sðvÞ.

8><
>:
This result states that—for a simple network of one OD pair and non-overlapping common
lines—all the arcs with travel time strictly less than the equilibrium time must carry an amount
of flow which induces the same waiting time a, so that they are in some sense evenly congested.
Arcs with travel time equal to the equilibrium time must have waiting time at most a, while arcs
with larger travel times are not used. This characterization leads to an equivalent formulation of
Wardop�s user equlibrium for the transit route choice problem in a general network, as will be
shown in the next section. The proof of the theorem uses the following characterization of optimal
strategies (see Lemma 1.2 and Corollary 1.1 in Cominetti and Correa, 2001).

Lemma 2.1. Let �sðvÞ , fa : ta < sðvÞg and ŝðvÞ , fa : ta 6 sðvÞg. Then for each s 2S the
following are equivalent:

(a) Ts(v) = s(v),
(b) ta 6 Ts(v) 6 tb "a 2 s, b 62 s,
(c) �sðvÞ � s � ŝðvÞ.

Proof of Theorem 2.1

()) Let v 2 Vx—so that (C0) holds—and take a = ax. According to Theorem 1.2 in Cominetti
and Correa (2001), one has sðvÞ ¼ sðv̂ðaxÞÞ, so that condition (C1) follows at once from (C0).

(() To prove the converse, let us assume that the vector v satisfies (C1) for some a P 0. It will be
shown that sðvÞ ¼ sðv̂ðaÞÞ. Indeed, let s ¼ �sðvÞ so that Lemma 2.1 implies that s(v) = Ts(v)
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and ta 6 Ts(v) 6 tb for all a 2 s, b 62 s. Now, from (C1) one gets va ¼ v̂aðaÞ for all a 2 s
and since Ts(Æ) depends only on these flows it follows that T sðvÞ ¼ T sðv̂ðaÞÞ. Hence
ta 6 T sðv̂ðaÞÞ 6 tb for all a 2 s, b 62 s, and using Lemma 2.1 once again one gets
T sðv̂ðaÞÞ ¼ sðv̂ðaÞÞ. Putting together these equalities it follows that sðvÞ ¼ sðv̂ðaÞÞ as claimed.
Now, it was already noticed that (C1) implies va ¼ v̂aðaÞ if ta < sðvÞ ¼ sðv̂ðaÞÞ, and similarly
one obtains va 6 v̂aðaÞ if ta ¼ sðv̂ðaÞÞ and va = 0 if ta > sðv̂ðaÞÞ. These estimates, combined
with

P
a2Ava ¼ x, imply
X

a2�sðv̂ðaÞÞ
va 6 x 6

X
a2ŝðv̂ðaÞÞ

va

so that Theorem 1.2 in Cominetti and Correa (2001) yields a = ax and v 2 Vx as was to be
proved. h
When modeling general transit networks many arcs have no waiting time and are assigned infi-
nite frequencies. In order to extend the model and cover this possibility, it suffices to adopt the
convention that all computations are performed by first replacing the infinite frequencies by a
common finite value f which is then considered to tend to1. In particular, if a strategy s contains
one or more arcs with infinite frequency the transfer time Ts(v) turns out to be the simple average
of the travel times ta of the infinite frequency arcs in s; while the boarding probabilities are uni-
form among these arcs and zero on the rest (if any). Theorem 2.1 still holds in this more general
setting, provided that the third case of condition (C1) is interpreted as ‘‘va = 0 if ta > s(v)’’. For
details see Section 3.6 in Cepeda (2002).
3. The network equilibrium model

The transit network is represented by a directed graph G = (N,A) which is built as follows
(Fig. 2) (see Spiess and Florian, 1989). Let Ns � N be a set of nodes representing the bus stops
in the network. Each bus line l is represented by a set of line-nodes Nl � N which correspond
to the sequence of bus stops served by the line. Each line-node in Nl connects to the corresponding
stop-node in Ns through boarding and alight arcs, as well as to the next line-node in the sequence
through an on-board arc (also called line segment). Eventually, one may consider walk arcs con-
necting directly a pair of nodes in Ns.
stop-node

line-node
on-board on-board

alight boarding

walk

t >0 ; f =

t =0 ; f = t =0 ; f <

t >0 ; f =

8

8
8

a

a a

a

a

a a

8

a

Fig. 2. Representation of a transit network.
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The set of destinations is denoted D � N, and for each d 2 D and every node i 5 d a fixed de-
mand gd

i P 0 is given. Typically the demands gd
i are strictly positive only at nodes i corresponding

to stop-nodes, that is to say the bus stops where users wait for service, but we do not impose any
restriction. The set V ¼ ½0;1ÞA�D denotes the space of arc-destination flow vectors v with non-
negative entries vd

a P 0, while V0 is the set of feasible flows v 2V such that vd
a ¼ 0 for all

a 2 Aþd (i.e. no flow with destination d exits from d) and satisfying the flow conservation
constraints
gd
i þ

X
a2A�i

vd
a ¼

X
a2Aþi

vd
a 8i 6¼ d. ð1Þ
Here Aþi ¼ fa : ia ¼ ig and A�i ¼ fa : ja ¼ ig are the forward and backward stars of node i 2 N,
with ia and ja denoting respectively the tail and head nodes of arc a 2 A.

