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Abstract

We consider the boundary value problem

�u = 0 in�,
∂u

∂ν
= 2λ sinh u on ∂�

where � is a smooth and bounded domain in R
2 and λ > 0. We prove that for

any integer k � 1 there exist at least two solutions uλ with the property that the
boundary flux satisfies up to subsequences λ → 0,

2λ sinh(uλ) ⇀ 2π
2k∑

j=1

(−1)j−1 δξj ,

where the ξj are points of ∂� ordered clockwise in j .

1. Introduction

Let � be a bounded domain in R
2 with smooth boundary ∂�. A very common

boundary condition arising in corrosion modelling in a planar sample represented
by � is associated with the names of Butler and Volmer. In its simplest form it
asserts an exponential relationship between boundary voltages and boundary nor-
mal currents which takes the form

∂u

∂ν
= λ(e2βu − e−2(1−β)u)+ g on ∂�,

where the constant 0 < β < 1 depends on the constituents of the electrochemical
system but not on their concentrations. Here λ is a constant highly dependent on
their concentrations and g is an externally imposed current. Assuming the presence
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of no sources or sinks in�, the balanced situation β = 1
2 , and g = 0, the boundary

value problem satisfied by the voltage potential becomes in an ideal situation

�u = 0 in�,
∂u

∂ν
= 2λ sinh u on ∂�. (1.1)

We refer the reader to [13] and [5] for the derivation of this and related corrosion
models and references to the applied literature.

We assume throughout this paper that λ > 0. We are interested in solutions to
this problem when λ assumes very small values. A surprising example of an explicit
solution when � = D, the unit disk in R

2, was given by Bryan and Vogelius in
[3]. Consider 2k points on ∂D, ξ1, . . . , ξ2k corresponding to vertices of a regular
polygon, ordered clockwise, and set

uλ(x) =
2k∑

j=1

(−1)j−1 log
1

|x − αkξj |2 (1.2)

where αk =[ (k+2λ)/(k−2λ)]
1

2k . As λ → 0, we observe a singular concentration
behavior in the nonlinear boundary condition. Indeed we have that

2λ sinh uλ ⇀ 2π
2k∑

j=1

(−1)j−1 δξj

in the sense of measures in ∂D, where δξj denote Dirac masses at points ξj . In
[10] the possible behavior of solutions uλ with boundary condition 2λ sinh(uλ) of
uniformly bounded mass is established: the limit of the boundary flux along sub-
sequences is a sum of Dirac masses located at a finite set of points with weights
greater than or equal to 4π , potentially accompanied by a regular part which has
one sign. Solutions to the problem with this property were found by Kavian and
Vogelius in [8] via Ljusternik–Schnirelmann theory. However, their asymptotic
behavior is only partly understood by virtue of the above result. It remains an open
question if solutions of the form (1.2) exist in general two-dimensional domains.

The purpose of this paper is to show that in any domain �, there are at least
two distinct families of solutions which exhibit exactly the qualitative behavior of
the explicit solution (1.2), namely with limiting boundary flux given by an array
of 2k Dirac masses with weight 2π and alternate signs. The location of the 2k
concentration points can be accurately characterized as special critical points of a
functional ϕk defined explicitly in terms of G(x, y) the Green’s function for the
Neumann problem






�xG(x, y) = 0 in�

∂G
∂νx
(x, y) = 2πδy(x)− 2π

|∂�| on ∂�
∫
∂�
G(x, y)dx = 0.

(1.3)

We denote by H(x, y) its regular part:

H(x, y) = G(x, y)− log
1

|x − y|2 . (1.4)
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For m � 1 and points ξ1, . . . , ξm on ∂� ordered clockwise we define

ϕm(ξ1, . . . , ξm) =
m∑

l=1

H(ξl, ξl)+
∑

j �=l
(−1)l+jG(ξj , ξl). (1.5)

Our main result states as follows.

Theorem 1. Let k � 1 be a positive integer. There is a number λk > 0 such that
for any 0 < λ < λk there are two solutions uλ1 �= −uλ2 with

λ

∫

∂�

| sinh uλl | → 8kπ as λ → 0.

More precisely, given any sequenceλ = λn → 0, there is a subsequence, two arrays
of 2k points of ∂� (ξl1, ξl2, . . . , ξl 2k) ordered clockwise and distinct modulo-cyclic
permutations, positive constants µj = µlj , for j = 1, . . . , 2k, and two solutions
uλl of (1.1), l = 1, 2 such that, omitting the subindex l,

uλ(x) =
2k∑

j=1

(−1)j−1 log
2µj

|x − (ξj + λµjνj )|2 + O(1),

where νj denotes unit outer normal to ∂� at ξj and

2λ sinh uλ ⇀ 2π
2k∑

j=1

(−1)j−1 δξj .

Moreover, the 2k-tuples (ξl1, . . . , ξl 2k) are critical points of ϕ2k , and the constants
µj are explicitly given by

log 2µj = H(ξj , ξj )+
∑

l �=j
(−1)l+jG(ξj , ξl).

It is easily checked that the solutions (1.2) correspond exactly to this description
in the case� = D. Medville and Vogelius [10] have established that if the limit
boundary flux has no regular part, then the concentration points (ξl1, . . . , ξl 2k) nec-
essarily constitute a critical point of ϕ2k , and that the weights of the delta functions
are equal to 2π . They provide numerical evidence that solutions with a boundary
flux having a non-trivial regular part exist, but this remains an open question. Let us
mention that in [11] Medville and Vogelius considered the nonlinear boundary
condition

∂u

∂ν
= Du+ 2λ sinh u on ∂�,

whereD > 0. They analyzed the difference in blow-up as λ approaches 0 from the
right (pointwise blow-up) and from the left (blow-up “almost everywhere”).

It is interesting to mention the analogy existing between this result and the
problem −�u = λeu under Dirichlet boundary conditions, whose solutions with
λ
∫
�
eu uniformly bounded have become well understood after the works [12, 2, 9].

It follows from those results that concentration occurs in the form λeu ⇀ 8π
∑
δξj .

In [1, 6, 7] solutions with these properties have been built. In [4] the problem
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�u− u = 0,
∂u

∂ν
= λeu (1.6)

was analyzed and given any k � 1, a solution peaking in such a way that λeu ⇀
2π
∑k
j=1 δξj was built up, using as basic cells (after suitable blowing-up) explicit

solutions of
{
�v = 0 in R

2+
∂v
∂ν

= ev on ∂R2+,
(1.7)

where R
2+ denotes the upper half plane {(x1, x2) : x2 > 0} and ν the unit exterior

normal to ∂R2+, given by

wt,µ(x1, x2) = log
2µ

(x1 − t)2 + (x2 + µ)2
(1.8)

where t ∈ R andµ > 0 are parameters. The solutions whose exixtence are asserted
in Theorem 1 are also constructed using the above solutions scaled up and projected
to make them of one right order for the boundary condition. Solutions are found
as a small additive perturbation of these initial approximations. A linearization
procedure leads to a finite dimensional reduction, where the reduced problem cor-
responds to that of adjusting variationally the location of the concentration points.
An important element in the reduction procedure is the non-degeneracy of these
solutions up to variations of the parameters t and µ in (1.8). Problem (1.1) has a
basic difficulty in comparison to (1.6) which is linked to the fact that the limiting
equation formally satisfied by the sought solution uλ is

�u = 0,
∂u

∂ν
= 2π

2k∑

j=1

(−1)j−1δξj ,

whose solution is not unique but invariant under the addition of constants. This is
not such an innocent matter since this hidden limiting invariance is not present in
the equation itself, and unlike the other “obvious” elements of the limiting kernel
(see (2.1), (2.2) below), it is not localized near the points of concentration. It must
be mentioned that the simple use of an additive constant as an extra parameter in
the solution does not suffice, basically because the constant itself is not a good
approximation of an element of the kernel before reaching the limit. We are able to
overcome this difficulty by identifying an extra element of the approximate kernel
(see (3.5) below), which introduces another parameter to be adjusted in the problem.
We will devote the rest of this paper to the proof of Theorem 1.

2. Preliminaries

Let us define

z0 = 1 − 2µ
x2 + µ

x2
1 + (x2 + µ)2

, (2.1)
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and

z1 = −2
x1

x2
1 + (x2 + µ)2

, (2.2)

which correspond to derivatives of the basic solutions wt,µ with respect to its
parameters of translation and dilation respectively. These objects obviously lie in
the kernel of the linearization of problem (1.7) at the solution w0,µ, namely they
solve the problem

{
�φ = 0 in R

2+
∂φ
∂ν

− 2µ
x2

1+µ2φ = 0 on ∂R2+. (2.3)

Reciprocally, we have the following.

Lemma 1. Any bounded solution of (2.3) is a linear combination of z0 and z1.

Proof. This result was established in [4]. For the sake of completeness, the proof
is presented here. Let φ be a solution to (2.3) and set

w(y) = φ

(
y

|y|2 − (0, µ)

)
.

The function w is just the Kelvin transform of φ about the point (0,−µ). The

domain of w is the disk D = B
((

0, 1
2µ

)
, 1

2µ

)
and w is a bounded function that

satisfies �w = 0 in D,

∂w

∂ν′ = 2µw on ∂D \ {0}, (2.4)

where ν′ is the exterior unit normal to D. To see this observe that the map y �→
K(y) = y

|y|2 − (0, µ) is anti-conformal (preserves angles and reverses orientation)

and maps the normal vector to D to a normal vector to ∂R2+. More precisely, if ν′
is the exterior unit normal vector to D then

∂w

∂ν′ = 1

|y|2
∂φ

∂ν
.

Thus on ∂D

∂w

∂ν′ = 1

|y|2 e
w0,µ(K(y))w

and a calculation shows that

1

|y|2 e
w0,µ(K(y)) = 1

|y|2
2µ

y2
1

|y|4 + µ2
= 2µ.

Since w is bounded, by elliptic regularity (2.4) holds in all ∂D.
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By translating in the y2 direction we can assume that D is the disk centered at
the origin with radius 1

2µ . We think of w as the real part of an analytic function w
and write

w(y) =
∞∑

k=0

akr
keikθ

with y = reiθ . Condition (2.4) is equivalent to

Re

( ∞∑

k=0

ak(k − 1)eikθ
)

= 0 ∀θ,

and hence a0 = 0, ak = 0 for all k > 1. Looking at the real part of w, and
recalling that we shifted in the y2 direction we see that it is a linear combination of
y1 = x1

x2
1+(x2+µ)2 and y2 − 1

2µ = x2+µ
x2

1+(x2+µ)2 − 1
2µ . �	

In what remains of this paper we fix k � 1 and denotem = 2k. We will provide
a first approximation for the solutions of problem (1.1) predicted in Theorem 1.
For j = 1, . . . , m, let ξj be clockwise ordered points on the boundary of � and
µj positive numbers. Define, for x ∈ �,

uλj (x) = log
2µj

|x − ξj − λµjνj |2 (2.5)

and Hλ
j (x) to be the unique solution of

�Hλ
j = 0 in�, (2.6)

∂Hλ
j

∂ν
= −∂u

λ
j

∂ν
+ λe

uλj − λ
1

|∂�|
∫

∂�

e
uλj on ∂� (2.7)

with the property that
∫

∂�

Hλ
j (x) dx = −

∫

∂�

uλj (x) dx. (2.8)

We look for a solution to (1.1) of the form

u(x) = U(x)+�(x) (2.9)

where

U(x) =
m∑

j=1

(−1)j−1(uλj (x)+Hλ
j (x)) (2.10)

while � is a lower-order term with respect to U .
The function Hλ

j above resembles the shape of the regular part of the Green’s

function. Indeed, the following estimate for Hλ
j holds true.
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Lemma 2. For any 0 < α < 1,

Hλ
j (x) = H(x, ξj )− log 2µj +O(λα) (2.11)

uniformly in �̄.

