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Abstract

We consider the boundary value problem

d
Au=0ing, a—” = 22 sinh u on 9
%
where  is a smooth and bounded domain in R? and A > 0. We prove that for
any integer k = 1 there exist at least two solutions u; with the property that the
boundary flux satisfies up to subsequences A — 0,

2k
2A sinh(uy) — 27 Z(—l)f_l 8.
j=1

where the &; are points of 92 ordered clockwise in j.

1. Introduction

Let Q be a bounded domain in R? with smooth boundary 9. A very common
boundary condition arising in corrosion modelling in a planar sample represented
by € is associated with the names of Butler and Volmer. In its simplest form it
asserts an exponential relationship between boundary voltages and boundary nor-
mal currents which takes the form

du

— = AP — 720y 4 a0n9Q,

av
where the constant 0 < 8 < 1 depends on the constituents of the electrochemical
system but not on their concentrations. Here A is a constant highly dependent on
their concentrations and g is an externally imposed current. Assuming the presence
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of no sources or sinks in €2, the balanced situation 8 = %, and g = 0, the boundary
value problem satisfied by the voltage potential becomes in an ideal situation

9
Au = 0inQ, a—u=2ksinhu0n89. (1.1)
v

We refer the reader to [13] and [5] for the derivation of this and related corrosion
models and references to the applied literature.

We assume throughout this paper that A > 0. We are interested in solutions to
this problem when A assumes very small values. A surprising example of an explicit
solution when = D, the unit disk in R?, was given by BRYAN and VOGELIUS in
[3]. Consider 2k points on dD, &1, ... , &y corresponding to vertices of a regular
polygon, ordered clockwise, and set

2k

up(x) =Y (=)' 'log

Jj=1

1
_ (1.2)
v — a2
where oy =[ (k+2A)/(k—2)1)] % .As A — 0, we observe a singular concentration
behavior in the nonlinear boundary condition. Indeed we have that

2k
2hsinhu, — 2w (=171,
j=1

in the sense of measures in 9D, where J; denote Dirac masses at points §;. In
[10] the possible behavior of solutions u; with boundary condition 2 sinh(u; ) of
uniformly bounded mass is established: the limit of the boundary flux along sub-
sequences is a sum of Dirac masses located at a finite set of points with weights
greater than or equal to 4, potentially accompanied by a regular part which has
one sign. Solutions to the problem with this property were found by KAVIAN and
VOGELIUS in [8] via Ljusternik—Schnirelmann theory. However, their asymptotic
behavior is only partly understood by virtue of the above result. It remains an open
question if solutions of the form (1.2) exist in general two-dimensional domains.

The purpose of this paper is to show that in any domain €2, there are at least
two distinct families of solutions which exhibit exactly the qualitative behavior of
the explicit solution (1.2), namely with limiting boundary flux given by an array
of 2k Dirac masses with weight 27 and alternate signs. The location of the 2k
concentration points can be accurately characterized as special critical points of a
functional ¢ defined explicitly in terms of G(x, y) the Green’s function for the
Neumann problem

0 (xy)  =2mby(x)— 25 ondQ (1.3)
-/BQ G(-x, y)dx = 0
We denote by H (x, y) its regular part:

H(x,y) :G(x,y)—logm. (1.4)
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Form 2 1 and points &1, ... , &, on 92 ordered clockwise we define
m
omE1, . En) = Y HE &)+ Y (—DGE, &). (1.5)
=1 J#l

Our main result states as follows.

Theorem 1. Let k = 1 be a positive integer. There is a number Ay > 0 such that
forany O < A < Ay there are two solutions uy| 7% —uyp with

A/ | sinhuy;| — 8km asi — 0.
IR

More precisely, given any sequence A = A, — 0, there is a subsequence, two arrays
of 2k points of 902 (§11, &12, . . . , &12k) ordered clockwise and distinct modulo-cyclic
permutations, positive constants (uj = yj, for j =1, ..., 2k, and two solutions
uy of (1.1), I = 1, 2 such that, omitting the subindex I,

24
x = (& +arpjvpP

2k
w,(x) =Y (=i~ 10g| + 0(1),
j=1

where v denotes unit outer normal to 0Q at §; and

2k
2xsinhu, — 2w Y (=171,
j=1

Moreover, the 2k-tuples (&1, . .. , & 2k) are critical points of gk, and the constants
w; are explicitly given by

log2u; = H(E; &) + Y (=D GE;. &).
1%

Itis easily checked that the solutions (1.2) correspond exactly to this description
in the case 2 = D. MEDVILLE and VOGELIUS [10] have established that if the limit
boundary flux has no regular part, then the concentration points (§;1, . . . , & 2x) nec-
essarily constitute a critical point of ¢y, and that the weights of the delta functions
are equal to 27. They provide numerical evidence that solutions with a boundary
flux having a non-trivial regular part exist, but this remains an open question. Let us
mention that in [11] MEDVILLE and VOGELIUS considered the nonlinear boundary
condition

0
a—u = Du +2Aisinhu ond<2,
v

where D > 0. They analyzed the difference in blow-up as A approaches 0 from the
right (pointwise blow-up) and from the left (blow-up “almost everywhere”).