Every arc a 2 A has an associated travel-time function ta : V! ½0;1Þ and an effective fre-
quency fa : V! ½0;1�, both of which are continuous with ta(Æ) bounded and fa(Æ) either identi-
cally 1 or everywhere finite. In the latter case, for each d 2 D we assume that fa(v)! 0 when
vd

a !1 with fa(v) strictly decreasing with respect to vd
a as long as fa(v) > 0. Notice that fa(v)

may take the value 0, which allows to model waiting times that explode to infinity beyond the line
capacity.

Typically, one assigns infinite effective frequencies fa(Æ) �1 to all the arcs except the boarding
arcs (where the waiting processes occur), while for travel times one takes ta(Æ) � 0 on all arcs ex-
cept for the on-board and walk arcs which are assigned a positive travel time function ta(Æ) > 0.
However, one may also assign a positive travel time to the alight and boarding arcs, in order
to represent the times spent on embark/disembark operations or the effect of the bus fare on
the user choices. We stress that the functions ta(v) and fa(v) are allowed to depend on all the flows
in the network. This is particularly relevant for the effective frequencies since the waiting times do
not only depend on the boarding flows and operational characteristics of the lines (capacity, nom-
inal frequency, interarrival distribution) but also on the on-board flows which consume part of the
line capacity. In fact, as proved in Cepeda (2002), the situation is much more complex as conges-
tion may be affected in cascade by the waiting processes occurring at the upstream nodes, which
are in turn affected by the flows on other lines. The analysis of such complex relations is beyond
the scope of this paper, and therefore we isolate the difficulty by proving our results for very gen-
eral functions fa(v) without reference to a specific model and allowing much freedom for modeling
the congestion.
3.1. The notion of network equilibrium

The intuitive idea behind the notion of a network equilibrium is the following (see Fig. 3). Con-
sider a passenger heading towards destination d and reaching an intermediate node i in his trip. To
exit from i he can use the arcs a 2 Aþi to reach the next node ja. By taking the arc travel times ta(v)
and the transit times sd

ja
from ja to d as fixed, the decision faced at node i is a common-line prob-

lem with travel times taðvÞ þ sd
ja

and effective frequencies corresponding to the services operating
on the arcs a 2 Aþi . The solution of this common-line problem determines the transit time sd

i from
i to d, which can then be used recursively to solve the upstream nodes. It is important to stress that



Fig. 3. The i-to-d common-line problem.
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every node i must be considered as a potential origin even if the initial demand gd
i is zero, since it

may receive transfer flows coming from other nodes and heading towards d.
Since all the variables sd

i and vd
a must be determined at the same time, the transit network model

is stated as a set of simultaneous common-line problems (one for each pair i,d) coupled by flow
conservation constraints. More precisely, for each v 2V the flow entering node i with destination
d is defined as xd

i ðvÞ , gd
i þ

P
a2A�i

vd
a, while the time-to-destination functions sd

i ðvÞ are the unique
solution of the generalized Bellman equations (see Nguyen and Pallotino, 1988; Spiess and Flo-
rian, 1989; Cominetti and Correa, 2001):
sd
d ¼ 0;

sd
i ¼ min

s2Si

1þ
P

a2s
½taðvÞþsd

ja
�faðvÞP

a2s
faðvÞ

8i 6¼ d;

8<
:

where Si stands for the set of non-empty subsets s � Aþi . The quantity td
aðvÞ , taðvÞ þ sd

ja
ðvÞ rep-

resents the minimal time to destination d when using arc a. Let V d
i ðvÞ denote the set of local equi-

librium flows corresponding to a common-line problem defined by the arcs Aþi , with total flow
xd

i ðvÞ, constant travel times td
aðvÞ, and diagonal effective frequencies f d

a ð�Þ obtained from fa(Æ) by
considering it as a function of the flow vd

a alone, and keeping the other variables fixed. A flow
v is a global equilibrium if it is a local equilibrium with respect to itself, that is to say, a fixed point
for the above set-valued maps. More precisely,

Definition 3.1. A feasible flow v 2V0 is called a network equilibrium iff for all d 2 D and i 5 d the
flows ðvd

aÞa2Aþi
belong to V d

i ðvÞ. The set of network equilibrium flows will be denoted V�0.

Taking into account the common-line model described in the previous section and introducing
strategy-flow variables hd

s , one may directly restate the above definition in the following terms: the
vector v 2V is an equilibrium iff for all d 2 D and i 5 d there exist sd

i 2 R and strategy-flows
hd

s P 0 for s 2Si satisfying the flow equations
X
s2Si

hd
s ¼ xd

i ðvÞ;

vd
a ¼

X
s3a

hd
s

faðvÞP
b2sfbðvÞ

8a 2 Aþi ;
and the Wardrop�s equilibrium conditions
T d
s ðvÞ

¼ sd
i if hd

s > 0;

P sd
i if hd

s ¼ 0;

(
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where the cost of strategy s 2Si is given by
T d
s ðvÞ ¼

1þ
P

a2s½taðvÞ þ sd
ja
�faðvÞP

a2sfaðvÞ
.