Proof. The normal derivative ofHλ
j on the boundary of� can be computed explic-

itly, namely

∂Hλ
j

∂ν
(x) = 2λµj

1 − ν(ξj ) · ν(x)
|x − ξj − λµjν(ξj )|2 + 2

(x − ξj ) · ν(x)
|x − ξj − λµjν(ξj )|2

−λ 1

|∂�|
∫

∂�

e
uλj (x).

Thus,

lim
λ→0

∂Hλ
j

∂ν
(x) = 2

(x − ξj ) · ν(x)
|x − ξj |2 − 2π

|∂�| ∀x �= ξj (2.12)

since

λ

∫

∂�

e
uλj (x) = λ

∫

∂�

2µj
|x − ξj − λµjν(ξj )|2 = 2

∫
∂�−ξj
λµj

1

|y − ν(0)|2

= 2

(∫ ∞

−∞
dt

1 + t2
−O

(∫ ∞

λ−1µ−1
j

dt

1 + t2

))

= 2π +O
(

arctan(λµj )
−1 − π

2

)

= 2π +O(arctan(λµj ))

= 2π +O(λµj ). (2.13)

Define zλ(x) = Hλ
j (x) + log 2µj − H(x, ξj ). Since the regular part of the

Green’s function H(x, ξj ) is harmonic in � and satisfies the Neumann boundary
condition

∂H

∂νx
(x, y) = 2

(x − y) · ν(x)
|x − y|2 − 2π

|∂�| x ∈ ∂�,

the difference zλ solves the problem

{−�zλ = 0 in �
∂zλ
∂ν

= ∂Hλ
j

∂ν
− 2

(x−ξj )·ν(x)
|x−ξj |2 + 2π

|∂�| on ∂�.

Since zλ is harmonic in�, for any 1 � p � ∞, zλ ∈ W 1,p(�) and, by the Poincaré
inequality, we get

∥∥∥∥zλ − 1

|∂�|
∫

∂�

zλ

∥∥∥∥
Lp(�)

� ‖Dzλ‖Lp(�).
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Hence, by Lp theory, we have for any 0 < s < 1
p

∥∥∥∥zλ − 1

|∂�|
∫

∂�

zλ

∥∥∥∥
W 1+s,p(�)

� C

∥∥∥∥
∂zλ

∂ν

∥∥∥∥
Lp(∂�)

� Cλ
1
p ,

where the last inequality can be obtained by arguing as in Lemma 3.1 in [4] and
using (2.12). This implies the existence of a constant l such that, for any α ∈ (0, 1),

zλ(x) = l +O(λα)

uniformly in �̄, where l = limλ→0
1

|∂�|
∫
∂�
zλ dx.

In order to get the result, we are left to show that l = 0. We have

l = lim
λ→0

[
1

|∂�|
∫

∂�

Hλ
j (x) dx + log 2µj − 1

|∂�|
∫

�

H(x, ξj ) dx

]
. (2.14)

We directly compute from (2.8)

1

|∂�|
∫

∂�

Hλ
j (x) dx = − 1

|∂�|
∫

∂�

log
2µj

|x − ξj − λµjν(ξj )|2 dx

= − log 2µj − 1

|∂�|
∫

∂�

log
1

|x − ξj |2 dx

+ 1

|∂�|
∫

∂�

log

(
1+2λµjν(ξj ) · (x−ξj )|x−ξj |2 + λ2µ2

j

|x−ξj |2
)
dx

= − log 2µj + 1

|∂�|
∫

∂�

H(x, ξj ) dx +O(λ),

where the last equality is a consequence of the definition of the regular part of the
Green’s function. Hence (2.14) yields that l = 0. �	

By the following scaling,

x = λy, y ∈ �λ ≡ �

λ
, v(y) = u(λy)

solving problem (1.1) is equivalent to solving

�v = 0 in�λ,
∂v

∂ν
= 2λ2 sinh v on ∂�λ. (2.15)

In the expanded domain �λ, the main term (2.10) of the ansatz (2.9) now
looks like

V (y) =
m∑

j=1

(−1)j−1

[
log

2µj
|y − ξ

′
j − µjν

′
j |2

− 2 log λ+Hλ
j (λy)

]
, (2.16)

where ξ ′
j = λ−1ξj and ν′

j = ν(ξ ′
j ).
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We call

vj (y) = uλj (λy)+ 2 log λ = log
2µj

|y − ξ
′
j − µjν

′
j |2

and

Vj (y) = vj (y)− 2 log λ+Hλ
j (y).

A function v of the form

v(y) = V (y)+ φ(y), y ∈ �λ
is a solution for (2.15) if and only if φ solves

{
�φ = 0 in�λ,
∂φ
∂ν

−Wφ = R +N(φ) on ∂�λ,
(2.17)

where

W = 2λ2 cosh V, (2.18)

R = −
[
∂V

∂ν
− 2λ2 sinh V

]
(2.19)

and

N(φ) = 2λ2 [sinh(V + φ)− sinh V − cosh V φ] . (2.20)

We claim that V is a good approximation for a solution of (2.15) under the
assumption that we choose the parameters µj to be given by the relation

log 2µj = H(ξj , ξj )+
∑

l �=j
(−1)l+jG(ξj , ξl). (2.21)

This is the content of estimate (2.22) contained in the following Lemma

Lemma 3. Assume (2.21) holds true. Then, for anyα ∈ (0, 1), there exists a positive
constant C independent of λ such that, for any y ∈ �λ,

|R(y)| � Cλα
m∑

j=1

1

1 + |y − ξ
′
j |
, ∀ y ∈ �λ, (2.22)

and

W(y) =
m∑

j=1

2µj
|y − ξ

′
j − µjν

′
j |2
(1 + θλ(y)), (2.23)

with

|θλ(y)| � Cλα + Cλ

m∑

j=1

|y − ξ
′
j |. (2.24)
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Proof. First, we observe that a direct consequence of condition (2.21) is that for
|y − ξ ′

j | � δ
λ

, the following expansion holds true

(−1)j−1Hλ
j (λy)+

∑

i �=j
(−1)i−1

(
log

2µi
λ2|y − ξ ′

i − µiν(ξ
′
i )|2

+Hλ
i (λy)

)

= (−1)j−1 (H(ξj , ξj )− log 2µj
)

+
∑

i �=j
(−1)i−1G(ξi, ξj )+O(λα)+O(λ|y − ξ ′

j |)

= O(λα)+O(λ|y − ξ ′
j |). (2.25)

We prove (2.22). By definition

−R =
m∑

j=1

(−1)j−1 2µj
|y − ξ ′

j − µjν(ξ
′
j )|2

−2λ2 sinh V − λ2

|∂�|
m∑

j=1

(−1)j−1
∫

∂�

e
uλj .

The last term in R can be controlled by O(λ2). Indeed, the following fact holds
true

λ

m∑

j=1

(−1)j−1
∫

∂�

e
uλj = O



λ
∑

j �=i
|µj − µi |



 (2.26)

as a direct consequence of (2.13).
On the other hand, if |y − ξ ′

j | � δ
λ

,

2λ2 sinh V

= λ2



exp




m∑

j=1

(−1)j−1(uλj (λy)+Hλ
j (λy))





− exp




m∑

j=1

(−1)j (uλj (λy)+Hλ
j (λy))









= λ2

(
2µj

λ2|y − ξ ′
j − µjν(ξ

′
j )|2

)(−1)j−1

×exp



(−1)j−1Hλ
j (λy)+

∑

i �=j
(−1)i−1

(
log

2µi
λ2|y − ξ ′

i−µiν(ξ ′
i )|2

+Hλ
i (λy)

)



−λ2

(
2µj

λ2|y − ξ ′
j − µjν(ξ

′
j )|2

)(−1)j
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× exp



(−1)j−1Hλ
j (λy)+

∑

i �=j
(−1)i−1

(
log

2µi
λ2|y−ξ ′

i−µiν(ξ ′
i )|2

+Hλ
i (λy)

)



(using (2.25))

= λ2




(

2µj
λ2|y − ξ ′

j − µjν(ξ
′
j )|2

)(−1)j−1

−
(

2µj
λ2|y − ξ ′

j − µjν(ξ
′
j )|2

)(−1)j


 eO(λ
α)+O(λ|y−ξ ′

j |)

= (−1)j−1 2µj
|y − ξ ′

j − µjν(ξ
′
j )|2

(
1 +O(λα)+O(λ|y − ξ ′

j |)
)

+O(λ4).

(2.27)

Hence, for |y − ξ ′
j | � δ

λ
, we get

R =
m∑

j=1

(−1)j−1 2µj
|y − ξ ′

j − µjν(ξ
′
j )|2

(
O(λα)+O(λ|y − ξ ′

j |)
)
.

If we are far away from the points, namely if |y−ξ ′
j | > δ

λ
for all j , thenR = O(λ2).

This implies (2.22).
Estimates (2.23) and (2.24) follow from the same arguments used to obtain

estimate (2.27). �	

3. Analysis of the linearized equation

In this section we study the linear problem
{−�φ = f in �λ
∂φ
∂ν

= Wφ + h on ∂�λ
(3.1)

together with appropriate orthogonality conditions, whereW is a function that sat-
isfies (2.23) and (2.24), and f , h are given. Throughout this section we only assume
that the numbers µj appearing in (2.23) satisfy 1

C
� µj � C independently of λ,

and that the points ξj ∈ ∂� are uniformly separated

|ξi − ξj | � d ∀i �= j, (3.2)

where d > 0 is fixed.
The orthogonality conditions mentioned above are related to the kernel of (3.1)

when λ → 0. Let us look at (3.1) with f ≡ 0, h ≡ 0 as λ → 0 at a fixed distance
from one of the points, say ξ ′

j , and let us translate and rotate so that ξ ′
j = 0 and

�λ converges to the upper half plane R
2+. Then equation (3.1) approaches (2.3).

