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Abstract. We study network and congestion games with atomic play-
ers that can split their flow. This type of games readily applies to com-
petition among freight companies, telecommunication network service
providers, intelligent transportation systems and manufacturing with
flexible machines. We analyze the worst-case inefficiency of Nash equi-
libria in those games and conclude that although self-interested agents
will not in general achieve a fully efficient solution, the loss is not too
large. We show how to compute several bounds for the worst-case inef-
ficiency, which depend on the characteristics of cost functions and the
market structure in the game. In addition, we show examples in which
market aggregation can adversely impact the aggregated competitors,
even though their market power increases. When the market structure
is simple enough, this counter-intuitive phenomenon does not arise.

1 Introduction

In this paper, we study network games with atomic players that can split flow
among multiple routes. This type of games readily applies to competition among
freight companies, telecommunication network service providers, intelligent
transportation systems and, by considering the generalization to congestion
games, it also applies to manufacturing with flexible machines. This class of
network games was first discussed by [17]. More recently, [25, 24, 8] considered
a similar model from the perspective of the price of anarchy, which is the frame-
work of this paper.

Consider a directed network G = (V, A) and players that wish to route flow
between origin-destination (OD) pairs. We denote the set of all players by [K] =
{1, . . . , K}. Each player k ∈ [K] has to choose a flow xk ∈ IRA

+ that routes dk

units of flow from sk to tk. Note that players can divide their flows among many
paths. We refer collectively to the flows for all players by �x := (x1, . . . , xK). In
addition, to simplify notation we henceforth let x :=

∑
k∈[K] x

k be the aggregate
flow induced by all K players.

As arcs are subject to adverse congestion effects, we associate a cost function
ca(·) : IR+ → IR+ to every arc. These functions map the total flow on the arc xa

to its per-unit cost ca(xa). Cost functions are assumed nondecreasing, differen-
tiable and convex although for some of our results the convexity assumption can
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be slightly relaxed. In addition, we only consider separable cost functions, i.e., the
cost in one arc only depends on the flow in the same arc. The goal of each com-
petitor is to send its demand minimizing its total cost Ck(�x) :=

∑
a∈A xk

aca(xa).
To understand the dependence between the inefficiency of equilibria and the cost
functions, we let C be an arbitrary but fixed set that contains the allowable cost
functions. Typical choices include polynomials of degree at most r with r fixed,
and the delay functions of M/M/1 queues.

A strategy distribution �x is a Nash equilibrium when no player has an incentive
to unilaterally change her strategy. In other words, the best reply strategy for
player k is the flow xk that solves the following optimization problem in which
flows xi are fixed for i �= k. For ease of notation, we introduce a reverse arc with
zero cost between tk and sk.

(NEk) min Ck(�x)
∑

(u,v)∈A

xk
(u,v) −

∑

(v,w)∈A

xk
(v,w) =0 for all v ∈ V

xk
(tk,sk) =dk

xk
a ≥0 for all a ∈ A.

Note that our assumptions guarantee that these optimization problems are con-
vex, which implies that an equilibrium always exists [22]. The uniqueness of equi-
libria is a longstanding open question, except for some particular cases [17, 1].
Using the convexity of Ck(�x) and the first order optimality conditions of (NEk),
we can characterize equilibria with a variational inequality. Indeed, �x is at equi-
librium if and only if, for all k ∈ [K], xk solves

∑

a∈A

ck
a(�xa)(yk

a − xk
a) ≥ 0 for any feasible flow yk for player k. (1)