The existence of an equilibrium may be derived from Kakutani�s fixed point theorem under
appropriate compactness conditions, which in this case are complicated by the fact that the waiting
times may present asymptotes. Theorem 2.1 in Cominetti and Correa (2001) shows that the set of
equilibria V�

0 is non-empty provided that every node i 2 V can be connected to each destination
d 2 D by a path formed by arcs with infinite frequency (e.g. a pedestrian path), that there exist con-
stants�ta <1 such that taðvÞ 6 �ta for all v 2V, and for each arc a and any fixed value of vd

a the quan-
tity fa(v) is maximal when all the remaining flows are 0. The result does not mean that at equilibrium
such pedestrian arcs will be used, which is in fact unlikely unless the bus network has a saturated
bottleneck with insufficient capacity that forces some flow along walk arcs. In any case, the present
paper is not concerned with conditions for the existence of an equilibrium which is taken for granted.

3.2. Characterization of the equilibrium

A direct application of Theorem 2.1 gives the following characterization of network equilibria.

Theorem 3.1. v 2V�0 iff v 2V0 and there exist numbers ad
i P 0 such that for all d 2 D and i 5 d
vd
a

faðvÞ

¼ ad
i if td

aðvÞ < sd
i ðvÞ;

6 ad
i if td

aðvÞ ¼ sd
i ðvÞ;

¼ 0 if td
aðvÞ > sd

i ðvÞ;

8<
:

where td
aðvÞ , taðvÞ þ sd

ja
ðvÞ.

This characterization allows to derive a gap function with the property that each of its minimiz-
ers corresponds precisely to a network equilibrium.

Theorem 3.2. For all v 2V0, d 2 D and i 5 d the following inequality holds:
X
a2Aþi

½taðvÞ þ sd
ja
ðvÞ�vd

a þmax
a2Aþi

vd
a

faðvÞ
P sd

i ðvÞ
X
a2Aþi

vd
a ð2Þ
and moreover v 2V�
0 iff v 2V0 and all these inequalities are satisfied as equalities.

Proof. Although the proof given below holds for finite as well as infinite frequencies, the reader
may assume for simplicity that all the functions fa(v) are finite. Moreover, the functional depen-
dencies of ta, fa, sd

i and td
a on the vector v are omitted, and D is written for the expression on the left

of (2). Fix v 2V0, d 2 D, i 5 d, and consider the vector ðhd
s Þs2Si

computed by the algorithm
ðAÞ

hd
s  0 for all s 2Si;

while\s , fa 2 Aþi : vd
a > 0g 6¼ /"

hd
s  min vd

a½
P

b2sfb�=fa : a 2 s
� �

vd
a  vd

a � hd
s fa=½

P
b2sfb� for all a 2 s

end.

8>>>>><
>>>>>:
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This iteration decomposes vd
a for a 2 Aþi as
vd
a ¼

X
s3a

hd
s

faP
b2sfb

ð3Þ
and since
P

a2Aþi

P
s3a �

P
s2Si

P
a2s one getsX X
a2Aþi

vd
a ¼

s2Si

hd
s .
Moreover, it is easy to check that vd
a=fa is maximal iff a belongs to every s generated by (A) (i.e. all

s such that hd
s > 0), in which case the sum on the right hand side of (3) may be extended to all

s 2Si and therefore
max
a2Aþi

vd
a

fa
¼
X
s2Si

hd
sP

b2sfb
. ð4Þ
Replacing (3) and (4) into the expression for D and exchanging the order of summation it results
that
D ¼
X
s2Si

hd
s

1þ
P

a2s½ta þ sd
ja
�faP

a2sfa
P
X
s2Si

hd
s s

d
i ¼ sd

i

X
a2Aþi

vd
a

hence proving (2). These inequalities become equalities iff for all s such that hd
s > 0 one has
1þ
P

a2s½ta þ sd
ja
�faP

a2sfa
¼ sd

i ;
that is to say, if all the strategies s generated by (A) are optimal. By Lemma 2.1 this is equivalent
to the fact that s must contain every arc such that td

a < sd
i and no arc with td

a > sd
i . By a previous

observation, this corresponds exactly to the condition that vd
a=fa is maximal if td

a < sd
i and 0 if

td
a > sd

i , and then according to Theorem 3.1 it follows that (2) hold as equalities iff v is a network
equilibrium. h

This result shows that the equilibrium flows v 2V�
0 are the global minima of the function
X
d2D
i6¼d

X
a2Aþi

½taðvÞ þ sd
ja
ðvÞ�vd

a þmax
a2Aþi

vd
a

faðvÞ
� sd

i ðvÞ
X
a2Aþi

vd
a

2
4

3
5

with optimal value equal to 0. Re-arranging terms, the problem of finding equilibrium flows may
be restated in the form
ðPÞ Minimize
v2V0

GðvÞ;
where
GðvÞ ,
X
d2D

X
a2A

taðvÞvd
a þ

X
i 6¼d

max
a2Aþi

vd
a

faðvÞ
�
X
i 6¼d

gd
i s

d
i ðvÞ

" #
.
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A natural approach for computing a full-congested network equilibrium is therefore to minimize
the gap function G(v). Now, since descent algorithms may be trapped by local minima it would be
useful to prove that no such local minima exist. Although it is unlikely that such a result holds in
general, the appendix at the end of the paper shows that this is the case for the common-lines
problem.