It is interesting to mention the analogy existing between this result and the
problem —Au = Ae* under Dirichlet boundary conditions, whose solutions with
A f o ¢" uniformly bounded have become well understood after the works [12, 2, 9].
It follows from those results that concentration occurs in the form Ae" — 87 ) 8, .
In [1, 6, 7] solutions with these properties have been built. In [4] the problem
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a
Au—u=0, == =je" (1.6)
av
was analyzed and given any k = 1, a solution peaking in such a way that le" —
2 ZI;-:] 8¢; was built up, using as basic cells (after suitable blowing-up) explicit
solutions of

_ . 2
Av =0 1n]R+

v __ v 2
gy =€ on 0R%,

(1.7)
where Ri denotes the upper half plane {(x1, x2) : xo > 0} and v the unit exterior
normal to B]Ri, given by

2
(x1 =12+ (x2 + p)?

wy, 1 (X1, x2) = log (1.8)
where r € R and p > 0 are parameters. The solutions whose exixtence are asserted
in Theorem 1 are also constructed using the above solutions scaled up and projected
to make them of one right order for the boundary condition. Solutions are found
as a small additive perturbation of these initial approximations. A linearization
procedure leads to a finite dimensional reduction, where the reduced problem cor-
responds to that of adjusting variationally the location of the concentration points.
An important element in the reduction procedure is the non-degeneracy of these
solutions up to variations of the parameters ¢ and w in (1.8). Problem (1.1) has a
basic difficulty in comparison to (1.6) which is linked to the fact that the limiting
equation formally satisfied by the sought solution u;, is

S 2%k -
Au =0, o= 27 Z(—DJ 8.
j=1

whose solution is not unique but invariant under the addition of constants. This is
not such an innocent matter since this hidden limiting invariance is not present in
the equation itself, and unlike the other “obvious” elements of the limiting kernel
(see (2.1), (2.2) below), it is not localized near the points of concentration. It must
be mentioned that the simple use of an additive constant as an extra parameter in
the solution does not suffice, basically because the constant itself is not a good
approximation of an element of the kernel before reaching the limit. We are able to
overcome this difficulty by identifying an extra element of the approximate kernel
(see (3.5) below), which introduces another parameter to be adjusted in the problem.
We will devote the rest of this paper to the proof of Theorem 1.

2. Preliminaries

Let us define
X2+ [

_— 2.1)
x12 + (x2 + )2

zo0=1-2u
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and
X1

=2,
x12 + (x2 + )2

2.2)

which correspond to derivatives of the basic solutions w; , with respect to its
parameters of translation and dilation respectively. These objects obviously lie in
the kernel of the linearization of problem (1.7) at the solution wy,,,, namely they
solve the problem

Ad =0 inR2 -
d 2 .
2 _ Fhse=0 ondR3. (2.3)

Reciprocally, we have the following.
Lemma 1. Any bounded solution of (2.3) is a linear combination of zo and z;.

Proof. This result was established in [4]. For the sake of completeness, the proof
is presented here. Let ¢ be a solution to (2.3) and set

w(y) = ¢ (% -, u)) .
Iyl

The function w is just the Kelvin transform of ¢ about the point (0, —u). The
domain of w is the disk D = B ((O, ﬁ), ﬁ) and w is a bounded function that
satisfies Aw = 0in D,

Jw
— =2uw ondD\ {0}, 2.4)
ov’

where V' is the exterior unit normal to D. To see this observe that the map y —
K(y) = # — (0, w) is anti-conformal (preserves angles and reverses orientation)

and maps the normal vector to D to a normal vector to aRi. More precisely, if v/
is the exterior unit normal vector to D then

ow 1 3¢
v |y2av’
Thus on 0D

w1 wpukon,

v |y
and a calculation shows that

L owopkon — L2,
52 Ed L .
W-i-,u

Since w is bounded, by elliptic regularity (2.4) holds in all d D.
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By translating in the y;, direction we can assume that D is the disk centered at
the origin with radius ﬁ We think of w as the real part of an analytic function w
and write

o0
wy) =) arte™
k=0
with y = re'?. Condition (2.4) is equivalent to

o0
Re (Z ap(k — 1)e”‘9> =0 Vo,
k=0

and hence agp = 0, ax = 0 for all k > 1. Looking at the real part of w, and

recalling that we shifted in the y, direction we see that it is a linear combination of
1 X2+ 1
yl =