By Lemma 1 we know that any bounded solution to (2.3) is a linear combination
of z0 and z1 defined in (2.1), (2.2). We define appropriate versions of z0 and z1
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in �λ through a diffeomorphism Fj : Bρ(ξj ) → N 0 where ρ > 0 is fixed and
N0 is an open neighborhood of the origin such that Fj (� ∩ Bρ(ξj )) = R

2+ ∩ N0,
Fj (∂� ∩ Bρ(ξj )) = ∂R2+ ∩ N0, and such that Fj preserves area. We define for
y ∈ �λ,

Fλj (y) = 1

λ
Fj (λy) (3.3)

and

Zij (y) = zij (F
λ
j (y)) i = 0, 1 j = 1, . . . , m,

where zij denotes the function zi with parameter µ=µj (i=0, 1 j=1, . . . , m):

z0j = 1 − 2µj
x2 + µj

x2
1 + (x2 + µj )2

, z1j = −2
x1

x2
1 + (x2 + µj )2

.

Next, we fix a large constant R0 > 0 and a non-negative smooth function
χ̄ : R → R so that χ̄(r) = 1 for r � R0 and χ̄(r) = 0 for r � R0 + 1, 0 � χ̄ � 1.
Then set

χj (y) = χ̄(|Fλj (y)|). (3.4)

Let 0 < b < 1 and define

Z(y) =
{

min(1 − λb, Z0j (y)) if |y − ξ ′
j | < δ

λ
,

1 − λb if |y − ξ ′
j | � δ

λ
∀j = 1, . . . , m.

(3.5)

We will establish a priori estimates for solutions to (3.1) under the orthogonality
conditions

∫

�λ

χjZ1jφ = 0 ∀j = 1, . . . , m (3.6)

and
∫

�λ

χZφ = 0, (3.7)

where

χ =
m∑

j=1

χj .

Let us introduce the norms

‖h‖∗ = sup
y∈∂�λ

|h(y)|∑m
j=1(1 + |y − ξ ′

j |)−1−σ

and

‖f ‖∗∗ = sup
y∈�λ

|f (y)|∑m
j=1(1 + |y − ξ ′

j |)−2−σ ,

where σ > 0 is a fixed small constant.
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Proposition 1. For fixed d > 0 there exist λ0 > 0, C such that if 0 < λ < λ0,
ξj ∈ ∂�(j = 1, . . . , m) satisfy (3.2), and φ ∈ L∞(�λ) is a solution of (3.1) such
that (3.6) and (3.7) hold, then

‖φ‖L∞(�λ) � C log
1

λ
(‖f ‖∗∗ + ‖h‖∗).

We will prove this estimate by contradiction assuming that there exists a se-
quence λ → 0, points ξj ∈ � satisfying (3.2) (we omit the dependence on λ in the
notation) and functions h ∈ L∞(∂�λ), f ∈ L∞(�λ), φ ∈ L∞(�λ) such that

‖φ‖L∞(�λ) = 1

log
1

λ
‖h‖∗ = o(1), log

1

λ
‖f ‖∗∗ = o(1). (3.8)

Given 0 < α < 1, fix 0 < γ < β < α and consider the function p given by

p(r) =






1 if r < λ−γ ,
log λ−β−log r

log λ−β−log λ−γ if λ−γ < r < λ−β ,

0 if r > λ−β.
(3.9)

Define

Z̃0j (y) = z0j (F
λ
j (y))p(|Fλj (y)|) j = 1, . . . , m.

Let

φ̃ = φ −
m∑

j=1

dj Z̃0j ,

where the numbers dj are chosen so that
∫
�λ
χjZ0j φ̃ = 0 for any j = 1, . . . , m,

namely dj =
∫
�λ
χjZ0j φ∫

�λ
χjZ

2
0j

. Observe that

dj = O(1), ‖φ̃‖L∞(�λ) = O(1).

Furthermore, φ̃ solves the problem
{−�φ̃ = f +∑m

j=1 dj�Z̃0j in �λ
∂φ̃
∂ν

= Wφ̃ + h+∑m
j=1 dj

(
WZ̃0j − ∂Z̃0j

∂ν

)
on ∂�λ

(3.10)

and satisfies
∫

�λ

χjZij φ̃ = 0 ∀i = 0, 1 ∀j = 1, . . . , m. (3.11)

To reach a contradiction we will establish the following

Lemma 4.

φ̃ → 0 uniformly in �λ.
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Lemma 5.

dj → 0 ∀j = 1, . . . , m.

This will prove Proposition 1.
We delay the proofs of these lemmas and mention first some key steps.

Lemma 6. For all j = 1, . . . , m and R > 0

φ̃ → 0 uniformly in �λ ∩ BR(ξ ′
j ).

Proof. Assume that for some R > 0 and j = 1, . . . , m there is c > 0 so that
supBR(ξ ′

j )
|φ̃| � c > 0 for a subsequence λ → 0. Translate and rotate �λ so that

ξ ′
j = 0 and�λ converges to the upper half plane R

2+. By elliptic estimates φ̃ → φ̃0

uniformly on compact sets, and φ̃0 is a non-trivial solution of (2.3). Applying
Proposition 1 we conclude that φ̃0 is a linear combination of z0 and z1. On the other
hand, consider the limit as λ → 0 of the orthogonality conditions (3.11). After
translation and rotation, Zij converges to zi implying

∫
R

2+ χ̄zi φ̃0 = 0 for i = 0, 1.

This contradicts the fact that φ̃0 �≡ 0. �	

Lemma 7.

φ̃ ≡ 1

|∂�λ|
∫

∂�λ

φ̃ → 0.

Proof. By potential theory

φ̃(y)− φ̃ = 1

2π

∫

∂�λ

G(λy, λz)



Wφ̃ + h+
∑

j

dj

(
WZ̃0j − ∂ ˜Z0j

∂ν

)

 dz

+ 1

2π

∫

�λ

G(λy, λz)



f +
∑

j

dj�Z̃0j



 dz,

where G is Green’s function defined in (1.3).
Integrating equation (3.10) yields

∫

∂�λ

Wφ̃+h+
∑

j

dj

(
WZ̃0j − ∂ ˜Z0j

∂ν

)
dz+

∫

�λ



f +
∑

j

dj�Z̃0j



 dz = 0.

Taking into account that G(λy, λz) = log 1
λ2 + log 1

|y−z|2 + H(λy, λz), where H
is the regular part of Green’s function H (c.f. (1.4)) we have
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φ̃(y)− φ̃ = 1

2π

∫

∂�λ

(
log

1

|y − z|2 +H(λy, λz)

)

×


Wφ̃ + h+
∑

j

dj

(
WZ̃0j − ∂Z̃0j

∂ν

)

 dz

+ 1

2π

∫

�λ

(
log

1

|y − z|2 +H(λy, λz)

)

f +
∑

j

dj�Z̃0j



 dz.

(3.12)

Let us sketch now how the proof works and postpone some of the calculations.
Since φ̃(y) → 0 uniformly on sets of the form |y − ξ ′

j | < R, we can select a
sequence Rλ → ∞ such that

φ̃(y) → 0 uniformly for |y − ξ ′
j | < Rλ.

We can assume Rλ → ∞ as slowly as we need.
For each l = 1, . . . , m select a point yl ∈ ∂�λ so that |yl − ξ ′

l | = Rλ. We
claim that when we evaluate (3.12) at yl all terms on the right-hand side of (3.12)
converge to zero except for

∫
�λ

log 1
|yl−z|2�Z̃0j dz = 2πδlj + o(1) (where δlj is

Kronecker’s delta). Thus, we claim that

φ̃(yj )− φ̃ = dj + o(1) ∀j = 1, . . . , m. (3.13)

But the orthogonality condition (3.7) implies that

m∑

j=1

djaj = 0 where aj =
∫

�λ

χjZ
2
0j > 0. (3.14)

Multiplying (3.13) by aj , adding and using (3.14) we find

m∑

j=1

aj φ̃(yj )− aφ̃ = o(1) where a =
m∑

j=1

aj .

Since φ̃(yj ) → 0 and a is bounded away from zero we reach the conclusion

φ̃ = o(1).

In what follows we will obtain the necessary estimates to prove (3.13). �	
Claim.

∫

�λ

log
1

|yl − z|2�Z̃0j dz = 2πδlj + o(1) ∀j, l = 1, . . . , m.
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Proof. Let

z̃0j (x) = Z̃0j ((F
λ
j )

−1(x)) = z0j (x)p(|x|), (3.15)

where p was defined in (3.9). Let us write y = (F λj )
−1(x). Since p′(r) has a jump

at r = λ−γ and r = λ−β and is otherwise smooth, we see that�xz̃0j is a measure:

�xz̃0j = 2∇z0j∇p + z0j [p′(λ−γ )]µλ−γ + z0j [p′(λ−β)]µλ−β

= 2∇z0j∇p − z0j
λγ

(β − γ ) log 1
λ

µλ−γ + z0j
λβ

(β − γ ) log 1
λ

µλ−β ,

where [p′(r)] = p′(r+) − p′(r−) denotes the jump of p′ at r and let µr is the
one-dimensional measure on the circle of radius r .

Changing the variables yields
∫

�λ

�Z̃0j ϕ =
∫

λ−γ <|x|<λ−β

(
2∇p∇z0j +O(λ|x||∇2z̃0j |)+O(λ|∇ z̃0j |)

)

×ϕ((Fλj )−1(x)) dx

− λγ

(β − γ ) log 1
λ

∫

r=λ−γ
(1 +O(λ|x|))z0j ϕ((F

λ
j )

−1(x)) dx

+ λβ

(β − γ ) log 1
λ

∫

r=λ−β
(1 +O(λ|x|))z0j ϕ((F

λ
j )

−1(x)) dx

(3.16)

for any ϕ ∈ C(�).
Let us consider first the case l = j :

∫

�λ

log
1

|yj − z|2�Z̃0j dz =
∫

�λ

(
log

1

|yj − z|2 − log
1

|ξ ′
j − z|2

)
�Z̃0j dz

+
∫

�λ

log
1

|ξ ′
j − z|2�Z̃0j dz. (3.17)

By the previous remarks, using the fact that z0j (x) = 1 +O(|x|−1) and the expan-
sion (F λj )

−1(x) = ξ ′
j + x +O(λ|x|) (after rotation) we have

λγ

(β − γ ) log 1
λ

∫

r=λ−γ
(1 +O(λ|x|))z0j log

1

|ξ ′
j − (F λj )

−1(x)|2 dx

= λγ

(β − γ ) log 1
λ

(1 +O(λ1−γ ))(1 +O(λγ ))πλ−γ (2 log λ−γ +O(λ1−γ ))

= 2π
γ

β − γ
+O(λθ ),

where we fix

0 < θ < min(γ, 1 − β).
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Similarly,

λβ

(β − γ ) log 1
λ

∫

r=λ−β
z0j (1 +O(λ|x|)) log

1

|ξ ′
j − (F λj )

−1(x)|2 dx

= 2π
β

β − γ
+O(λθ ),

and a calculation using ∇z0j = O( 1
|x| ), ∇2z0j = O( 1

|x|2 ) shows that

∫

λ−γ <|x|<λ−β

(2∇p∇z0j +O(λ|x||∇2z̃0j |)+ (λ|∇ z̃0j |)) log
1

|ξ ′
j − (F λj )

−1(x)|2 dx

= O(λθ ).