Despite the possibility of having local minima, the fact that the minimum value of G(v) is
known to be 0 allows to use this gap function for monitoring the progress of a minimization algo-
rithm and to derive a stopping rule as described in Section 4. Before proceeding, let us use (P) to
compare the full-congested network equilibrium with two previous strategy-based transit assign-
ment models: the linear cost and the convex cost models. It is worth mentioning that the linear
cost model will be used in Section 4 as a subroutine in the solution of (P).

3.3. Two special cases

Two special cases of (P) are particularly interesting, as they correspond exactly to the models
studied by Spiess (1984) as well as Nguyen and Pallotino (1988). The first one, called the uncon-
gested case, is characterized by constant travel times ta(v) � ta and constant effective frequencies
fa(v) � fa. The second case, called semi-congested, only takes the functions fa(v) � fa to be con-
stant, whereas the functions ta(v) are used to model the congestion effects. In both cases problem
(P) becomes
Min
v2V0

X
d2D

X
a2A

taðvÞvd
a þ

X
i 6¼d

max
a2Aþi

vd
a

fa
�
X
i6¼d

gd
i s

d
i ðvÞ

" #
which can be rewritten as
ðP1Þ Min
v2V0

X
d2D

X
a2A

taðvÞvd
a þ

X
i6¼d

wd
i �

X
i6¼d

gd
i s

d
i ðvÞ

" #

s:t: vd
a 6 wd

i fa 8d 2 D; i 6¼ d; a 2 Aþi .
It is clear that for any optimal solution and any pair (i,d), the constraints vd
a 6 wd

i fa must be sat-
isfied as equality for at least one a 2 Aþi ; since otherwise, it would be possible to reduce the value
of the objective function by reducing the corresponding variable wd

i .
In the uncongested case the functions sd

i ðvÞ become constant, and so does the third term in the
objective function. Hence problem (P1) reduces exactly to the linear program found by Spiess
(1984)
ðPLÞ Min
v2V0

X
d2D

X
a2A

tavd
a þ

X
i6¼d

wd
i

" #

s:t: vd
a 6 wd

i fa; d 2 D; i 6¼ d; a 2 Aþi ;
where wd
i represents the waiting time at node i of all passengers going to destination d. In this set-

ting, the time-to-destination variables sd
i are the dual variables of the linear program, and the third

term of the objective function in (P1) is the objective value of the dual so that the condition
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X
d2D

X
a2A

tavd
a þ

X
i 6¼d

wd
i �

X
i 6¼d

gd
i s

d
i

" #
¼ 0
is just the strong duality theorem of linear programming.
Consider now the case where congestion is introduced only through segment crowding func-

tions in such a way that the cost of arc a is an increasing function of the total flow
va ¼

P
d2Dvd

a on that arc. As shown in Spiess (1984), the transit equilibrium may be found as
the solution of the following equivalent convex cost minimization problem
ðPCÞ Min
v2V0

X
a2A

Z va

0

taðxÞdxþ
X
d2D
i6¼d

wd
i

s:t: vd
a 6 wd

i fa; d 2 D; i 6¼ d; a 2 Aþi ;

va ¼
X
d2D

vd
a; a 2 A.
Setting wd
i ðvÞ ¼ maxa2Aþi

vd
a=fa, the optimality conditions for this problem are
X

a2A

taðvaÞðv0a � vaÞ þ
X
d2D
i6¼d

½wd
i ðv0Þ � wd

i ðvÞ�P 0 for all v0 2V0
so that an optimal solution satisfies
X
a2A

taðvaÞva þ
X
d2D
i 6¼d

wd
i ðvÞ �

X
d2D
i6¼d

gd
i s

d
i ðvÞ ¼ 0
and therefore (PC) can be reformulated as
Min
v2V0

X
d2D

X
a2A

taðvaÞvd
a þ

X
i 6¼d

max
a2Aþi

vd
a

fa
�
X
i6¼d

gd
i s

d
i ðvÞ

" #
which is again a special case of (P). Notice that problem (P) is not directly equivalent to (PC) but
rather to the corresponding optimality conditions. In this sense, despite the fact that (PC) applies
in a more restrictive setting it has an advantage over (P) since the latter need not be a convex
program.
4. A solution algorithm

Our attempts to solve problem (P) directly as an optimization problem by using descent meth-
ods were not successful. Among the algorithms tried there was a projected generalized gradient
method similar to the one used by Constantin (1993). This approach was not pursued since the
tests carried out on a small network which permitted an analytical expression of the projected gra-
dient exhibited an extremely slow convergence; and moreover it seems difficult to establish the
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convergence of the method. From a different perspective, since the relation between strategy-flows
and arc-flows is non-linear, the attempts to formulate the problem as a variational inequality and
to use numerical methods for VI�s were not successful either. The model could be written as a
quasi-variational inequality (see pp. 64–66 in Cepeda, 2002), but this approach did not lead to
an algorithm.