X1
——1——and y, — 5~ = — . 0O
Frtow? Y2 T W T i T

In what remains of this paper we fix k = 1 and denote m = 2k. We will provide
a first approximation for the solutions of problem (1.1) predicted in Theorem 1.
For j =1,...,m, let §; be clockwise ordered points on the boundary of €2 and
wj positive numbers. Define, for x € €2,

20
A J
u’;(x) =log 2.5)
! |x — & — Apjv;l?
and H jk (x) to be the unique solution of
AH} =0inQ, (2.6)
dH? du’ 1
L 48 —a—— | onag 2.7)
ov ov |8§2| P19
with the property that
f H}(x)dx = — / w(x) dx. (2.8)
aQ Q
‘We look for a solution to (1.1) of the form
ux)=Ux)+ ®(x) (2.9
where
m .
Ux) =Y (=177 @) + H (x)) (2.10)

j=1

while & is a lower-order term with respect to U.
The function H ])‘ above resembles the shape of the regular part of the Green’s

function. Indeed, the following estimate for H ])‘ holds true.
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Lemma 2. Forany 0 < o < 1,
H}(x) = H(x,&) —log2u; + O(A%) (2.11)
uniformly in Q.

Proof. The normal derivative of H ]A on the boundary of €2 can be computed explic-
itly, namely

Py
' I —v()) - -vx) (x —&) - -v(x)
_J = 2L J 2 J
I e ey 770 A Py S pr eI T
_ ()
[0€2] Jaq
Thus,
Py
. i S, =& v 2w ‘
Jim () =25 Lt o #E 2.12)
since
)\/ €u;(X)=)\/ 24 222/1)9_-;2
30 a lx — & —Aujv(E))| Tfj ly —v(0)]

_, f"o dt 0 /O" dt
- —00 1 +t2 )L—lﬂjfl 1+t2

=27+ 0 (arctan()uuj)*l — %)

= 27 + O(arctan(Apu )
=27 4+ O(Au;). (2.13)
Define z; (x) = H;\(x) +log2u; — H(x,&;). Since the regular part of the

Green’s function H (x, §;) is harmonic in Q and satisfies the Neumann boundary
condition

27}1(;@ =29 ;y_)ﬂ”z(x) - I?S'Tzl x €09,
the difference z, solves the problem

—Az; =0 in Q

{— =T -2t gy onoe

Since z;, is harmonic in 2, forany 1 £ p < 00,7z, € WP () and, by the Poincaré
inequality, we get

1

D — 2
[0€2] Jyq

S IDzallLr (-
LP(Q)
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Hence, by L? theory, we have for any 0 < s < %

1

z H azx
A
|BQ| Wi+s.p(Q)

<C|==
- ov

A
S =

Cirr,

LP(3S)

where the last inequality can be obtained by arguing as in Lemma 3.1 in [4] and
using (2.12). This implies the existence of a constant / such that, for any @ € (0, 1),

2(x) =1+ 0Q%)
uniformly in Q, where [ = limy_,¢ ﬁ fm Zpdx.

In order to get the result, we are left to show that [ = 0. We have

1
= lim | — HY(x)dx +log2u; — H d 2.14
x%[wm o e loR 2k |as2|/ 80 x} 19

We directly compute from (2.8)

1 N 1 Z,Mj
—_— H; x)dx = ——— log 3 dx
10Q] Joe 10QI Jag © Ix — & — Apjv(E))
log2 ! I ! d
= —log2u; — og X
TRl ye T lx—gj2

+L log | 14+2Apiv(§;) - (x_sj)+ )»2/1; dx
109 Jaq R L

= —log2u; + / H(x,&))dx+0O),

|02

where the last equality is a consequence of the definition of the regular part of the
Green’s function. Hence (2.14) yields that/ = 0. 0O

By the following scaling,

>0

x=2Ly, ye=—, v(Q) =uly)

solving problem (1.1) is equivalent to solving

0
Av=0inQ;, a—” = 222 sinh v on 99, (2.15)
v
In the expanded domain €2;, the main term (2.10) of the ansatz (2.9) now
looks like

V(y) = Z( 1)/~ l|:]0g|:—| 2logA+H}(xy)], (2.16)

J

where 5} =271 and v} = v(éj’.).
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We call
2
vj(y) = wj(hy) +2log h = log ———————
ly =& —mjv;l

and
Vi(y) =v;(y) —2log s + H} ().
A function v of the form

v(y) =V +é(y), ye

is a solution for (2.15) if and only if ¢ solves

A¢ =0 in Q;,
217
{%—W¢=R+N(¢> on 9%, @1
where
W = 2% cosh V, (2.18)
Vv
R=— [— — 227 sinh v} (2.19)
v
and
N(¢) = 227 [sinh(V + ¢) — sinh V — cosh V¢]. (2.20)