Therefore,
∫

�λ

log
1

|ξ ′
j − z|2�Z̃0j dz = 2π +O(λθ ).

For the first integral in the right-hand side of (3.17) we can assume Rλ → ∞
slowly enough so that

λγRλ → 0.

Then
∣∣∣∣∣log

1

|yj − z|2 − log
1

|ξ ′
j − z|2

∣∣∣∣∣ � C
|yj − ξ ′

j |
λ−γ

and it follows that
∣∣∣∣∣

∫

�λ

(
log

1

|yj − z|2 − log
1

|ξ ′
j − z|2

)
�Z̃0j dz

∣∣∣∣∣ = O(λγRλ).

Next we show that if l �= j , then
∫

�λ

log
1

|yl − z|2�Z̃0j dz = o(1).

In fact,
∫

�λ

log
1

|yl − z|2�Z̃0j dz =
∫

�λ

(
log

1

|yl − z|2 − log
1

|yl − ξ ′
j |2
)
�Z̃0j dz

+
∫

�λ

log
1

|yl − ξ ′
j |2
�Z̃0j dz.

We can assume that Rλ < λ−γ
2 so that

∣∣∣∣∣log
1

|yl − z|2 − log
1

|yl − ξ ′
j |2
∣∣∣∣∣ � Cλ|z− ξ ′

j |.
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Thus,

∣∣∣∣∣

∫

�λ

(
log

1

|yl − z|2 − log
1

|yl − ξ ′
j |2
)
�Z̃0j dz

∣∣∣∣∣ = O(λθ ).

Finally,

∫

�λ

�Z̃0j dz = −(2π +O(λ1−γ ))(1 +O(λγ ))
1

(β − γ ) log 1
λ

+(2π +O(λ1−β))(1 +O(λβ))
1

(β − γ ) log 1
λ

+O(λγ )

= O(λθ ) (3.18)

so

log
1

|yl − ξ ′
j |2
∫

�λ

�Z̃0j dz = o(1). �	

Claim. For any 0 < α < 1

W(y)Z̃0j (y)− ∂Z̃0j

∂ν
(y) = O

(
λα

1 + |y − ξ ′
j |

)
+O

(
λ

log 1
λ

)
,

for |y − ξ ′
j | � δ

λ
. (3.19)

Proof. Set

W̃ (x) = W((Fλj )
−1(x))

where the map Fλj is defined (3.3). Recall thatW satisfies (2.23) and (2.24), that is

W(y) = 2µj
|y − ξ ′

j − µjν
′
j |2
(1 +O(λα(1 + |y|))).

Since (F λj )
−1(x) = ξ ′

j + x +O(λ|x|) we find

W̃ (x) = W((Fλj )
−1(x)) = W(ξ ′

j + x +O(λ|x|))
= 2µj
x2

1 + µ2
j

+O

(
λα

1 + |x|
)

x = (x1, 0), |x| < δ

λ
. (3.20)

On the other hand

∂Z̃0j

∂ν
= −∂z̃0j

∂x2
+O(λ|x||∇ z̃0j |),
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and using the fact that p has a zero normal derivative on ∂R2+ we deduce that

∂Z̃0j

∂ν
= −p∂z0j

∂x2
+O(λr(|∇p|z0j + p|∇z0j |))

= −p∂z0j

∂x2
+O

(
λ

log 1
λ

)
+O

(
λ

1 + r

)
r <

δ

λ
, (3.21)

where r = |y − ξ ′
j |
(

observe that ∇p = O

(
1

r log 1
λ

))
.

Using (3.20) we find

∂Z̃0j

∂ν
(y)−W(y)Z̃0j (y) = O

(
λ

log 1
λ

)
+O

(
λα

1 + |y − ξ ′
j |

)
|y − ξ ′

j | <
δ

λ
.

�	
Claim. Similarly

∫

∂�λ

log
1

|y − z|2
(
WZ̃0j − ∂Z̃0j

∂ν

)
dz = O(λ1−β) = o(1),

and uniformly for y ∈ ∂�λ.

Proof. Using (3.19) and the fact that if |y − ξ ′
j | > δ

λ
for all j we have W(y) =

O(λ2) and
∂Z̃0j
∂ν

= O(λ2), we see that

∫

∂�λ

∣∣∣∣∣WZ̃0j − ∂Z̃0j

∂ν

∣∣∣∣∣ = O

(
λ1−β 1

log 1
λ

)
. (3.22)

Since log 1
|y−z|2 = O

(
log 1

λ

)
for |y − z| > R where R > 0 is fixed and

∫

∂�λ∩BR(y)

∣∣∣∣log
1

|y − z|2
∣∣∣∣ dz � C,

we conclude the validity of the assertion. �	
Claim.

∫

∂�λ

log
1

|y − z|2 h(z) dz = o(1) (3.23)

and
∫

�λ

log
1

|y − z|2 f (z) dz = o(1). (3.24)



Juan Dávila, Manuel del Pino, Monica Musso & Juncheng Wei

Proof. We have log 1
|y−z|2 = O

(
log 1

λ

)
for |y− z| > R where R > 0 is fixed, and

∫
∂�λ∩BR(y) | log 1

|y−z|2 | dz � C, and therefore

∣∣∣∣
∫

∂�λ

log
1

|y − z|2 h dz
∣∣∣∣ � C log

1

λ
‖h‖∗ = o(1)

by hypothesis (3.8). The proof of the other assertion is similar. �	
Claim.

∫

∂�λ

log
1

|y − z|2Wφ̃ dz = o(1).

Proof. Arguing as before, it is sufficient to show that

log
1

λ

∫

∂�λ

Wφ̃ = o(1).

Integrating equation (3.10) we find

∫

∂�λ



Wφ̃ + h+
∑

j

dj

(
WZ̃0j − ∂Z̃0j

∂ν

)

 dz

+
∫

�λ



f +
∑

j

dj�Z̃0j



 dz = 0.

The conclusion follows then from (3.18), (3.22), (3.8). �	
Claim.

A ≡
∫

∂�λ

H(λy, λz)



Wφ̃ + h+
∑

j

dj

(
WZ̃0j − ∂Z̃0j

∂ν

)

 dz

+
∫

�λ

H(λy, λz)



f +
∑

j

dj�Z̃0j



 dz = o(1),

uniformly for y ∈ ∂�λ.

Proof. Let

ζ(r) =






1 if r < λ−1/2

log δ
λ
−log r

log δ
λ
−log λ−1/2 if λ−1/2 < r < δ

λ

0 if r > δ
λ

and set

ψ(z) =
m∑

j=1

H(λy, ξj )ζ(|z− ξ ′
j |).
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Multiplying (3.10) by ψ and integrating by parts we have

∫

�λ



f +
∑

j

dj�Z̃0j



ψ +
∫

∂�λ



Wφ̃ + h+
∑

j

dj

(
WZ̃0j − ∂Z̃0j

∂ν

)

ψ

−
∫

∂�λ

φ̃
∂ψ

∂ν
+
∫

�λ

φ̃�ψ = 0.

Subtracting this from A we find that

A =
∫

∂�λ

(H(λy, λz)− ψ)



Wφ̃ + h+
∑

j

dj

(
WZ̃0j − ∂Z̃0j

∂ν

)

 dz

+
∫

�λ

(H(λy, λz)− ψ)



f +
∑

j

dj�Z̃0j



 dz

+
∫

∂�λ

φ̃
∂ψ

∂ν
−
∫

�λ

φ̃�ψ.

Since H and ψ are bounded
∣∣∣∣
∫

∂�λ

(H(λy, λz)− ψ)h dz

∣∣∣∣ � C‖h‖∗ = o(1) (3.25)

∣∣∣∣
∫

�λ

(H(λy, λz)− ψ)f dz

∣∣∣∣ � C‖f ‖∗∗ = o(1). (3.26)

A calculation shows that
∫

�λ

φ̃�ψ = O

(
1

log δ
λ

)
= o(1),

∫

∂�λ

φ̃
∂ψ

∂ν
= O

(
1

log δ
λ

)
= o(1).

(3.27)

For instance, the first integral in (3.27) can be estimated as follows
∣∣∣∣
∫

�λ

φ̃�ψ

∣∣∣∣ � ‖φ̃‖L∞(�λ)

∫

�λ

|�ψ |.

But�ψ is a measure with support on the arcs r = λ−1/2, r = δ
λ

(r = |z− ξ ′
j |) and

∫

�λ

|�ψ | = O

(
λ−1/2 1

λ−1/2 log 1
λ

+ δ

λ

1
δ
λ

log 1
λ

)
= O

(
1

log 1
λ

)
= o(1).

Now, at distance greater that δ
λ

from all ξ ′
j we have W = O(λ2) and H , φ̃ are

bounded, thus
∫

∂�λ\(∪jBδ/λ(ξ ′
j ))

(H(λy, λz)− ψ)Wφ̃ = o(1). (3.28)
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On the other hand, at distance less than δ
λ

from ξ ′
j we have H(λy, λz) −

H(λy, ξj ) = O(λ|z− ξ ′
j |) and W = O( 1

r2 ), r = |z− ξ ′
j |. So

∣∣∣∣∣

∫

∂�λ∩Bλ−1/2 (ξ
′
j )

(H(λy, λz)− ψ(z))Wφ̃ dz

∣∣∣∣∣

=
∣∣∣∣∣

∫

∂�λ∩Bλ−1/2 (ξ
′
j )

(H(λy, λz)−H(λy, ξj ))Wφ̃ dz

∣∣∣∣∣

� λ

∫ δ/λ

1

1

r
dr = O

(
λ log

1

λ

)
= o(1). (3.29)

In the region λ−1/2 < r = |z − ξ ′
j | < δ

λ
we use the fact that H , ζ , φ̃ are bounded

and that W = O( 1
r2 ), so

∣∣∣∣∣

∫

∂�λ∩Bδ/λ(ξ ′
j )\Bλ−1/2 (ξ

′
j )

(H(λy, λz)− ψ(z))Wφ̃ dz

∣∣∣∣∣ � C

∫ δ/λ

λ−1/2

1

r2 dr

= O(λ1/2)

= o(1). (3.30)

Collecting (3.25)–(3.30) and recalling (3.18), (3.19) we obtain the desired conclu-
sion. �	
Proof of Lemma 4. Let φ̂(x) = φ̃(x/λ), x ∈ �. Then φ̂ satisfies






−�φ̂ = 1
λ2

(
f̂ +∑m

j=1 dj�Ẑ0j

)
in �

∂φ̂
∂ν

= 1
λ

(
Ŵ φ̂ + ĥ

∑m
j=1 dj

(
Ŵ Ẑ0j − ∂Ẑ0j

∂ν

))
on ∂�,

where f̂ (x) = f (x/λ), ĥ(x) = h(x/λ), Ŵ (x) = W(x/λ) and Ẑ01(x) = Z01(x/λ).
For a given δ > 0 let Eδ = � \ ∪mj=1Bδ(ξj ). Then 1

λ2 ‖f̂ ‖L∞(Eδ) � C‖f ‖∗∗ → 0,
1
λ
‖ĥ‖L∞(∂Eδ) � C‖h‖∗ → 0, and 1

λ
‖Ŵ φ̂‖L∞(Eδ) � Cλ. Furthermore, in Eδ we

have that Ẑ0j ≡ 0. We also know that ‖φ̂‖L∞(�) � 1 and −
∫
∂�
φ̂ → 0. From this it

follows that φ̂ → 0 uniformly in Eδ and this implies

φ̃ → 0 uniformly in �λ \ ∪mj=1Bδ/λ(ξ
′
j ), for any δ > 0.