Here, the modified cost function ck
a(�xa) := ca(xa) + xk

ac′a(xa) is the derivative
with respect to xk

a of the term xk
aca(xa) in Ck(�x). Intuitively, the second term

accounts for player k’s ability to set prices in the arc.
Following [12], we also consider situations in which some OD pairs are con-

trolled by individual players while others are controlled by infinitely many of
them, each in charge of an arbitrary small portion of demand. These games can
be viewed as limits of games in which the number of players tends to infinity
but some of them retain market power to set prices while others are relegated
to be price-takers, and their equilibria can be characterized by a variational in-
equality similar to (1). The extreme case in which all users are price-takers was
first considered by Wardrop [28]. In this case, the game becomes nonatomic and
the corresponding solution concept is usually called a Wardrop equilibrium. In
other words Wardrop equilibria are those for which all flow-carrying paths are
of minimum cost (among all paths serving the same OD pair). Except were oth-
erwise stated, all results in this paper are valid for the three classes of equilibria
that we just mentioned because we work with arbitrary market powers.
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To measure the quality of equilibria, we need to introduce a social cost func-
tion. The most common measure for network models is the sum of the costs
among all players. This is easily computed as C(�x) = C(x) :=

∑
k∈[K] C

k(�x) =
∑

a∈A xaca(xa). (Notice that the total cost does not depend on �x directly, but
rather on the total flow x.) A socially optimal flow is a solution �x opt that mini-
mizes C(x) among all feasible solutions �x. It is well known that a system optimum
can have a strictly lower social cost than an equilibrium [20, 10]. Moreover, sys-
tem optima may even be better for all users compared to an equilibrium [4]; the
problem is that users may still have an incentive to deviate from it so it may
not be stable.

The main objective of this article is to study how much efficiency is lost when
competition arises. To that extent, [16] proposes to use the worst-case inefficiency
(in terms of ratio) of the social cost of equilibria with respect to that of social
optima as a way to quantify the impact of not being able to coordinate players in
a game. This ratio became known as the price of anarchy [18]. Roughgarden and
Tardos initiated the study of the price of anarchy in network games by proving
that the inefficiency loss because of selfish behavior in nonatomic network games
with affine cost functions is at most 33% [25]. Following their work, a series of
papers generalized these results to nonatomic network and congestion games,
under less and less restrictive assumptions [23, 27, 7, 5, 19]. Finally, [26, 8]
generalize the results to arbitrary nonatomic congestion games by noticing that
for the characterization of equilibria with variational inequalities, the network
structure is unnecessary.

In addition to nonatomic games, [25, 11, 2, 6] consider the atomic case with
unsplittable flows, meaning that competitors have to choose a single path to
route all the demand from their (single) origins to their (single) destinations.

Our Results. Section 2 shows an upper bound on the price of anarchy for
arbitrary networks when costs belong to a given set of cost functions. In addition,
we provide a lower bound that arises from a particular instance. Both the lower
and upper bounds are strictly higher than the price of anarchy in the nonatomic
case implying that price-setting behavior can hurt the system. These are the
first bounds of this type for atomic games. Section 3 concentrates in games with
a single OD pair. First, we provide bounds on the price of anarchy that depend
on the variability of the market power of the different players. To the best of our
knowledge, this is the first bound that depends on the market concentration. It
measures the price to pay—in the worst case—when going from monopolies to
oligopolies to markets with numerous similar players. Then, in Section 3.2, we
study the case in which players are symmetric, i.e., they all share the same OD
pair and they all control the same amount of flow. In this setting we are able to
give a potential function that characterizes equilibria and use this to show that
equilibria with atomic players are at least as efficient as the Wardrop equilibrium.
All results in this paper generalize to the more general atomic congestion games
with divisible demands.
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Due to space limitations, several proofs in this extended abstract are omitted
or only sketched. More details and further results can be found in the full version
of this article available at the authors’ website.

2 Atomic Games with General Players

In this section we study the price of anarchy for atomic games with arbitrary
networks and arbitrary configuration of OD pairs. Players with arbitrarily large
market power may coexist with price-taking players. As a warm-up exercise and
before considering arbitrary sets C, we derive a bound on the price of anarchy
for the case in which cost functions are affine functions. To this end, we define
an optimization problem whose first order optimality conditions correspond to
the equilibrium conditions. In particular, this optimization problem implies that
the equilibrium is essentially unique (although, as [3] points out, this is implied
by [22]).