We claim that V is a good approximation for a solution of (2.15) under the
assumption that we choose the parameters (1 ; to be given by the relation

log2uj = H(E;, &)+ Y (=D GE;, &). 2.21)
I#]

This is the content of estimate (2.22) contained in the following Lemma

Lemma 3. Assume (2.21) holds true. Then, forany a € (0, 1), there exists a positive
constant C independent of A such that, for any y € Q;,

m
RIS CA* Y ————, ¥Vye, (2.22)
; L+ 1y =&l
and
m 2,“'
W) =) ————= (1 +6.()), (2.23)
with

m
0, () S CA*+CLY Iy — &1, (2.24)
Jj=1
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Proof. First, we observe that a direct consequence of condition (2.21) is that for

ly — .§ | < %, the following expansion holds true

i - 2p;
1)/ Y H ) + —1l‘<1 +HM>
DT HO) ;( N B e TE R

= (=171 (H (), &) — log2u;)

+D (DTG ELE) + 005 + 0Gly — £]D)
i#]
=00 + Oy — £}). (2.25)

We prove (2.22). By definition

m ) 2
—R: (_1)]71 J

jz_:l ly — 5/' - ij(§<)|2

—2)»251nhV—mZ( 1/~ 1/ e”;.

The last term in R can be controlled by O(A?). Indeed, the following fact holds
true

m 5
AZ(—I)/"I/ =0 Inj— il (2.26)
j=1 0@ j#i

as a direct consequence of (2.13).
On the other hand, if |y — £] < g,

222 sinh V

=27 | exp | D (=17 W) + H} Gy)
j=l1

—exp | D (=1 uh(ry) + H} (Ay))
j=1

(it
— )2 21
Ay =& —pjvEDI?

xexp (=D HF )+ (=17 l(log
i#]

-1/
32 24
Ay =& —ujvEDI?

21
Ay — & —piv(E)I?

+H} ()\,V)>
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2p;
ly—& —uiv(EDI?

X exp (—l)f‘H}<xy>+Z<—1>”<log =

+H,.*()\y)>
i#]

(using (2.25))

(=n/!
— 32 24
Ay =& — pujvE)I?

(1)
_ 2 LSOOG~
Ay =& —ujvEDI?
. 20
— (—1)/! J (14009 + 01y = €))) + 0GH),

ly =& —ujvEDPP
(2.27)

Hence, for |y — Sj’.| < %, we get

m
Nyl 2 ( @ g )
R ];< D RTTETE 00 + 00y —&jD).
If we are far away from the points, namely if|y—§}| > %for all j,then R = O (A?).
This implies (2.22).

Estimates (2.23) and (2.24) follow from the same arguments used to obtain
estimate (2.27). 0O

3. Analysis of the linearized equation

In this section we study the linear problem

{B—Aq&:f in 3.1)

5 =W¢+h ondQ;

together with appropriate orthogonality conditions, where W is a function that sat-
isfies (2.23) and (2.24), and f, h are given. Throughout this section we only assume
that the numbers w ; appearing in (2.23) satisfy % < uj = C independently of A,
and that the points £; € 02 are uniformly separated

& —&jl2d Vi#], (3.2)

where d > 0 is fixed.

The orthogonality conditions mentioned above are related to the kernel of (3.1)
when A — 0. Let us look at (3.1) with f =0, h = 0 as A — 0 at a fixed distance
from one of the points, say & ]’., and let us translate and rotate so that & ; = 0 and
2, converges to the upper half plane Ri. Then equation (3.1) approaches (2.3).
By Lemma 1 we know that any bounded solution to (2.3) is a linear combination
of zo and z; defined in (2.1), (2.2). We define appropriate versions of zg and z;
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in 2, through a diffeomorphism F; : B,(§;) — N where p > 0 is fixed and
N is an open neighborhood of the origin such that F;(Q2 N B, (§;)) = Ri NN,
F;(3Q N B,(¢;)) = dR2 NN, and such that F; preserves area. We define for
Y €2y,

1
Fr() =2 Fj05) (3.3)
and
Zij(y) =zj(F}(y) =01 j=1,....m,
where z;; denotes the function z; with parameter u=pu; (i =0,1 j=1,...,m):
X2+ W X1
20/ =1-2u J 715 = —

. Rt S
Tof G+ )? X+ (2 p)?