Now, since the optimal value of (P) is known, a simple alternative is to use a heuristic minimi-
zation method and to evaluate the deviation from optimality of the computed solutions by using
the value of the gap function G(v). One of the simplest and most robust schemes for solving equi-
librium problems is the well known method of successive averages which has been extensively used
in transportation applications. At each iteration, the method computes a transit network equilib-
rium for the linear network obtained by fixing the travel times and the frequencies at the values
determined by the current flows, and then updates these flows by averaging the previous iterate
and the newly computed solution. As mentioned earlier, an equilibrium for the linear cost network
can be found by solving the linear program (PL), which amounts to compute a shortest hyperpath
for each destination d 2 D and then determining the corresponding arc-destination flow vector.
Optimal hyperpaths may be computed with the method proposed by Spiess (1984) and Spiess
and Florian (1989) or the hyperpath-Dijkstra method described in Cominetti and Correa (2001).
Hence, choosing ak 2 (0,1) with ak! 0 and

P1
k¼0ak ¼ 1, the method can be described as

ALGORITHM MSA
Initialize: find v0 2V0 and set k 0
while G(vk) > �
– compute ta = ta(vk) and fa = fa(vk)
– compute shortest hyperpaths for each d 2 D
– determine the induced flows v̂d

a

– update vkþ1 ¼ ð1� akÞvk þ akv̂
– set k k + 1
end
Stop: vk is a solution with gap G(vk) 6 �.

The computation of the gap G(vk) requires the storage of the flow variables vd
a for every desti-

nation d 2 D and all arcs a 2 A. As the network and the number of destinations grows, the storage
requirement grows accordingly but even for large networks this remains within the capabilities of
standard computers.

A starting point v0 2V0 may be obtained by performing an ‘‘all-or-nothing’’ assignment using
shortest hyperpaths computed with constant times ta = ta(0) and frequencies fa = fa(0). It may
happen that this flow violates the capacity constraints reflected in the fact that fa(v0) = 0 for some
arcs, and then (PL) could become infeasible in the following iteration. Alternatively, one could
think of initially computing a multi-commodity flow with capacity constraints but this may be
expensive and moreover there is no guarantee that feasibility will be maintained along subsequent
iterations. Infeasibility will occur for instance if there is insufficient capacity to carry all the
demand for travel on the transit network. To avoid this problem and to allow the use of an
‘‘all-or-nothing’’ initialization, we assume the existence of a subnetwork which is not subject to
saturation: for each node i and every destination d there is a path joining i to d with arcs such
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that fa(v) > 0 for all v 2V. This holds for instance if the network contains a pedestrian subgraph
with infinite capacity connecting every node to each destination. Otherwise this condition may be
enforced by truncating the effective frequency functions as ~f aðvÞ ¼ maxffaðvÞ; �g. Under such a
non-saturation condition the iterates vk may still violate the capacity constraints at some stage,
but (PL) will remain feasible and its solution will only allow small or null flows along the over-
saturated arcs so that the averaging process in MSA will sequentially reduce the corresponding
flows until they eventually become capacity feasible. Of course this will not occur if the network
is so saturated and the waiting times are so large that some flow along pedestrian arcs is required
at equilibrium. In the latter case MSA will find an equilibrium solution with large increases in pe-
destrian flows and/or with over-saturated transit line segments, revealing the corridors of the tran-
sit network that require additional capacity.
4.1. Numerical experiments

The MSA algorithm with an ‘‘all-or-nothing’’ initialization was implemented as a macro pro-
cedure within the EMME/2 software package (see INRO Consultants Inc. (1998)). The latter pro-
vides a module that computes an optimal hyperpath with linear costs and fixed frequencies on a
general transit network, and which is used to solve the linearized subproblems that compute v̂ in
the algorithm stated above.

In the numerical tests we considered constant travel times ta(v) = ta, and effective frequencies
equal to 1 except on the boarding arcs where
faðvÞ ¼
l 1� va

lc�va0þva

� �b
� �

if va0 < lc;

0 otherwise

8<
:

with va representing the flow boarding at the stop (summed over all destinations, i.e.
va ¼

P
d2Dvd

a), and similarly va0 is the on-board flow right after the stop (notice that v0a P va).
The parameter l denotes the nominal frequency of the corresponding line and c is the physical
capacity of the buses, so that lc� va0 is the expected residual capacity after the stop, and this func-
tional form explicitly incorporates the capacity constraint v0a < lc. The effective frequencies are
internally truncated as ~f aðvÞ ¼ maxffaðvÞ; 1

999
g so that the largest headway is 999 min or 16.7 h.