Consider an affine cost function of the form c(x) = qx+r. Let us define a mod-
ified cost function ĉ : IRK

+ → IR+ by ĉ(�x) := q
2 (

∑
k∈[K] x

k)2 + q
2

∑
k∈[K](x

k)2 +
r
∑

k∈[K] x
k. It is easy to see that ĉ(�x) is convex, or strictly convex when q > 0.

We define Problem (NLP-NE) as the minimization of the potential function
Ĉ(�x) :=

∑
a∈A ĉa(�xa) among all feasible flows �x. Strict convexity implies that

there is a single solution to the previous problem. As its first-order optimality
conditions coincide with the conditions that characterize a Nash equilibrium, the
latter has to be unique. In addition, (NLP-NE) can be used to approximate a
Nash equilibrium up to a fixed additive term in polynomial time [21]. One can-
not expect to do better than an additive approximation because an equilibrium
may require irrational numbers. We remark that this approach can be easily
extended to the setting of games with a mix of atomic and nonatomic players
introduced by [12].

As in other settings [25, 15], this potential function can be used to derive
bounds on the price of anarchy but those bounds turn out to be loose. Using the
variational inequality displayed in (1), we can prove a stronger upper bound on
the price of anarchy for atomic congestion games. The upper bound we provide
below originates in [24] using ideas from [7]. Let us define, for c ∈ C,

αK(c) := sup
�x,�y∈IRK

+

xc(x)
yc(y) +

∑
k∈[K](xk − yk)ck(�x)

. (2)

We remind the reader that we have defined �x :=(x1, . . . , xK) and x :=
∑

k∈[K] x
k,

and similarly for �y. For this definition and the ones below to work, we shall
assume that 0/0 = 0. Roughgarden proved that αK(C) := supc∈C αK(c) is an
upper bound on the price of anarchy of atomic games [24]. To slightly simplify
the calculations, we define

βK(c) := sup
�x,�y∈IRK

+

∑
k∈[K]{(ck(�x) − c(y))yk + (c(x) − ck(�x))xk}

xc(x)
,
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Fig. 1. Example with price of anarchy larger than 4/3

and βK(C) := supc∈C βK(c). It is straightforward to see that βK(C) ≥ 0 and
that αK(C) = (1 − βK(C))−1 when βK(C) < 1. To simplify notation we will not
explicitly distinguish the case of βK(C) ≥ 1 and assume that (1 − βK(C))−1 =
+∞ in such a case. We now give a bound on the price of anarchy that depends
on βK(C). Note that this bound on the price of anarchy is also valid for the
mixed atomic and nonatomic games.

Proposition 2.1 ([24]). Consider an atomic congestion game with K players
and with separable cost functions drawn from C. Let �x ne be a Nash equilibrium
and �x opt be a social optimum. Then, C(xne) ≤ (1 − βK(C))−1 C(xopt).

Proof. Using (1) and the definition of βK(C) in order, we get that

C(xne)=
∑

a∈A

∑

k∈[K]

{(ca(xne

a ) − ck
a(�x ne

a ))xne,k
a + ck

a(�x ne

a )xne,k
a }

≤
∑

a∈A

∑

k∈[K]

{(ca(xne

a )−ck
a(�x ne

a ))xne,k
a +ck

a(�x ne

a )xopt,k
a } ≤ βK(C)C(xne)+C(�x opt).

�	

Although [24, 8] independently claimed (by providing different proofs) that the
price of anarchy in the atomic case cannot exceed that of the nonatomic case, in
Fig. 1 we present an instance with affine cost functions that has a price of anarchy
larger than α(affine functions) = 4/3. The top OD pair is controlled by a single
player while the bottom one is nonatomic. At Nash equilibrium, the common arc
has 0.9 and 1 units of demand coming from the atomic and nonatomic OD pairs,
respectively, and the total cost is 3.89. Under the social optimum, the common
arc has 1 and 0 units of demand and the total cost is 2.9. Dividing, we get a price
of anarchy of approximately 1.341. Moreover, optimizing over the parameters,
we can get an instance with a price of anarchy of approximately 1.343. Notice
that the nonatomic OD pair is not necessary to be worse than in nonatomic
games. We could construct a similar example with a finite number of players.
That would require replacing the nonatomic OD pair by K − 1 atomic players,
each controlling 1/(K − 1) units of demand. If K is large, both equilibria are
similar by continuity (e.g., [13] proves that equilibria in atomic games converge
to those in nonatomic games when players lose market power).