Next, we fix a large constant Ry > 0 and a non-negative smooth function
X :R — Rsothat x(r) = 1forr < Rypand x(r) =0forr = Ry+1,0< 3 < 1.
Then set

X = XUF;F)D. (34)
Let 0 < b < 1 and define

min(l — A%, Zo;(y)) if [y —&| < £,

3.5
1=l if|y—s}|g§ Vji=1,...,m. (35)

Z(y) ={

We will establish a priori estimates for solutions to (3.1) under the orthogonality
conditions

/ Xjle¢:0 Vj:l,...,m (36)
Q2
and
/ xZ¢ =0, 3.7
Q)

where

m
X=X
j=1
Let us introduce the norms

Wl = sup e
yed, ijl(l + |y _§j|)7 i

and

I/l = sup 7O
T e Y+ Iy —gp20

where o > 0 is a fixed small constant.
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Proposition 1. For fixed d > 0 there exist g > 0, C such that if 0 < A < Ao,
£ €dQ(j=1,...,m)satisfy (3.2), and ¢ € L () is a solution of (3.1) such
that (3.6) and (3.7) hold, then

1
I$llL>(e,) = Clog P A e G R

We will prove this estimate by contradiction assuming that there exists a se-
quence A — 0, points &; € Q satisfying (3.2) (we omit the dependence on A in the
notation) and functions 2 € L (3%,), f € L>®(R,), ¢ € L°°(K2;,) such that

lpllLo;) =1
1 1
log Xllh”* =o(l), log Xllfll** =o(1). (3.8)

Given0 < o < 1, fix 0 < y < B < « and consider the function p given by

1 ifr <A77,
pr)y = § e ldoer iy < <F (3.9)
0 ifr>a7F.
Define
Zoj(y) = 20;(F})p(FFD  j=1,....m.
Let
m
d=0¢— Zdjzoj',
j=1
where the numbers d; are chosen so that fQA xjZoj¢ =O0forany j = 1,...,m,
namely d; = %—'/Zzoéjb Observe that
dj=0(1).  |llew) = 0.
Furthermore, q~5 solves the problem
—A$ = f+ Y1 djAZ; ) in
{ 2 =Whth+ X d (WZoy - ) onow, G109
and satisfies
/Q XjZijg=0 Vi=0,1 Vj=1,...,m. (3.11)
2

To reach a contradiction we will establish the following
Lemma 4.

é—0 uniformly in 2.
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Lemma 5.

di — 0 Vi=1,...,m.

This will prove Proposition 1.
We delay the proofs of these lemmas and mention first some key steps.

Lemma6. Forall j=1,... ,mand R > 0

¢ — 0 uniformly in £, N BR(SJ/')-

Proof. Ass~ume that for some R > O and j = 1,...,m there is ¢ > 0 so that
Supg, ) |4l 2 ¢ > 0 for a subsequence A — 0. Translate and rotate €2, so that
J

& J/ = 0 and €2, converges to the upper half plane Ri. By elliptic estimates ¢ — ¢o

uniformly on compact sets, and ¢ is a non-trivial solution of (2.3). Applying
Proposition 1 we conclude that ¢~50 is a linear combination of zg and z;. On the other
hand, consider the limit as A — 0 of the orthogonality conditions (3.11). After
translation and rotation, Z;; converges to z; implying fRi Xzido = 0fori =0, 1.

This contradicts the fact that ¢g £ 0. O

Lemma 7.

-
[If

¢ — 0.
1082, Jag,

Proof. By potential theory

vy G 2 ~  0Zo;
(/J’()’)_(/J):_n/;Q G(ry, 22) W¢+h+Zdj (WZ()j— 0])

v
J
1 -
— GOy, A diANZy: | dz,
+27T/m (Ay, AZ) f+;, oj | dz

where G is Green’s function defined in (1.3).
Integrating equation (3.10) yields

. ~ dZo; ~
/ W+h+Y d; | WZo; - a—(” dz +/ F+> djaZo; | dz=o.
EIoN ; % Q) ;

Taking into account that G(Ay, Az) = log )\—12 + log ﬁ + H(Ly, Az), where H

is the regular part of Green’s function H (c.f. (1.4)) we have
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- = 1 1
¢y —¢ = —/ (log 5 + H(hy, kz))
27 Joq, ly — z

. ~ 7o)
x | Wo+h+> d (Wzoj—a—]‘)”>

J

1 1 ~
+— log——i-H()»y,)»z)) f+ ) diAZy; | dz.
(3.12)

Let us sketch now how the proof works and postpone some of the calculations.
Since ¢(y) — 0 uniformly on sets of the form |y — & ]’.| < R, we can select a
sequence R; — oo such that

#(y) — 0 uniformly for |y — §}| < Ry.

We can assume R) — oo as slowly as we need.