This number is high enough if one considers that in an urban environment the typical travel times
by transit are of the order of 20 min–1 h. The computed flows may then exceed the capacity dur-
ing the first iterations but if a capacity feasible solution exists it will be found in subsequent steps
of the computations since newly computed strategies will not contain the transit line segments that
have very high waiting times. The algorithm will find an approximate equilibrium or it will deter-
mine that a capacity feasible solution does not exist.
4.1.1. A small example
Consider the small network with three centroids denoted A, B, C in Fig. 4, and demands of 10

trips from A to B, 10 trips from B to C, and 100 trips from A to C.
There are two transit lines: the ‘‘express’’ line connects A–C by one segment 20 km long, and

the ‘‘local’’ line connects A–B–C by two consecutive segments of 10 km each. The capacity of
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Fig. 4. Small network.
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buses is 20 pax/bus, dwell time at stops is 0.01 min, and the effective frequency functions are taken
as above with exponent b = 0.2. The speed, frequency and total capacity of the services are sum-
marized in the following table:
Transit line
 Speed (km/h)
 Frequency (bus/h)
 Capacity (pax/h)
Express
 50
 16
 320

Local
 30
 6
 120
The local demands (A to B and B to C) have only one alternative each which is to take the local
line, while the demand from A to C has three possible strategies: express (E), local (L), express +
local (EL). In fact, since strategy L is always dominated by EL, the only rational strategies are E
and EL (i.e. passengers will always board the express line if there is available space). The initial
‘‘all-or-nothing’’ assignment yields the intuitive result that all the trips use the most direct transit
line as shown below:
Segment
 Travel time
 Link volume
 Load factor
Express
 24.01
 100
 0.31

Local-AB
 20.01
 10
 0.08

Local-BC
 20.01
 10
 0.08
However, the load factor of the express line is so high that the total time (wait + travel) of strat-
egy E is 42.08 min. This value is larger than the 40.02 min travel time of the local line from A to C,
which then becomes competitive. Hence, the 100 demand from A to C should also consider the
combined strategy EL. Splitting the demand among these two strategies will reduce the load of
the express line, and the equilibrium is reached when the total time of E equals the travel time
of the local line, which occurs with 47.2 flow units on E and 52.8 on EL. The latter splits propor-
tionally to the effective frequencies between the express line (37.1 units) and the local line
(15.7 units) yielding the following line loads:
Segment
 Travel time
 Link volume
 Load factor
Express
 24.01
 84.3
 0.26

Local-AB
 20.01
 25.7
 0.21

Local-BC
 20.01
 25.7
 0.21
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with an equilibrium travel time of 40.02 min for both the E and EL strategies. This equilibrium

time coincides with the travel time of the local line from A to C, and will remain exactly the same
if the demands are increased by a small amount (though the flow shares will of course change). In
this example both the initial all-or-nothing assignment and the equilibrated solution satisfy the
capacity constraints. If the demand from A to C is increased to 350 the initial ‘‘all-or-nothing’’
assignment gives a flow of 350 on the express line which is not capacity feasible, while the equi-
librium yields
Segment
 Travel time
 Link volume
 Load factor
Express
 24.01
 260.5
 0.81

Local-AB
 20.01
 99.5
 0.83

Local-BC
 20.01
 99.5
 0.83
In this case the congestion at node A is so high that strategy E is no longer used and all the AC
demand takes the combined strategy EL with an equilibrium time of 97.36 min. Notice the appar-
ently counter-intuitive fact that the local line ends up slightly more saturated than the express line.
This is not contradictory though: the only way to reduce the load on the local line would be to
shift some flow from the strategy EL to the strategy E, but since the total time of E is
117.04 min it is unreasonable to expect that any user would refuse to board a local bus arriving
at the stop which offers a 40.02 min ride to destination C. Of course the local strategy L is still
worse with a total time of 312.13 min from A to C.

4.1.2. Larger networks
MSA was also tested on some medium and large instances. The transit networks used for the

numerical tests presented below originate from the cities of Stockholm, Winnipeg and Santiago,
Chile. The origin–destination matrices correspond to real estimated demands.

4.1.2.1. Stockholm and Winnipeg. The transit network of the City of Stockholm consists of six
modes, six transit vehicle types, 185 centroids, 395 regular nodes, 2079 directional links, 76 transit
lines and 1096 transit line segments. In the case of the City of Winnipeg, the transit network con-
sists of 154 centroids, 903 regular nodes, 2975 directional links, 133 transit lines and 4338 transit
line segments. A walking speed of 3 km/h was taken for the pedestrian arcs. Fig. 5 shows the evo-
lution of the first 70 MSA iterations, by plotting the relative gap, that is to say, the gap G(vk) ex-
pressed as a percentage of the total travel time

P
d2D
i 6¼d

gd
i s

d
i ðvkÞ.