For a given R1 > 0 let Aj denote the annulus

Aj = Bδ/λ(ξ
′
j ) \ BR1(ξ

′
j ).

Given λ > 0 small enough, there exist R1 > 0 independent of λ and ψj : �λ ∩
Aj → R smooth and positive so that

−�ψj � c

|y − ξ ′
j |2+σ in �λ ∩ Aj

∂ψj

∂ν
−Wψj � c

|y − ξ ′
j |1+σ on ∂�λ ∩ Aj

c � ψj � C in �λ ∩ Aj ,
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where C, c > 0 can be made independent of λ. Indeed, the function

ψj (y) = (y − ξ ′
j ) · ν′

j

|y − ξ ′
j |1+σ + C0

(
1 − 1

|y − ξ ′
j |σ
)

with C0 a fixed large constant satisfies the requirements, see [4] (Lemma 4.3).
Thanks to the barrierψj we deduce that the following maximum principle holds

in �λ ∩ Aj : if φ ∈ H 1(�λ ∩ Aj) satisfies





−�φ � 0 in �λ ∩ Aj
∂φ
∂ν

−Wφ � 0 on ∂�λ ∩ Aj
φ � 0 on �λ ∩ Aj ,

then φ � 0 in �λ ∩ Aj . By the properties of ψj and this maximum principle we
deduce that there exists a fixed C > 0 so that

|φ| � Cψj



 sup
�λ∩∂BR1 (ξ

′
j )

|φ| + sup
�λ∩∂Bδ/λ(ξ ′

j )

|φ| + ‖h‖∗ + ‖f ‖∗∗



 in �λ ∩ Aj .

But sup�λ∩∂BR1 (ξ
′
j )

|φ| → 0 by Lemma 6, and sup�λ∩∂Bδ/λ(ξ ′
j )

|φ| → 0 as shown

above. This proves the result. �	
Proof of Lemma 5. Multiplying (3.10) by Z̃0j and integrating we obtain

dj

(∫

�λ

(−�Z̃0j )Z̃0j +
∫

∂�λ

Z̃0j

(
∂Z̃0j

∂ν
−WZ̃0j

))

= −
∫

∂�λ

Z̃0j h−
∫

�λ

Z̃0j f +
∫

∂�λ

φ̃

(
∂Z̃0j

∂ν
−WZ̃0j

)
+
∫

�λ

φ̃(−�Z̃0j ).

We claim that
∫

�λ

(−�Z̃0j )Z̃0j +
∫

∂�λ

Z̃0j

(
∂Z̃0j

∂ν
−WZ̃0j

)
� c

log 1
λ

, (3.31)

for some fixed c > 0. Assuming this for a moment, we can prove the lemma since
∣∣∣∣
∫

∂�λ

Z̃0j h

∣∣∣∣ � ‖h‖∗‖Z̃0j‖L∞(�λ) � C log
1

λ
‖h‖∗

1

log 1
λ

= o(1)
1

log 1
λ

and
∫

�λ

Z̃0j f = o(1)
1

log 1
λ

.

Similarly, the other terms can be estimated as follows
∣∣∣∣∣

∫

∂�λ

φ̃

(
∂Z̃0j

∂ν
−WZ̃0j

)∣∣∣∣∣ � ‖φ̃‖L∞(�λ)

∫

∂�λ

∣∣∣∣∣
∂Z̃0j

∂ν
−WZ̃0j

∣∣∣∣∣ = O(λ1−β),
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using (3.22) and
∣∣∣∣
∫

�λ

φ̃(−�Z̃0j )

∣∣∣∣ � ‖φ̃‖L∞(�λ)

∫

�λ

|�Z̃0j | � C

log 1
λ

‖φ̃‖L∞(�λ) = o(1)
1

log 1
λ

.

Let us prove (3.31) using (3.16) to compute
∫
�λ
�Z̃0j Z̃0j . For the part of�Z̃0j

supported on r = λ−γ we have

λγ

(β − γ ) log 1
λ

∫

r=λ−γ
(1 +O(λ|x|))z2

0jp dx

= λγ

(β − γ ) log 1
λ

(1 +O(λ1−γ ))(1 +O(λγ ))2πλ−γ

= πγ

(β − γ ) log 1
λ

+O(λθ ) 0 < θ < min(γ, 1 − β).

Analogously, for the part supported on r = λ−β we find that

λβ

(β − γ ) log 1
λ

∫

r=λ−β
(1 +O(λ|x|))z2

0jp dx = 0

since p(λ−β) = 0. Also,
∫

λ−γ <|x|<λ−β
(2∇p∇z0j +O(λ|x||∇2z̃0j |)+ (λ|∇ z̃0j |))z0jp dx = O(λθ ).

Thus,
∫

�λ

�Z̃0j Z̃0j = − πγ

(β − γ ) log 1
λ

+O(λθ ).

Finally, similarly to (3.22)
∫

∂�λ

Z̃0j

(
∂Z̃0j

∂ν
−WZ̃0j

)
= O(λ1−β),

and this proves (3.31). �	
Proposition 2. Let d > 0 and m a positive even integer. Then there exists λ0 > 0
such that for any 0 < λ < λ0, any family of points ξ1, . . . , ξm ∈ ∂� satisfying
(3.2) (i.e. |ξi − ξj | � d∀i �= j ), and any h ∈ L∞(∂�λ), f ∈ L∞(�λ) there is a
unique solution φ ∈ L∞(�λ), c0, c1, . . . , cm ∈ R to






−�φ = f in �λ
∂φ
∂ν

−Wφ = h+∑m
j=1 cjχjZ1j + c0χZ on ∂�λ

∫
�λ
χjZ1jφ = 0 ∀j = 1, . . . , m,

∫
�λ
χZφ = 0.

(3.32)

Moreover, there is C > 0 independent of λ such that

‖φ‖L∞(�λ) � C log
1

λ
(‖h‖∗ + ‖f ‖∗∗),

max(|c0|, . . . , |cm|) � C(‖h‖∗ + ‖f ‖∗∗).
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Proof. We first deal with the following linear problem





−�φ = f +∑m
j=1 djχjZ1j + d0χZ in �λ

∂φ
∂ν

−Wφ = h on ∂�λ
∫
�λ
χjZ1jφ = 0 ∀j = 1, . . . , m,

∫
�λ
χZφ = 0,

(3.33)

where h ∈ L∞(∂�λ), f ∈ L∞(�λ) are given. Let us show that for any φ ∈
L∞(�λ), d0, d1, . . . , dm solution to (3.33) we have

‖φ‖L∞(�λ) � C log
1

λ
(‖h‖∗ + ‖f ‖∗∗) (3.34)

|dj | � C(‖h‖∗ + ‖f ‖∗∗) ∀j = 0, . . . , m. (3.35)

Given that from Proposition 1 we have

‖φ‖L∞(�λ) � C log
1

λ



‖h‖∗ + ‖f ‖∗∗ +
m∑

j=0

|dj |


 , (3.36)

it suffices to prove that (3.35) holds.
Consider a cut-off function η̄ such that

η̄ ≡ 1 in B δ
4λ
(0), η̄ ≡ 0 in R

2 \ B δ
3λ
(0)

0 � η̄ � 1, |∇η̄| � Cλ/δ, |∇2η̄| � Cλ2/δ2 in R
2,

and for j = 1, . . . , m set

ηj (y) = η̄(F λj (y)),

where Fλj is defined in (3.3). Multiplying (3.33) by ηiZ1i , i = 1, . . . , m and
integrating by parts we obtain

di

∫

�λ

χiZ
2
1i = −

∫

∂�λ

hηiZ1i −
∫

�λ

f ηiZ1i +
∫

∂�λ

φ
∂ηi

∂ν
Z1i

+
∫

∂�λ

φηi

(
∂Z1i

∂ν
−WZ1i

)
−
∫

�λ

φ�(ηiZ1i ). (3.37)

Since Z1i = O
(

1
1+r
)

and ∇η̄ = O(λ), we have

∣∣∣∣
∫

∂�λ

φ
∂ηi

∂ν
Z1i

∣∣∣∣ � C‖φ‖L∞(�λ)λ log
1

λ
. (3.38)

As in the proof of (3.19) we have

∂Z1i

∂ν
(y)−W(y)Z1i (y) = O

(
λα

1 + |y − ξ ′
j |

)
y ∈ ∂�λ, |y − ξ ′

j | <
δ

λ
,
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and this implies
∫

∂�λ

ηi

∣∣∣∣
∂Z1i

∂ν
−WZ1i

∣∣∣∣ = O(λα
′
), i = 1, . . . , m, (3.39)

where 0 < α′ < α. Since 0 < α < 1 is arbitrary, so is α′, and so from now on we
will just write α.

We also compute

�(ηiZ1i ) = �ηiZ1i + 2∇ηi∇Z1i + ηi�Z1i

= O

(
λ2

1 + r

)
+O

(
λ

1 + r2

)
+ ηi�Z1i .

However, �yZ1i = �xz1 +O(λ|x||∇2z1|)+O(λ|∇z1|) (where we have rotated
� appropriately and x = Fλi (y)). Thus,

�Z1i = O

(
λ

1 + r2

)
+O

(
λ2

1 + r

)

and it follows that
∫

�λ

|�(ηiZ1i )| = O

(
λ log

1

λ

)
= O(λα). (3.40)

Combining (3.37), (3.39) and (3.40) we conclude that

di

∫

�λ

χiZ
2
1i � C(‖h‖∗ + ‖f ‖∗∗ + λα‖φ‖L∞(�λ)),

and this together with (3.36) yields

|di | � C



‖h‖∗ + ‖f ‖∗∗ + λα
m∑

j=0

|dj |


 , i = 1, . . . , m. (3.41)

On the other hand, multiplying (3.33) by Z we obtain

d0

∫

�λ

χZ2 = −
∫

�λ

fZ −
∫

∂�λ

hZ +
∫

∂�λ

φ

(
∂Z

∂ν
−WZ

)
−
∫

�λ

φ�Z.