We now provide a concrete expression for the price of anarchy under specific
sets of cost functions. The key is to first obtain a simpler expression for βK(c).
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Theorem 2.2. Assume that xc(x) is a convex function. Defining β∞(c) :=
sup0≤y≤x

y(c(x)−c(y)+c′(x)y/4)
xc(x) , we have that βK(c) ≤ β∞(c).

Proof. Starting from the definition of βK(c), we get

βK(c) = sup
�x,�y∈IRK

+

xc(x) − yc(y) +
∑

k∈[K] c
k(�x)(yk − xk)

xc(x)

= sup
�x,�y∈IRK

+

yc(x) − yc(y) + c′(x)
(∑

k∈[K] y
kxk − ∑

k∈[K](x
k)2

)

xc(x)
(3)

As c is nondecreasing, c′(x) ≥ 0. Thus, assuming w.l.o.g. that x1 ≥ xk for all
k ∈ [K], to make (3) as big as possible we have to set (y1, . . . , yK) to (y, 0, . . . , 0).
It follows that

βK(c) = sup
�x∈IRK

+ ;x1=max(�x);y∈IR+

y(c(x) − c(y)) + c′(x)
(
x1y − ∑

k∈[K](x
k)2

)

xc(x)
(4)

To find the best choice of �x, it is enough to solve max{x1y − ∑
k∈[K](x

k)2 : �x ∈
IRK

+ , x1 = max(�x)}. By symmetry, an optimal solution to this problem satisfies
x2 = · · · = xK . Therefore, we replace x1 by u and the rest of the xk by v, and
solve

max
u≥v≥0; u+(K−1)v=x

uy − u2 − (K − 1)v2. (5)

The optimal solution satisfies that u = min{x/K + y(K − 1)/2K, x}. Plugging
in x1 = min{x/K + y(K − 1)/2K, x} and xk = max{x/K − y/2K, 0} for k =
2, . . . , K in (4), we have that

βK(c) ≤ sup
x,y∈IR2

+

yc(x) − yc(y) + c′(x)
(

y2

4 − (x−y/2)2

K

)

xc(x)
.

Under the convexity assumption, a calculation shows that the optimal solution
for the RHS is achieved at y ≤ x, from where the result follows. �	
The definition β∞(C) is very similar to that of β(C) := sup0≤y≤x

y(c(x)−c(y))
xc(x) ,

which provides a bound on the price of anarchy for nonatomic games [7]. The
only difference between the two expressions is the last term in the numerator of
β∞(C), which penalizes equilibria in the case of atomic players. Extending the
arguments of [7] to β∞(C), we can prove the following result. In particular, that
allows us to conclude that the price of anarchy is at most 3/2, 2.464 and 7.826,
for affine, quadratic and cubic cost functions, respectively.

Proposition 2.3. If C only contains polynomials of degree at most r, the price
of anarchy is at most (1 − max 0≤u≤1 u(1 − ur + ru/4))−1.