Foreach! = 1,... ,m select a point y; € 92, so that |y; — El’| = R;. We
claim that when we evaluate (3.12) at y; all terms on the right-hand side of (3.12)
converge to zero except for fm log |yz+z|2AZ)j dz = 2m8;; + o(1) (where §j; is
Kronecker’s delta). Thus, we claim that

o) —p=dj+o(l) Vji=1,.. ,m. (3.13)
But the orthogonality condition (3.7) implies that

m

Zdjaj:O where aj=/ ij(%/ > 0. (3.14)

- Q ’

j=1 »

Multiplying (3.13) by a;, adding and using (3.14) we find
m _ m
Zaj(p(yj) —a¢p =o(1) where a = Zaj.
j=1 j=1

Since ¢(y ) — 0 and a is bounded away from zero we reach the conclusion

¢ =o(l).
In what follows we will obtain the necessary estimates to prove (3.13). O

Claim.

1 ~
/ log ——5AZgjdz =2nd;+0(1)  Vjl=1....m.
Q) |y — zl ’ :
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Proof. Let
Z0j(0) = Zoj (FH 1)) = 20, 1) p(Ix), (3.15)

where p was defined in (3.9). Let us write y = (F;‘)_l(x). Since p’(r) has a jump

atr = A7Y and r = A~# and is otherwise smooth, we see that A,Zo; is a measure:

AxZoj =2V20;Vp +20;l PO ia=r + 20,1 P’ A P) 1,6
AV AP

=2Vz0jVp — 20j ————— s + 20j ————— -5,
! "B —y)log ! "B —y)log !

where [ p'(r)]= p’(r+) — p’(r~) denotes the jump of p’ at r and let u, is the
one-dimensional measure on the circle of radius r.
Changing the variables yields

/ AZojp = / (ZVPVZOj + O(AIx|IV?Z0;]) + O(MVZOJ'I))
Q) ATV <|x|<AF
x@((F}) ™! (x)) dx
AV
(B —y)log}
b
T el
(B —y)log 5

/ _ ., (1+ 0GI:z0je((FH™ () dx

[0+ 0GIDz e ) ds

(3.16)

for any ¢ € C(Q).
Let us consider first the case [ = j:

1 s 1 1 ~
log—AZo~dz=/ log—— —log——— | AZp; dz
/QA lyj—z? o \ |y —zl? 1§} — zI? !

J

1 ~
+/ log ———=AZy;dz. (3.17)
o IE 2

By the previous remarks, using the fact that zp; (x) = 1+ O(|]x |~1) and the expan-
sion (F/.A)’1 x) = éj/- + x 4+ O (X|x|) (after rotation) we have

Ay 1
— 1+ 00 1 d
(B—7)log 1 fr=w( xzoslos e Fn TR
=————1+00"7"NU+ 00 DAL 2log k™" + 0 77))
(B —y)log 5
— Y Lo,

where we fix

0 <6 < min(y, 1 — 8).



Singular Limits of a Two-Dimensional Boundary Value Problem

Similarly,
AP /
_ 20 (1 + O(Alx])) log dx
B—yloglSimss ™ & — (FH)~1 (02
o P + o009,

and a calculation using Vzp; = O( 1 ), sz()j = 0(#) shows that

|x]

/ 2V pVz0; + OGuxIV220)]) + (V30,1 log
AV <|x|<A—P
=00Y).

d
& —FH WP

Therefore,

1 ~
/ log ———AZyjdz =21 + O(\").
Q; |éJ_Z|

For the first integral in the right-hand side of (3.17) we can assume R; — 00
slowly enough so that

)»V R}L — 0.
Then

—_

Y
=gl
AV

A

1
log — log
lyj —zl?

T2
&l

and it follows that

1 1 ~
log——— —log —— | AZy; dz
/szx( lyj =zl IS}—ZIZ) !

Next we show that if [ £ j, then

1 ~
/ log —2AZ()j dz =o(1).
Q) |yl _Z|

= OO\ Ry).

In fact,

1 ~ 1 1
log ——5AZpidz = / log — log
/szx i —z27 7 o Iyt — zI? v —§

/.|2> AZyjdz
J

1 ~
+f log ————AZy; dz.
o lw—gPr
We can assume that R) < % so that
1 ! 1 < CAl £
og— —log—— | = z —E&4.
v —zf? Iy — &1 !
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Thus,
/ lo L ! AZy;dz| = 00\Y)
o\ Bli—a Bl ) S T O
Finally,
AZgjdz = —Qr + 0 ")(1+ 00
[ aZyjdz = —cx + 0610+ 0 DG
+Qr + O PN+ 00F) ——— + 00
(B—v)log s
=0 (3.18)