(3.42)

We estimate as before
∣∣∣∣
∫

∂�λ

φ

(
∂Z

∂ν
−WZ

)∣∣∣∣ � ‖φ‖L∞(�λ)

∫

∂�λ

∣∣∣∣
∂Z

∂ν
−WZ

∣∣∣∣ � Cλb/2‖φ‖L∞(�λ)

(3.43)

and
∣∣∣∣
∫

�λ

φ�Z

∣∣∣∣ � ‖φ‖L∞(�λ)

∫

�λ

|�Z| � Cλb‖φ‖L∞(�λ). (3.44)
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From (3.42) and (3.36) we see that

|d0| � C



‖h‖∗ + ‖f ‖∗∗ + λb/2
m∑

j=0

|dj |


 .

Using this and (3.41) we deduce (3.35) and (3.34).
Now consider the Hilbert space

H =
{
φ ∈ H 1(�λ) :

∫

�λ

χZφ = 0,
∫

�λ

χjZ1jφ = 0 ∀j = 1, . . . , m

}

with the norm ‖φ‖2
H 1 = ∫

�λ
|∇φ|2. Indeed, this is a norm in H since by choosing

R0 large enough (the size of the support of the cut-off functions χj , c.f. (3.4)) we
have

∫
�λ
χZ �= 0. Equation (3.33) can be formulated as to find φ ∈ H such that
∫

�λ

∇φ∇ψ −
∫

∂�λ

Wφψ =
∫

�λ

fψ +
∫

∂�λ

hψ ∀ψ ∈ H.

By (3.34) this problem has at most one solution, and by Fredholm’s alternative we
deduce that given f , h there indeed exists a solution.

For convenience of notation in the rest of the proof we write

Z0 = Z, χ0 = χ and Zj = Z1j ∀j = 1, . . . , m.

LetYi ∈ L∞(�λ), dij ∈ Ri, j = 0, . . . , m be the solution to (3.33) withh = χiZ1i
and f = 0, that is






−�Yi = ∑m
j=0 dijχjZj in �λ

∂Yi
∂ν

−WYi = −χiZi on ∂�λ
∫
�λ
χjZjYi = 0 ∀j = 0, . . . , m.

(3.45)

There exists a unique Yi ∈ L∞(�λ) solution to this equation and we have the
estimates

‖Yi‖L∞(�λ) � C log
1

λ
, |dij | � C, (3.46)

for some constant C independent of λ. We shall show that dij = Aδij + O(λb/2)

where A > 0 is independent of λ. Indeed, writing η0 ≡ 1, let us multiply (3.45) by
ηjZj and integrate by parts

dij

∫

�λ

χjZ
2
j + δij

∫

∂�λ

χjZ
2
j =

∫

∂�λ

(
∂Zj

∂ν
−WZj

)
ηjYi +

∫

∂�λ

∂ηj

∂ν
ZjYi

−
∫

�λ

Yi�(ηjZj )

= O(λb/2).

To estimate the integrals in the right-hand side above for the case j = 1, . . . , m,
we argue exactly as in (3.38), (3.39), and (3.40). For the case j = 0 we use (3.43)
and (3.44).
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It follows that the matrix D with entries dij i, j = 0, . . . , m is invertible for
small λ and ‖D−1‖ � C uniformly in λ. To prove the solvability of (3.32) let
f ∈ L∞(�λ), h ∈ L∞(∂�λ) be given. We find φ1, d0, . . . , dm the solution to
(3.33) and define

φ = φ1 +
m∑

i=0

ciYi,

where ci is such that
∑m
i=0 cidij = −dj ∀j = 0, . . . , m. Then φ satisfies (3.32)

and we have the estimate

‖φ‖L∞(�λ) � ‖φ1‖L∞(�λ) +
m∑

i=0

|ci | � C log
1

λ
(‖f ‖∗∗ + ‖h‖∗)+ C

m∑

i=1

|di |

� C log
1

λ
(‖f ‖∗∗ + ‖h‖∗),

by (3.35). �	
The previous result implies that the unique solution φ = T (h) of (3.32) with

f = 0 defines a continuous linear map from L∞(∂�λ) with the norm ‖ · ‖∗ into
L∞(�λ). For fixed h ∈ L∞(∂�) let us compute the derivative of φ = T (h) with
respect to ξ ′

l . Formally Y = ∂ξ ′
l
φ satisfies the equation

�Y = 0 in �λ,

and on ∂�λ the boundary condition

∂Y

∂ν
−WY = ∂ξ ′

l
(W) φ + cl ∂ξ ′

l
(Z1lχl) +

m∑

j=1

dj Z1jχj + c0∂ξ ′
l
(χZ)+ d0χZ

where (still formally) dj = ∂ξ ′
l
(cj ), j = 0, . . . , m. The orthogonality conditions

now become
∫

�λ

Z1jχjY = 0, if j �= l

∫

�λ

Z1lχlY = −
∫

�λ

∂ξ ′
l
(Z1lχl)φ.

∫

�λ

χZY = −
∫

�λ

∂ξ ′
l
(χZ)φ.

Let us write Ỹ = Y + blχlZ1l + b0χZ where b0, bl are defined through

b0

∫

�λ

χ2Z2 ≡
∫

�λ

φ ∂ξ ′
l
(χZ), bl

∫

�λ

χ2
l Z

2
1l ≡

∫

�λ

φ ∂ξ ′
l
(χlZ1l ).

Hence,
∫
�λ
ỸχjZ1j = 0 for all j and

∫
�λ
ỸχZ = 0, Ỹ satisfies the equation

�Ỹ = a in �λ
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and the boundary condition

∂Ỹ

∂ν
−WỸ = b +

m∑

j=1

dj Z1jχj + d0χZ,

where

a = bl�(χlZ1l )+ b0�(χZ)

and

b = ∂ξ ′
l
(W) φ + cl ∂ξ ′

l
(Z1lχl)+ c0∂ξ ′

l
(χZ)+ bl

(
∂(χlZ1l )

∂ν
−WχlZ1l

)

+b0

(
∂(χZ)

∂ν
−WχZ

)
,

with

‖b‖∗ � C log
1

λ
‖h‖∗, ‖a‖∗∗ � C log

1

λ
‖h‖∗.

Thus,

‖∂ξ ′
l
φ‖L∞(�λ) � C

(
log

1

λ

)2

‖h‖∗. (3.47)

4. The nonlinear problem with constraints

Let τ be a small parameter and consider

V1(y) = V (y)+ τZ(y) y ∈ �λ, (4.1)

whereV is given by (2.16), andZ is the function introduced in (3.5) at the beginning
of Section 3.

A function v of the form

v(y) = V1(y)+ φ̃(y), y ∈ �λ
is a solution for (2.15) if and only if φ̃ solves





�φ̃ = 0 in�λ,

∂φ̃
∂ν

−W1φ̃ = R1 +N1(φ̃) on ∂�λ,
(4.2)

where

W1 = 2λ2 cosh V1, (4.3)

R1 = −
[
∂V1

∂ν
− 2λ2 sinh V1

]
(4.4)
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and

N1(φ̃) = 2λ2
[
sinh(V1 + φ̃)− sinh V1 − cosh(V1)φ̃

]
. (4.5)

Observe that from the definition of the function Z we see that Z(y) = O(1) all
over �λ. This readily implies that

V1(y) = V (y)+O(|τ |) ∀y ∈ �λ. (4.6)

We consider first the following auxiliary nonlinear problem





�φ1 = 0 in �λ,

∂φ1
∂ν

−W1φ1 = R1 +N1(φ1)+∑m
j=1 cjχjZ1j + c0χZ on ∂�λ,

∫
�λ
χjZ1jφ1 = 0 ∀j = 1, ..., m,

∫
�λ
χZφ1 = 0

(4.7)

where W1 is as in (4.3) and N1, R1 are defined in (4.5) and (4.4) respectively.

Lemma 8. Let m > 0, d > 0. Let α be any number in the interval (0, 1) and
τ = O(λθ ) with θ > α

2 . Then there exist λ0 > 0, C > 0 such that for 0 < λ < λ0
and for any ξ1, . . . , ξm ∈ ∂� satisfying (3.2), problem (4.7) admits a unique solu-
tion φ1, c0, c1, . . . , cm such that

‖φ1‖L∞(�λ) � Cλα. (4.8)

Furthermore, the function (τ, ξ ′) → φ1(τ, ξ
′) ∈ C(�̄λ) is C1 and

‖Dξ ′φ1‖L∞(�λ) � C λα, ‖Dτφ1‖L∞(�λ) � C λθ1 , θ1 < θ. (4.9)

Proof. First we observe that

W1(y) = W(y)+ 2λ2 sinh(V )τZ + τ 2λ2 cosh(V + τ̄Z)Z2,

where |τ̄ | � |τ |. The equation for φ1 can be written as





�φ1 = 0 in�λ,

∂φ1
∂ν

−Wφ1 = τBφ1 + R1 +N1(φ1)+∑m
j=1 cjχjZ1j + c0χZ on ∂�λ,

∫
�λ
χjZ1jφ1 = 0 ∀j = 1, . . . , m,

∫
�λ
χZφ1 = 0,

(4.10)

where B = 2λ2 sinh(V )Z + τλ2 cosh(V + τ̄Z)Z2. Remark that from (2.23) and
(2.27) we have the estimate ‖B‖∗ � C.

LetA be the operator that associates with any φ1 ∈ L∞(�λ) the unique solution
given by Proposition 2 for h = τBφ1 + R1 + N1(φ1) and f = 0. In terms of the
operator A, equation (4.10) is equivalent to the fixed point problem

φ1 = A(φ1). (4.11)

Let us consider the set

F ≡ {φ ∈ C(�̄λ) : ||φ||L∞(�λ) � λα}.
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From Proposition 2 we get

‖A(φ1)‖L∞(�λ) � C| log λ|
[
|τ | ‖Bφ1‖∗ + ‖N1(φ1)‖∗ + ‖R1‖∗

]
.

Let us estimate ‖R1‖∗. We have

R1 = −
[
∂V

∂ν
+ τ

∂Z

∂ν
− 2λ2 sinh(V + τZ)

]

= R(y)− τ
∂Z

∂ν
+ 2λ2 sinh(V + τZ)− 2λ2 sinh V

= R(y)− τ

[
∂Z

∂ν
−WZ

]
+ λ2τ 2 sinh(V + τ̄Z)Z2,

where |τ̄ | � |τ |. For |y − ξ ′
j | � δ

λ
, we have ∂Z

∂ν
− WZ = O

(
λa

1+|y−ξ ′
j |

)
where

0 < a < 1 will be fixed shortly, while for |y−ξ ′
j | > δ

λ
we have ∂Z

∂ν
−WZ = O(λ2),

thus ‖ ∂Z
∂ν

− WZ‖∗ � Cλa−σ . Similarly ‖R‖∗ � Cλa−σ . On the other hand
‖λ2 sinh(V + τ̄Z)Z2‖∗ � C, and hence

‖R1‖∗ � ‖R‖∗ + |τ |λa−σ + Cτ 2 � C(λa−σ + λ2θ )

since τ = O(λθ ). We choose 0 < a < 1 and σ > 0 small so that a − σ > α (σ is
the number that appears in the definition of the norms ‖ · ‖∗ and ‖ · ‖∗∗).