Network Games with Atomic Players

3
4

3
4

1
2

1
2

0

0 0

0

xn

1/n

M

Fig. 2. Example with pseudo-approximation guarantee larger than 2

2.1 Pseudo-approximations

We now concentrate on pseudo-approximation results (also known as bicreteria
results) which compare the Nash equilibrium to a social optimum in an instance
with expanded demands. Roughgarden and Tardos proved that the social cost
of a Wardrop equilibrium is bounded by that of a social optimum of a game
with demands doubled [25]. They extended the pseudo-approximation bound
to atomic games, which was based on a characterization of equilibria of atomic
congestion games. Unfortunately, this characterization is not correct. Figure 2
presents an example for which the Nash equilibrium is more costly than the
system optimum with demands doubled. The top OD pair is atomic and the
bottom one is nonatomic. Consider M := (1− ε)n +n(1/4− ε)(1− ε)n−1, where
ε is such that (1 − ε)n < 1/n. The parameters M and ε are chosen so that the
Nash equilibrium is the flow in which the nonatomic demand routes all its 3/4
units of flow in the middle arc and the atomic player splits its flow in 1/4 − ε
along the middle arc and the rest in the other. The social cost of the equilibrium
equals (1 − ε)n+1 + (1/4 + ε)M . Consider the flow routing twice the demand in
which ε units of flow take the top arc, 1 − ε units take the middle arc, and 3/2
units take the bottom arc. Therefore, the social cost of the system optimum is
at most εM +(1−ε)n+1 +3/(2n). Comparing the two costs, we conclude that in
order to find a counterexample we need to find n and ε such that n(1− ε)n < 1
and Mn/6 > 1. This is achieved by taking ε = 0.1 and n = 34. Modifying the
example slightly, we can obtain a counterexample with polynomials of degree 26.
On the other hand, if we allow polynomials of arbitrary degree, it can be seen
that the cost of the Nash equilibrium can be made arbitrarily higher than that
of the system optimum with demands doubled.

In addition, one cannot expect to prove a theorem of this type with a constant
expansion factor if arbitrary cost functions are allowed. To see this, consider the
same example as in Fig. 2 and a parameter 0 < δ < 1. The nonatomic demand is
1− δ, the demand of the atomic player is 2δ, and the cost functions, from top to
bottom, are 2, a step function that is 0 for x ≤ 1 and 1 otherwise, and 0. It can
be seen that there is one equilibrium with total cost equal to 2δ while the system
optimum when the demand is amplified by 1/(2δ) has zero cost. The example
can be worked out for polynomial cost functions (of arbitrary high degree). The
previous discussion leads us to the following result.

Proposition 2.4. Let �x ne be a Nash equilibrium and, for an arbitrary α > 1, let
�x opt be a social optimum of the game when demands are multiplied by α. Then,
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there exists an instance of the atomic network game with convex and increasing
cost functions such that C(xne) > C(xopt).

In view of the previous negative results, we now prove a pseudo-approximation
result for atomic games that hinges on ideas of [8]. The following proposition
provides a bound that depends on the allowable cost functions C. For example,
in the case of affine cost functions, the expansion factor for which the social cost
of equilibria is bounded by that of the expanded system optimum is 4/3.

Proposition 2.5. Let �x ne be a Nash equilibrium of an atomic congestion game
with K players and with separable cost functions drawn from C. If �x opt denotes a
social optimum of the game with demands multiplied by 1+βK(C), then C(xne) ≤
C(xopt).

Proof. Consider the flow �y = �x opt that optimally routes (1 + βK(C))dk units of
demand from sk to tk for k ∈ [K]. Then,

C(xne) = (1+βK(C))
∑

a∈A

∑

k∈[K]

{(ca(xne

a )−ck
a(�x ne

a ))xne,k
a +ck

a(�x ne

a )xne,k
a }−βK(C)C(xne)

≤(1+βK(C))
∑

a∈A

∑

k∈[K]

{

(ca(xne

a )−ck
a(�x ne

a ))xne,k
a +

ck
a(�x ne

a ) yk
a

1+βK(C)

}

−βK(C)C(xne),

where the inequality follows using (1) with yk
a/(1+βK(C)). As ca(xne

a )−ck
a(�x ne

a )≤0,

C(xne) ≤
∑

a∈A

∑

k∈[K]

{(ca(xne

a ) − ck
a(�x ne

a ))xne,k
a + ck

a(�x ne

a )yk
a} − βK(C)C(xne),

≤ βK(C)C(xne) + C(y) − βK(C)C(xne) = C(y). �	

Remark 2.6. Note that the example above shows that for general cost functions
(continuous and convex), β∞(C) is unbounded.