SO

1

log ————
v — &2

/ AZ()]' dz=o0(1). O
Q)

Claim. Forany 0 <o < 1

W Zoy () - Ly — 0 (— 2102
SO T C N T log! )’
8
/

for [y — &;l < T (3.19)

Proof. Set
W) =W(FH ™ ()

where the map F' } is defined (3.3). Recall that W satisfies (2.23) and (2.24), that is

Z[Lj

m(l + O0Q 1 +1yh).
J 7

W(y) =

Since (ij)_l(x) =&} +x + O(rlx|) we find

W(x) = W(FH ' () = WE} +x + O(lx])

21 +0< 2 ) GOt < 2. (3.20)
= SR x = (x1,0), |x] < —. .
xf+M§ 1+ |x] A

On the other hand

9Zo; 0Z0; -
= ——+ O(\|x||VZ0il),
” o2 + O(AxIVZo;1)
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and using the fact that p has a zero normal derivative on BRi we deduce that

32()' 0207
L = —p—L 4+ 00s(Vplzoj + pIVz0;])
av dx2

%0 yo 2 ) yo(-2 2. Gan
=-—p—= r< -, .
paxz log% 1+4+r A

oy £/ _ 1
where r = |y §j| <0bservethath_0(rlogi>>.
Using (3.20) we find

82"”() WinZom=o0(——)+o—2" - <>
v Y0 log L+ 1y =&l YTELES
O

Claim. Similarly

| 1 ~ 0870, g 1
og — [ WZo; — dz=00""P)=o(1),
082;, |y Zl v

and uniformly for y € 92;.

Proof. Using (3.19) and the fact that if |y — §}| > % for all j we have W(y) =

O(Az) and aaz% = 0(A\?), we see that
~  0Zo; 1
f WZoj — =Ll =0 2P —). (3.22)
3, log T
Since log ﬁ = O (log 1) for |y — z| > R where R > 0 is fixed and
/ log 5| dz <C,
39:NBR() ly —z

we conclude the validity of the assertion. O

Claim.

1
/ log sh(z)dz = o(1) (3.23)
a1y —1z
and

/log%f(z)dz:o(l). (3.24)
o ly—1z|
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Proof. We have log D’—;le =0 (log %) for |y —z| > R where R > 0 is fixed, and
fanBR(y) | log ﬁl dz < C, and therefore

1
/ log shdz
A ly —zl

by hypothesis (3.8). The proof of the other assertion is similar. O

1
< Clog 5 I1hlls = o(1)

Claim.

1 -
/ log s Wo dz = o(1).
a1y —z

Proof. Arguing as before, it is sufficient to show that

1 ~
log — We¢ =o(1).
A Jag,

Integrating equation (3.10) we find

- 5 020,
Wo+h+ Y di|WZy; — dz
L. > (w0 - )

J

+/ f+> diAZo; | dz=0.
Q. -

J

The conclusion follows then from (3.18), (3.22), (3.8). O

Claim.

. 5 07
A= HOy, 22 | Wo+h+)) di | WZy; —
082, Y ¢ ; ]< 0 dv )

+ | HOy ) | f+ ) diaZy | dz=o(D),
o)) -
J

uniformly for y € 92;.

Proof. Let
1 ifr <a”1/2
¢(r) = —loéo%g_i;;gjl/z ifA=12 <r < %
0 ifr > 2
and set

V@) =Y HOy, )iz — &,

Jj=1
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Multiplying (3.10) by ¢ and integrating by parts we have

fm f+;deZOj t/f+/a

[ 3y [ gay=o
o, OV o

5 ~  3Zo;
Wé+h+Y d (Wzoj - 8—0’> v
Q). | v

Subtracting this from A we find that

A =f (H(Ay, Az2) — ) W¢~>+h +Zdj (WZ)J' _ 8Z0j> dz
a2 -

av
J
+/ (HOy. 22 =) | £+ D djAZo; | dz
Q) j
-0 ~
+/a 2 [ jay.

Q. Ov Q)

Since H and i are bounded

(H(Ay, Az) —¥)hdz
o)

. (H(Ay,Az) —¥) fdz

S Cllalls = o(1) (3.25)

S Cllfllss = o(D). (3.26)

A calculation shows that

fq”sAw—O L) o 2 _ oL )=o)
N - log B © e, 0V log B '

(3.27)

For instance, the first integral in (3.27) can be estimated as follows

‘/ éAw‘gnéan/ Ay,
Q) Q)

But A is a measure with support on the arcs r = A~1/2, r = % r=lz— é;l) and

/ Ay =0 [ 1712 ! +8 ! 0 ! (1)
— — = =0 .
o A1/2 log% A %log% log%

Now, at distance greater that % from all & ; we have W = O(A2) and H, 43 are
bounded, thus