Furthermore, ‖N1(φ1)‖∗ � C ‖φ1‖2
L∞(�λ) as a direct consequence of (4.5) and

|τ |‖Bφ1‖∗ � |τ |‖φ1‖L∞(�λ)‖B‖∗ � Cλα+θ .

For anyψ1, ψ2, ψ ∈ F , we get the existence of a positive constant C, such that

‖A(ψ)‖L∞(�λ) � C| log λ|
[
λα+θ + λ2α + λa−σ + λ2θ

]
,

‖A(ψ1)− A(ψ2)‖L∞(�λ) � C | log λ|(λθ + λα) ‖ψ1 − ψ2‖L∞(�λ).

It follows that for all λ sufficiently small, A is a contraction mapping of F , and
therefore a unique fixed point of A exists in F .

Let us now discuss the differentiability of φ1. Since R1 depends continuously
(in the *-norm) on

(τ, ξ ′) = (τ, ξ ′
1, . . . , ξ

′
m),

using the fixed point characterization (4.11) we deduce that the map (τ, ξ ′) �→ φ1
is also continuous. Then, formally, for β = ξ ′

k or β = τ ,

−∂βN1(φ1) = 2λ2
[(

cosh(V1 + φ1)− cosh V1 − sinh V1φ1

)
∂βV1

+
(

sinh(V1 + φ1)− cosh V1

)
∂β φ1

]
.
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It can be checked that ‖∂βV1‖∗ is uniformly bounded, for both β = ξ ′
k and β = τ ,

so we conclude that

‖∂βN1(φ1)‖∗ � C
[
‖φ1‖L∞(�λ) + ‖∂βφ1‖L∞(�λ)

]
‖φ1‖L∞(�λ)

� C
[
λα + ‖∂βφ1‖L∞(�λ)

]
λα.

Using the notation T (h) for the operator that h ∈ L∞(�λ) associates the solution
of the linear problem (3.32) with f = 0, we may write for β = ξ ′

k ,

∂ξ ′
k
φ1 = (∂ξ ′

k
T )
(
τBφ1 +N1(φ1)+ R1

)
+ T

(
∂ξ ′
k

[
τBφ1 +N1(φ1)+ R1

])
,

while for β = τ ,

∂τφ1 = T (Bφ1 + τ∂τ (Bφ1)+ ∂τN1(φ1)+ ∂τR1).

Thus, from Proposition 2 and (3.47) we deduce for β = ξ ′
k

‖∂ξ ′
k
φ1‖L∞(�λ) � C | log λ|2‖(N1(φ1)+ R1)‖∗ + | log λ|‖∂ξ ′

k
N1(φ1)‖∗

+‖∂ξ ′
k
R1‖∗)

� C λa−σ | log λ|2 � Cλα,

since it can be seen that ‖∂ξ ′
k
R1‖∗ � Cλα . For β = τ we get

‖∂τφ1‖L∞(�λ) � C| log λ|(‖φ1‖L∞(�λ) + λ1−σ + λθ ) � Cλθ1 , θ1 < θ

since

‖∂τR1‖∗ � C(‖∂Z
∂ν

−WZ‖∗ + τ‖λ2 sinh(V + τ̄Z)Z2‖∗) � Cλθ .

The above computation can be made rigorous by using the implicit function
theorem and the fixed point representation (4.11) which guarantees C1 regularity
in τ and ξ ′. �	
Remark. It is possible to verify that given τ1, τ2 = O(λθ )with θ > α

2 , the unique
solutions φ1, φ2 of Lemma 8 satisfy

‖φ1 − φ2‖L∞(�λ) � Cλθ |τ1 − τ2|. (4.12)

This follows from the fixed point characterization (4.11) of these solutions. Indeed,
let A(τ, φ) be the nonlinear operator introduced in this lemma, i.e. the one that
φ ∈ L∞(�λ) associates the unique solution given by Proposition 2 for h = τBφ+
R1(τ )+N1(φ1) and f = 0 to. Using Proposition 2 we see that

‖A(τ1, φ)− A(τ2, φ)‖L∞(�λ) � Cλθ |τ1 − τ2|.
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Lemma 9. Let m > 0, d > 0. For any 0 < α < 1, there exist λ0 > 0, C > 0
such that for 0 < λ < λ0, any ξ1, . . . , ξm ∈ ∂� satisfying (3.2), there exists a
unique τ with |τ | < Cλα−b/2, such that problem (4.7) admits a unique solution φ,
c0, c1, . . . , cm with c0 = 0, and such that

‖φ‖L∞(�λ) � Cλα. (4.13)

Furthermore, the function ξ ′ → φ(ξ ′) is C1 and

‖Dξ ′φ‖L∞(�λ) � Cλα.

Proof. Given ξ1, . . . , ξm in ∂� such that |ξi − ξj | > d and τ = O(λθ ) with
α
2 < θ < α, let φ1, c0, c1, . . . , cm be solutions to (4.7). Multiplying (4.7) against
Z and integrating by parts, we get

c0

∫

∂�λ

χZ2 = −
∫

∂�λ

φ1

(
W1Z − ∂Z

∂ν

)
−
∫

∂�λ

R1Z −
∫

∂�λ

N1(φ1)Z

−
∫

�λ

φ1�Z −
m∑

j=1

cj

∫

∂�λ

χjχZ1jZ. (4.14)

Now we have:
∣∣∣∣
∫

�λ

φ1�Z

∣∣∣∣ � C‖φ1‖L∞(�λ)λ
b � Cλα+b;

∣∣∣∣
∫

∂�λ

N1(φ1)Z

∣∣∣∣ � C‖φ1‖2
L∞(�λ) � Cλ2α;

∣∣∣∣
∫

∂�λ

φ1

(
W1Z − ∂Z

∂ν

)∣∣∣∣ � Cλα‖φ1‖L∞(�λ) � Cλ2α

∣∣∣∣
∫

∂�λ

χjχZ1jZ

∣∣∣∣ � Cλ

∫

∂�λ

R1Z =
∫

∂�λ

RZ + τ

∫

∂�λ

[
−∂Z
∂ν

+WZ

]
Z + τ 2λ2

∫

∂�λ

sinh(V + τ̄Z)Z3

Let us estimate the second integral in the right-hand side. Observe that in the regions
{Z < 1 − λb} (which are of size |y − ξ ′

j | < µjλ
−b/2) we have by a calculation

similar to (3.19)
∫

|y−ξ ′
j |<µjλ−b/2,y∈∂�λ

[
−∂Z
∂ν

+WZ

]
Z = O(λα).

For the rest at distance µjλ−b/2 < |y − ξ ′
j | < δ

λ
we have that Z is constant, so for

a given j = 1, . . . , m
∫

µjλ
−b/2<|y−ξ ′

j |< δ
λ
,y∈∂�λ

[
−∂Z
∂ν

+WZ

]
Z =

∫

µjλ
−b/2<|y−ξ ′

j |< δ
λ
,y∈∂�λ

WZ2

= 4λb/2 + o(λb/2).
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Hence,
∫

∂�λ

[
−∂Z
∂ν

+WZ

]
Z = 4mλb/2 + o(λb/2).

We also have
∣∣∣∣
∫

∂�λ

RZ

∣∣∣∣ � Cλα

and from the expansion (2.27)

λ2
∫

∂�λ

sinh(V + τ̄Z)Z3 = O(λb/2).

This shows that it is possible to find τ = O(λα−b/2) so that c0 = 0. The unique-
ness of τ can be seen also from the previous estimates. Indeed, suppose we have
τ, τ̃ = O(λθ ) and solutions φ, φ̃ such that for the corresponding coefficients we
have c0 = c̃0 = 0. From equation (4.14) and the estimates that follow we obtain

λb/2|τ − τ̃ | � Cλα‖φ − φ̃‖L∞(�λ) + C|τ − τ̃ |(|τ | + |τ̃ |)λb/2
and using (4.12) we deduce τ = τ̃ .

Let us now discuss the differentiability of φ with respect to ξ ′. We have

φ(ξ ′) = φ1(τ (ξ
′), ξ ′)

where φ1 is the solution to problem (4.7) given by Lemma 8 while τ(ξ ′) is the
unique positive number so that in problem (4.7) we have c0 = 0.

Hence,

Dξ ′
k
φ(ξ ′) = Dτφ1(τ (ξ

′), ξ ′)Dξ ′
k
τ (ξ ′)+Dξ ′

k
φ1(τ (ξ

′), ξ ′).

Since from (4.14) with c0 = 0 we can deduce that |Dξ ′
k
τ (ξ ′)| � Cλθ , from (4.8)

and (4.9) we conclude that

‖Dξ ′
k
φ(ξ ′)‖L∞(�λ) � Cλα. �	

5. Variational reduction

In view of Lemmas 8 and 9, given ξ = (ξ1, . . . , ξm) ∈ ∂�m satisfying |ξi −
ξj | � d∀i �= j , we define φ(ξ) and cj (ξ) to be the unique solution to (4.7) with
c0 = 0 satisfying the bounds (4.8) and (4.9).

Let

Jλ(u) = 1

2

∫

�λ

|Du|2 − 2λ2
∫

∂�λ

cosh u dx.

Given ξ = (ξ1, . . . , ξm) ∈ ∂�m, define

Fλ(ξ) = Jλ(V1(ξ)+ φ(ξ)), (5.1)

where V1(ξ) = V (ξ)+ τ(ξ)Z(ξ) with τ(ξ) given by Lemma 9.
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Lemma 10. If ξ = (ξ1, . . . , ξm) ∈ (∂�)m satisfying (3.2) is a critical point of Fλ
then v = V1(ξ)+ φ(ξ) is a critical point of Jλ, that is, a solution to (2.15).

Proof. Let ξ ′ = ξ/λ. Therefore,

∂Fλ

∂ξk
= 1

λ

∂Iλ(V1(ξ
′)+ φ(ξ ′))
∂ξ ′
k

= 1

λ
DIλ(V1(ξ

′)+ φ(ξ ′))
[
∂V1(ξ

′)
∂ξ ′
k

+ ∂φ(ξ ′)
∂ξ ′
k

]
.

Since v′ = V1(ξ
′)+ φ(ξ ′) solves (4.7) with c0 = 0

∂Fλ

∂ξk
= 1

λ

m∑

i=1

ci

∫

∂�λ

χiZ1i

[
∂V1(ξ

′)
∂ξ ′
k

+ ∂φ(ξ ′)
∂ξ ′
k

]
.

Let us assume that DFλ(ξ) = 0. From the previous equation we conclude that

m∑

i=1

ci

∫

∂�λ

χiZ1i

[
∂V1(ξ

′)
∂ξ ′
k

+ ∂φ(ξ ′)
∂ξ ′
k

]
= 0 ∀k = 1, . . . , m.