In both cases, the convergence towards 0 is relatively fast and smooth, reaching a value close to
0.25% after 70 iterations. A closer look reveals that in the case of Stockholm there is not enough
capacity to accommodate the demand and the problem is infeasible. Indeed, the maximum value
of the flow-to-capacity ratio over all the line segments, which must be less than 1 if capacities are
respected, drops from 4.77 to 1.5 stabilizing at this value after 10 iterations. Simultaneously, the
number of over-saturated line segments having a ratio larger than one, reduces from 45 arcs in the
first iteration to four arcs at iteration 10, oscillating thereafter around this value without ever
reaching a feasible flow. This indicates the existence of a bottleneck due to an overestimated de-
mand or because some line capacities are too small. This situation does not occur in the case of
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Fig. 5. MSA convergence for Stockholm (left) and Winnipeg (right).

Fig. 6. Standard transit assignment (left) vs capacitated equilibrium assignment (right).
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Winnipeg where the maximum flow-to-capacity ratio drops from 2.12 to 0.97, while the over-sat-
urated transit line segments are reduced from 221 to 0, stabilizing at these feasible values after
nine iterations. Fig. 6 compares the standard transit assignment obtained in the first iteration
for Stockholm with the flow pattern that results after equilibration, while Fig. 7 shows the differ-
ence between both. The over-saturated line segments may be easily identified by looking at the
corridors which present high pedestrian flows, allowing to determine the source of the conflict.

4.1.2.2. The Santiago equilibrium model. The network of the City of Santiago has 409 centroids,
1808 nodes, 11331 directional links, 1116 transit lines and 52468 transit line segments. There
are 11 modes including five pure transit modes and four combined modes (such as auto-metro,
etc.).



Fig. 7. Difference between equilibrium flows and initial assignment.
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The transportation planning model includes all the demand computation steps and the network
assignment for 13 socioeconomic classes and three trip purposes. The model is quite complex and
may be referred to in De Cea and Fernández (2001) or Florian et al. (2002). The critical part of the
transit network was the underground (metro) which was consistently over simulated. The MSA
algorithm was embedded in the complex equilibration procedure that solves the model, after
which the resulting metro flows satisfied the capacity constraints. Fig. 8 illustrates the flows on
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Fig. 8. Flows on metro line 5.
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the different segments of metro line 5 at the beginning of MSA (light) and after 20 iterations
(dark).
5. Conclusion

The developments presented in this paper open the way for the use of a new transit assignment
model in congested networks where it is important to respect the capacity of the services offered.
The theoretical analysis presented provides a solid foundation for a simple and robust algorithm
since the nearness to an exact equilibrium solution is easily quantified. The empirical convergence
of the algorithm raises the interesting issue of devising a rigorous convergence proof which is still
an open research question.
Appendix. Global optimality

When dealing with equilibrium problems it is useful to have a gap function whose global min-
imizers characterize the solutions. However, this fact does not guarantee that minimization of the
gap function will lead necessarily to an equilibrium because descent methods may be trapped at
local minima. To prove the usefulness of a gap function it is important to establish that every local
minimizer is also a global one and therefore an equilibrium. Proving such a result is usually very
difficult and the gap function G(v) in Section 3 is no exception. However we can prove this result
for the special case of common-lines, namely a two-node network linked by finitely many
arcs a 2 A with constant travel times ta(v) = ta and decreasing diagonal effective frequencies
fa(v) = fa(va). As a matter of fact, in this case one can show that every stationary point is automat-
ically an equilibrium and hence a global optimum. In order to prove the latter, let us consider a
common-line problem with total demand x > 0 so that (P) becomes
ð~PÞ Min
v

X
a2A

tava þmax
a2A

va

faðvaÞ
� x min

s2S
T sðvÞ

s:t: va P 0;
X
a2A

va ¼ x
with
T sðvÞ ¼
1þ

P
a2stafaðvaÞP

a2sfaðvaÞ
.

Let us rewrite this problem as
ð~PÞ Min
ðv;a;sÞ

X
a2A

tava þ a� xs

s:t: 0 6 va 6 afaðvaÞ 8a 2 A;X
a2A

va ¼ x;

s 6 T sðvÞ 8s 2S
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and introduce multipliers l 2 R, ba P 0, ca P 0 and hs P 0 in order to build the Lagrangian
L ,
X
a2A

tava þ a� xsþ l x�
X
a2A

va

" #
�
X
a2A

bava þ
X
a2A

ca½va � afaðvaÞ� þ
X
s2S

hs½s� T sðvÞ�.
A feasible point (v,a,s) for (P) is a KKT point if there exist multipliers (l,b,c,h) satisfying the
complementarity conditions
hs > 0) T sðvÞ ¼ s; ð5Þ
ba > 0) va ¼ 0; ð6Þ
ca > 0) va ¼ afaðvaÞ; ð7Þ
and the stationarity conditions oL=os ¼ 0, oL=oa ¼ 0 and oL=ova ¼ 0, which correspond to
X
s2S

hs ¼ x; ð8Þ
X
a2A

cafaðvaÞ ¼ 1; ð9Þ

ta � l� ba þ ca½1� af 0aðvaÞ� ¼
X
s3a

hsP
b2sfbðvbÞ

½ta � T sðvÞ�f 0aðvaÞ. ð10Þ
To simplify the notation, the dependence of fa and f 0a on va is omitted. Also set g = l � s and
aa ¼
X
s3a

hsP
b2sfbðvbÞ

.