3 Atomic Games with a Single OD Pair

In this section we concentrate on games played on networks with arbitrary topol-
ogy in which all K players share the same source s and sink t. Single-source
single-sink instances are easier to analyze because the total flow can be decom-
posed by player in an arc-by-arc fashion. This decomposition will allow us to
provide improved results compared to the general case. The presentation is di-
vided into two sections: In the first we consider the case in which different players
control different amounts of demand, resulting in different market shares. In the
second part, we consider the case of symmetric players in which all players have
the same demand to route through the network. These two alternatives have
previously been considered by [17], although it is assumed that the network only
consists of parallel links.
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3.1 Variable Market Power

We consider the case in which different players have different market power
as they control different amounts of demand. To that extent, we define the
Herfindahl index by H :=

∑
k∈[K](dk/D)2, where D :=

∑
k∈[K] dk is the total

demand. This index is a number between 1/K and 1. A higher index means
that the market is less competitive, and the case of H = 1 corresponds to a
monopoly. The case in which H = 1/K corresponds to symmetric players (see
next section). The following proposition reinterprets the definition of βK(c) to
improve the bound given by Theorem 2.2. The proof can be found in the full
paper.

Proposition 3.1. If we only consider instances with a single OD pair, the con-
stant βK(c) is at most sup 0≤y≤x

y(c(x)−c(y)+c′(x)yH/4)
xc(x) .

The difference compared to the expression provided by Theorem 2.2 is the factor
H in the last term of the numerator. Observe that as H ≤ 1, this result can only
reduce the price of anarchy. Moreover, if each player controls at most a fraction
φ(K) of the demand such that φ(K) → 0 when K → ∞, the price of anarchy is
asymptotically equal to that in the nonatomic game. Indeed, the worst case for
the market power variability is that there are 1/φ(K) players, each controlling a
fraction φ(K) of the demand, while the rest of the players control an infinitesimal.
In that case H ≤ (1/φ(K))φ(K)2 = φ(K) → 0. For example, in an oligopoly
with K players that control a total demand equal to K, but in which K/ lnK
players control lnK units of demand each and the rest of the players do not
have market power, the analysis above shows that this oligopoly approaches the
nonatomic game when K grows.

For the case of affine cost functions, the price of anarchy can be bounded by
(4 − H)/(3 − H). This generalizes that the price of anarchy is equal to 4/3 for
nonatomic games (H = 0) and at most 3/2 in general (arbitrary H). Neverthe-
less, we know that when H = 1, the price of anarchy equals 1. By perturbing
the monopolistic case we can show that the price of anarchy for the case of a
single OD pair is strictly less than 3/2. However, this analysis is quite technical
and it is unlikely to provide a bound that is tight.

Dafermos and Sparrow [9] proved that nonatomic games with general net-
works and cost functions of the form ca(xa) = qaxp

a for non-negative constants
qa and p, have fully efficient Nash equilibria. The situation for atomic games
is totally different: a carefully constructed instance with linear cost functions
(constant times flow) implies that the price of anarchy under linear costs is at
least 1.17. For games with a single OD pair, [1] proves that the flow that divides
a system optimum proportionally to the market power of different players is a
Nash equilibrium, implying that the price of anarchy is 1.

Providing bounds that depend on the market concentration for multiple
OD pairs is an interesting question that our work leaves open. Our techniques
do not easily extend to multiple OD pairs because it is not clear how to create
a feasible flow arc by arc. Nevertheless, as (1) holds when competitors have to
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route from multiple origins to multiple destinations, these results can presented
with more general assumptions.

3.2 Symmetric Players

When all players have the same demand d to route through the network, [17]
shows that there is a unique Nash equilibrium. Our first contribution in this
section is to provide a convex optimization problem whose optimum is the unique
equilibrium. This implies that the game with symmetric players is a potential
game. To facilitate notation, we add a reverse arc between t and s with zero
cost.

(SNE) min
∑

a∈A

xaca(xa) + (K − 1)
∑

a∈A

∫ xa

0

ca(τ)dτ

∑

(u,v)∈A

x(u,v) −
∑

(v,w)∈A

x(v,w) =0 for all v ∈ V

x(t,s) =dK

xa ≥0 for all a ∈ A.