Since
∥∥∥ ∂φ(ξ

′)
∂ξ ′
k

∥∥∥
L∞(�λ)

� Cλα and ∂V (ξ ′)
∂ξ ′
k

= ±Z1k + o(1) where o(1) is in the

L∞ norm as a direct consequence of (4.6), it follows that

m∑

i=1

ci

∫

∂�λ

χiZ1i (±Z1k + o(1)) = 0 ∀k = 1, . . . , m,

which is a strictly diagonal dominant system. This implies that ci = 0
∀i = 1, . . . , m. �	

In order to solve for critical points of the function Fλ, a key step is its expected
closeness to the function Jλ(V1(ξ)), which we will analyze in the next section.

Lemma 11. Assume α ∈ ( 1
2 , 1

)
. The following expansion holds

Fλ(ξ) = Jλ(V )+ θλ(ξ) ,

where

|θλ| → 0,

uniformly on points satisfying the constraints (3.2).

Proof. We write

Jλ(V1 + φ)− Jλ(V ) = [ Jλ(V1 + φ)− Jλ(V1)] +[ Jλ(V1)− Jλ(V )]

= A+ B.
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Let us estimate A first. Taking into account that DJλ(V1 + φ)[φ] = 0, a Taylor
expansion and an integration by parts gives

A =
∫ 1

0
D2Jλ(V1 + tφ)[φ]2 (1 − t) dt

=
∫ 1

0

(
2λ2

∫

∂�λ

[ cosh(V1 + tφ)− cosh(V1 + φ)] φ2

+
∫

∂�λ

[N1(φ)+ R1] φ
)
(1 − t) dt, (5.2)

so we get

Jλ(V1 + φ)− Jλ(V1) = O(λ2α)

taking into account that ‖φ‖L∞(�λ) � Cλα .
On the other hand,

B = τJ ′
λ(V + τ̄Z)[Z]

for |τ̄ | � |τ |, and since Z is almost an element of the kernel of J ′
λ(V ), we get

Jλ(V1)− Jλ(V ) = o(1)τ → 0.

Hence, |θλ(ξ)| = o(1) uniformly on points satisfying (3.2).
The continuity in ξ of all these expressions is inherited from that of φ and its

derivatives in ξ in the L∞ norm. �	

6. Energy computations and proof of the theorem

In this section we compute the expansion of the energy functional Jλ evaluated
at V and we give the proof of Theorem 1.

We have

Lemma 12. Letm > 0, d > 0. Let µj be given by (2.21) and let V be the function
defined in (2.16). Then for any 0 < α < 1 the following expansion holds true

Jλ(V ) = 2mπ log
1

λ
+m(β0 − 2π + 2π log 2)

−πϕm(ξ)+O(λα) (6.1)

uniformly on points ξ = (ξ1, . . . , ξm) ∈ (∂�)m such that |ξi − ξj | > d for all
i �= j . In the previous formula, ϕm(ξ) is the function introduced in (1.5), namely

ϕm(ξ) = ϕm(ξ1, . . . , ξm) =
[ m∑

l=1

H(ξl, ξl)+
∑

j �=l
(−1)l+jG(ξj , ξl)

]

while β0 is the constant defined by

β0 =
∫

R

1

1 + x2 log
1

1 + x2 .
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Proof. Since V (y) = ∑m
j=1(−1)j−1(uλj (λy)+Hλ

j (λy)) satisfies�V = 0 in �λ,
we write

Jλ(V ) = 1

2

∫

∂�λ

V
∂V

∂ν
− 2λ2

∫

∂�λ

cosh(V ).

We compute the second term first:

2λ2
∫

∂�λ

cosh(V ) = λ2
m∑

l=1

∫

∂�λ∩Bδ/λ(ξ ′
l )

(eV + e−V )+O(λα)

Suppose l is odd first. Then, recalling the notation introduced in Section 2, vl(y) =
uλl (y)+ 2 log λ, we get

λ2
∫

∂�λ∩Bδ/λ(ξ ′
l )

(eV + e−V ) = λ2
∫

∂�λ∩Bδ/λ(ξ ′
l )

eV +O(λα)

=
∫

∂�λ∩Bδ/λ(ξ ′
l )

evl e
(−1)l−1Hλ

l +∑j �=l (−1)j−1(uλj+Hλ
j )

+O(λα)
= 2π +O(λα).

Thus,

λ2
∫

∂�λ∩Bδ/λ(ξ ′
l )

(eV + e−V ) = 2π +O(λα). (6.2)

Similarly for l even, we also have (6.2), so we obtain

2λ2
∫

∂�λ

cosh(V ) = 2mπ +O(λα). (6.3)

It remains to compute
∫
∂�λ

V ∂V
∂ν

:

∫

∂�λ

V
∂V

∂ν
=
∫

∂�λ

( m∑

j=1

(−1)j−1(uλj +Hλ
j )

)

×
( m∑

i=1

(−1)i−1evi − 1

|∂�λ|
m∑

i=1

(−1)i−1
∫

∂�λ

evi
)

=
∫

∂�λ

( m∑

j=1

(−1)j−1(uλj +Hλ
j )

)( m∑

i=1

(−1)i−1evi
)

− 1

|∂�λ|
( m∑

i=1

(−1)i−1
∫

∂�λ

evi
)∫

∂�λ

( m∑

j=1

(−1)j−1(uλj +Hλ
j )

)

=
m∑

i,j=1

(−1)i+j
∫

∂�λ

evi (uλj +Hλ
j )+O(λα),



Juan Dávila, Manuel del Pino, Monica Musso & Juncheng Wei

since by (2.26)

m∑

j=1

(−1)j−1
∫

∂�λ

evj = O(λ).

For j �= i, we have
∫

∂�λ

evi (uλj +Hλ
j ) = 2πG(ξj , ξi)+O(λα). (6.4)

For j = i, we have using (2.21),
∫

∂�λ

evi (uλi +Hλ
i )

=
∫

∂�λ

2µj
|y − µjν

′
j |2
((

log
1

λ2

)
+log

2µj
|y−µjν ′

j |2
+H(ξj , ξj+λy)−log(2µj )

)

+O(λα)
=2π log

1

λ2 + 2π(H(ξj , ξj )− log 2µj )+ 2β0 +O(λα).

Thus,
∫

∂�λ

evi (uλi +Hλ
i ) = 2π log

1

λ2 + 2β0 + 4π log 2

+2π

(
−H(ξj , ξj )− 2

∑

i �=j
(−1)i+jG(ξj , ξi)

)
+O(λα)

(6.5)

Combining (6.4) and (6.5), we obtain that

∫

∂�λ

V
∂V

∂ν
=

m∑

i,j=1

(−1)i+j
∫

∂�λ

evi (uλj +Hλ
j )+O(λα)

= 2mπ log
1

λ2 + 2mβ0 + 4mπ log 2

+2π

(
−

m∑

i=1

H(ξi, ξi)−
∑

j �=i
(−1)i+jG(ξj , ξi)

)
+O(λα) (6.6)

Summing up equations (6.3) and (6.6), we finally arrive at

Jλ(V ) = 2mπ log
1

λ
+m(β0 − 2π + 2π log 2)

−π
[ m∑

l=1

H(ξl, ξl)+
∑

j �=l
(−1)l+jG(ξj , ξl)

]
+O(λα). �	

We now have all ingredients to give the proof of Theorem 1.
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Proof of Theorem 1. Define for ξ = (ξ1, . . . , ξm) ∈ (∂�)m with |ξi − ξj | � d,
the function

v(y) = V1(ξ)(y)+ φ(ξ)(y) y ∈ �λ,
where V1(ξ) is given by (4.1) and φ(ξ) is the unique solution to problem (4.7)
with c0 = 0, whose existence and properties are established in Lemma 9. Then,
according to Lemma 8, v is solution to (2.15) provided that ξ is a critical point of
the function Fλ(ξ) defined in (5.1), or equivalently, ξ is a critical point of

F̃λ(ξ) = 1

π

(
2mπ log

1

λ
+m(β0 − 2π + 2π log 2)− Fλ(ξ)

)
.

Let m = 2k and �̃m be the set of points ξ = (ξ1, . . . , ξm) ∈ (∂�)m ordered
clockwise along a given connected component of ∂�, such that |ξi − ξj | � d for
all i �= j for some d > 0 sufficiently small, so that all the previous results hold
true. Namely, if we denote by p :[ 0, 2π ] → ∂� a continuous parametrization of
this connected component of ∂�, we can then write

�̃m = {ξ = (p(θ1), . . . , p(θm)) ∈ (∂�)m : |p(θi)− p(θj )| � d if i �= j}.
It is not restrictive to assume that 0∈∂�. Lemmas 11 and 12 guarantee that for ξ∈�̃m,

F̃λ(ξ) = ϕm(ξ)+ λα�λ(ξ), (6.7)

where �λ is uniformly bounded in the considered region as λ → 0. We will show
that F̃λ has at least two distinct critical points in this region—a fact that when used
will prove our result. The function ϕm is C1, bounded from above in �̃m, and if
two consecutive points get closer it becomes unbounded from below, implying that

ϕm(ξ1, . . . , ξm) → −∞ as |ξi − ξj | → 0 for some i �= j.

Hence, since d is arbitrarily small, ϕm has an absolute maximum M0 in �̃m, and
so does F̃λ whenever λ is sufficiently small. Let us call Mλ this value, so that
Mλ = M0 + o(1) as λ → 0. On the other hand, Ljusternik–Schnirelmann theory is
applicable in our setting, so we can estimate the number of critical points of ϕm in
�̃m by cat (�̃m), the Ljusternik–Schnirelmann category of �̃m relative to �̃m. We
claim that cat (�̃m) > 1. Indeed, by contradiction, assume that cat (�̃m) = 1. This
means that �̃m is contractible in itself, namely there exist a point ξ0 ∈ �̃m and a
continuous function � :[ 0, 1] ×�̃m → �̃m such that for all ξ ∈ �̃m,

�(0, ξ) = ξ, �(1, ξ) = ξ0.

Let f : S1 → �̃m be the continuous function defined by

f (x) =
(
p(θ), p

(
θ + 2π

1

m

)
, . . . , p

(
θ + 2π

m− 1

m

))
,

x = eiθ , θ ∈[ 0, 2π ] .
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Let η :[ 0, 1] ×S1 → S1 be the well-defined continuous map given by

η(t, x) = π1 ◦ �(t, f (x))
‖π1 ◦ �(t, f (x))‖ ,

where π1 denotes the projection on the first component. The function η is a con-
traction of S1 to a point and this gives a contradiction. Thus we conclude that

c0 = sup
C∈�

inf
ξ̄∈C

ϕm(ξ̄ ), (6.8)

where

� = {C ⊂ �̃m : C closed and cat (C) � 2}
is a finite number, and a critical level for ϕm. Call cλ the number (6.8) with ϕm
replaced by F̃λ, so that cλ = c0 + o(1). If cλ �= Mλ, we conclude that there are
at least two distinct critical points for F̃λ (distinct up to cyclic permutations) in
�̃m. If cλ = Mλ, we get that there must be a set C, with cat (C) � 2, where the
function F̃λ reaches its absolute maximum. In this case we conclude that there are
infinitely many critical points for F̃λ in �̃m. Since cyclic permutations are only
finite in number, the result is thus proven. �	
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