Then, taking into account (5), Eq. (10) may be rewritten as
ðta � sÞ½1� aaf 0a� ¼ ba � ca½1� af 0a� þ g. ð11Þ
Proposition 5.1. If (v,a,s) is a KKT point for ð~PÞ then v is a common-line equilibrium.

Proof. The constraints of (P) imply s 6 minsTs(v). Now, from (8) it follows that there exists s 2S
with hs > 0 so that (5) implies Ts(v) = s and consequently s ¼ mins2ST sðvÞ. The result will follow
from Theorem 2.1 if it is shown that g = 0, since in this case (11) combined with the complemen-
tarity conditions imply
ta < s) ca > 0) va=fa ¼ a;

ta > s) ba > 0) va=fa ¼ 0.

�

In order to show that g = 0 note that ba and ca may not be positive simultaneously (otherwise one
would have a = 0, so that va = 0 for all a and then x = 0). Also, every s 2S with hs > 0 is such
that Ts(v) = s, hence Ts(v) is minimal and according to Lemma 2.1 s contains all the arcs such that
ta < s and no arc with ta > s. It follows that
ta < s) aa ¼ �a;

ta > s) aa ¼ 0

�
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with �a ¼
P

s2S
hsP

b2s
fbðvbÞ

. Finally, remark that
X
a2A

aafa ¼
X
a2A

X
s3a

hsP
b2sfb

fa ¼
X
s2S

X
a2s

hsfaP
b2sfb

¼
X
s2S

hs ¼ x ¼
X
a2A

va
which gives
0 ¼
X
a2A

aa �
va

fa

� �
fa. ð12Þ
Let us show that g = 0 by contradiction.
Suppose first g < 0 and let s0 = {a: va > 0}. For a 2 s0 the value of ba equals 0 and then (11)

yields ta < s and ca < ðs� taÞ½1� �af 0a�=½1� af 0a�. Also, by noting that ca = 0 for a 62 s0 (since ca > 0
implies va = afa > 0), and by using (9) one gets
1 ¼
X
a2s0

cafa <
X
a2s0

ðs� taÞfa
½1� �af 0a�
½1� af 0a�

. ð13Þ
Now, s 6 T s0
ðvÞ implies

P
a2s0
ðs� taÞfa 6 1, which combined with (13) leads to
0 <
X
a2s0

ðs� taÞfa
½1� �af 0a�
½1� af 0a�

� 1

	 

;

or equivalently
0 < ða� �aÞ
X
a2s0

ðs� taÞfaf 0a
½1� af 0a�

.

Since each term in this last sum is negative it follows that ða� �aÞ < 0. By substituting this back
into (12) and by using the fact that aa ¼ �a for a 2 s0 and va = 0 for a 62 s0, the following contra-
diction is obtained
0 ¼
X
a2s0

�a� va

fa

� �
fa þ

X
a62s0

aafa P ð�a� aÞ
X
a2s0

fa > 0.
Suppose now that g > 0 and let s1 = {a: ta 6 s}. For a 2 s1 Eq. (11) implies that ca > 0, and
therefore one has va/fa = a, ba = 0 as well as ca > ðs� taÞ½1� �af 0a�=½1� af 0a�. These conditions,
combined with (9) give
1 P
X
a2s1

cafa >
X
a2s1

ðs� taÞfa
½1� �af 0a�
½1� af 0a�

.

By Lemma 2.1 we have s = Ts1
(v) which implies

P
a2s1
ðs� taÞfa ¼ 1. This leads to
0 >
X
a2s1

ðs� taÞfa
½1� �af 0a�
½1� af 0a�

� 1
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and further
0 > ða� �aÞ
X
a2s1

ðs� taÞfaf 0a
½1� af 0a�
which yields ða� �aÞ > 0. Going back to (12) once again and by using now the fact that va/fa = a
for a 2 s1 and aa = 0 for a 62 s1, one reaches the contradiction
0 ¼
X
a2s1

½aa � a�fa �
X
a62s1

va 6 ð�a� aÞ
X
a2s1

fa < 0.
These two contradictions prove that g = 0, thus completing the proof. h

Corollary 5.1. If (v,a,s) is a local minimum for ð~PÞ then it is a global minimum and v is a common-
line equilibrium.

Proof. It is easy to check that (v,a,s) satisfies the Mangasarian–Fromovitz constraint qualifica-
tion so that it is a KKT point. Proposition 5.1 then implies that v is an equilibrium, and then The-
orem 2.1 implies that v is a global optimum with cost equal to zero. h
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