Interestingly, (SNE) consists in finding a feasible flow that minimizes a convex
combination between the objective functions of the problems used to compute a
system optimum and a Nash equilibrium of a nonatomic game. When there is a
single player the second part vanishes leaving the social cost only. Instead, when
there are many players the second part is dominant and the social cost becomes
negligible. It turns out that a solution is optimal for (SNE) if and only if it is a
Nash equilibrium. Therefore, if the cost functions are strictly increasing, there
is exactly one Nash equilibrium. By comparing the KKT conditions of (SNE)
and (NEk), we get the following result.

Theorem 3.2. If x solves (SNE), then �x = (x/K, . . . , x/K) is a Nash equilib-
rium of the symmetric game with atomic players.

We make use of the potential function to derive results on the efficiency of
equilibria and the monotonicity of the cost when the number of players increase.

Proposition 3.3. Let �x ∈ IRK
+ be a Nash equilibrium in an atomic game with K

players who control d units of flow each; and let �y ∈ IRK̃
+ be a Nash equilibrium

in an atomic game with K̃ < K players who control dK/K̃ units of flow each.
Then, C(y) ≤ C(x).

Proof. Using the optimality of x and y in their respective problems,

∑

a∈A

xaca(xa)+(K−1)
∑

a∈A

∫ xa

0

ca(τ)dτ ≤
∑

a∈A

yaca(ya)+(K−1)
∑

a∈A

∫ ya

0

ca(τ)dτ

≤
∑

a∈A

xaca(xa) + (K̃ − 1)
∑

a∈A

∫ xa

0

ca(τ)dτ + (K − K̃)
∑

a∈A

∫ ya

0

ca(τ)dτ.
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Thus,
∑

a∈A

∫ xa

0
ca(τ)dτ ≤ ∑

a∈A

∫ ya

0
ca(τ)dτ , from where

∑

a∈A

yaca(ya) + (K̃−1)
∑

a∈A

∫ ya

0

ca(τ)dτ ≤
∑

a∈A

xaca(xa) + (K̃−1)
∑

a∈A

∫ xa

0

ca(τ)dτ

<
∑

a∈A

xaca(xa) + (K̃−1)
∑

a∈A

∫ ya

0

ca(τ)dτ.

�	
The previous propositions imply that the price of anarchy in symmetric games
with K players increases as the number of players increases. Furthermore, it
approaches the price of anarchy in the nonatomic case when the number of
players goes to infinity. In particular, we can show that, for affine cost functions
the price of anarchy is exactly (4K2)/(K + 1)(3K − 1). The conclusion is that
for symmetric games non-atomicity does not degrade the quality of equilibria.
This stands in clear contrast to the case of atomic asymmetric games whose price
of anarchy is larger than that of nonatomic games. Independently of this work,
[14] have studied the effect of collusion in network games. In particular, their
results imply that, for an atomic game in a parallel link network and divisible
demands, the price of anarchy is at most that of the corresponding nonatomic
game. The results we just presented have a similar flavor: we have more restrictive
assumptions on the players, but our results are valid for arbitrary networks. We
believe that a more general result actually holds. Namely, we conjecture that for
atomic networks games with splittable flows and a single OD pair, the price of
anarchy is at most that of the corresponding nonatomic game.

The results for symmetric players can be generalized to the asymmetric case
(but still users that share a single OD pair) if we assume that all players have a
positive flow on all arcs ([17] referred to this assumption by “all-positive flows,”
and proved that in this case there is a unique Nash equilibrium). For those
extensions, we just need to decompose the flow in each arc proportionally to
the demand of each player (as we have done in Section 3.1). The assumption
guarantees that the decomposition is feasible for all players.
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[1] E. Altman, T. Başar, T. Jimenez, and N. Shimkin. Competitive routing in networks
with polynomial costs. IEEE Transactions on Automatic Control, 47:92–96, 2002.

[2] B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow.
STOC, 57–66, 2005. NY.

[3] T. Boulogne. Nonatomic Strategic Games and Applications to Networks. PhD
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