/ (H(uy, 22) — )W = o(1). (3.28)
A\ By (€)))
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On the other hand, at distance less than % from Sj/. we have H(Ay, Az) —
H\y, &) =00z — .;?]’.|) and W = O(rlz), r=|z— §}|. So

/ (H(hy, 22) — ¥ (2) W dz
d2NB,_1/2(8))

/ (H(hy, 22) — HOy, £)Wdz
3NB, —12(§))

S§/A 1 1
< )\./ —dr =0 <)» log )_») = o(1). (3.29)
1 r

In the region A7/ < r = |z — EJ/.| < % we use the fact that H, ¢, ¢ are bounded

and that W = O(riz), )

(H(Oy, A7) — ()W dz

8/A 1
§C/ —dr
A

_ip r2?

fBQAﬁBa/A ED\B,—125})
=on'?
= o(1). (3.30)

Collecting (3.25)—(3.30) and recalling (3.18), (3.19) we obtain the desired conclu-
sion. O

Proof of Lemma 4. Let qAS(x) = ¢~5(x/)h), x € Q. Then ¢3 satisfies
—A(],S = )%2 (f—i—zl;l:l deZoj) in Q

3 <VT/<Z& +hY " d; (WZOJ- -~ 3323/)) on 9L,

{18

=
<
I

where £(x) = f (x/1),h(x) = h(x/2), W (x) = W (x/2) and Zo1 (x) = Zo1 (x/3).
Foragiven§ > Olet E5 = Q\ U;f‘le(;(éj). Then %2||f||Loo(E§) S Clfllsx — O,
Lihllze@Egy < Clalle — 0, and L |Wo|l1o(g;) < C. Furthermore, in Ejs we
have that Zy; = 0. We also know that ||¢|| ) < 1 and fm ¢ — 0. From this it
follows that qAﬁ — O uniformly in Es and this implies

qs — 0 uniformly in €2; \ UTleg/A(S}), for any § > 0.

For a given Ry > 0 let A; denote the annulus
Aj = Bsi(€)) \ Br, (§)).

Given A > 0 small enough, there exist Ry > 0 independent of A and v; : ; N
A — R smooth and positive so that

Ay; > — inQ,NA

—AY; 2 ———— inQ, ;
IE g /
0V ; c

D Wy 2 —— — ondNA;
w VST S

c§1pj§C inQAﬂAj,
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where C, ¢ > 0 can be made independent of A. Indeed, the function
(y—§&)-, 1
V0 =t + o |1 - —
! ly —gjl+e ly — &}l

with Cy a fixed large constant satisfies the requirements, see [4] (Lemma 4.3).
Thanks to the barrier ¥; we deduce that the following maximum principle holds
inQuNA;if¢ e HY(Qu N A)) satisfies

—A¢ >0 inQ;NA;
¥ W20 onduNA,
¢ >0 on 2, NA;j,

then ¢ = 01in €2, N A;. By the properties of ¥; and this maximum principle we

deduce that there exists a fixed C > 0 so that

lpl = Cyj sup @1+ sup (@l + Al + 1Sl | D2 NAj
2.N3BR, (¢ 209 By (57

But SUPQ, no B, (£)) |¢] — O by Lemma 6, and SUP, N9 By (€)) |¢| — O as shown
above. This proves the result. O '

Proof of Lemma 5. Multiplying (3.10) by Z0 ; and integrating we obtain

~ o~ ~ 320] ~
dj (=AZoj)Zoj + Z0j |\ =, ~ W,
Q. 3Q, v
~ ~ - 32()]' ~ ~ ~
= — Z()jh— Z()jf+ 0] 3 _WZOj + ¢(_AZOj)-
GIoN) Q I, v 1978

We claim that

~ ~ ~ 82()]‘ ~ Cc
(—AZoj)Zoj + Zoj\ —— —WZ2p; ) 2 T (3.31)
Q EIoN v log +

A

for some fixed ¢ > 0. Assuming this for a moment, we can prove the lemma since

~ ~ 1 1 1
Zojh| S hll«l Zojll L9y < Clog = |lhlli—7F = o(1)—
Elol) A log 5 log 5
and
~ 1
Zoj f =o()—.
Q) log 5
Similarly, the other terms can be estimated as follows
~ 32()- ~ ~ BZO' ~ _
/ ol —L-WZ || < ||¢||Loo<m>/ L —WZoj| =00 F),
EIoN v EIoN ov
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using (3.22) and

‘i;(_AZOj)

- ~ C
< 1Bl / 1AZy| <
o)) 1

1
Q5 og %

@l Lo (0, = o(1)

T

A

Let us prove (3.31) using (3.16) to compute ka Azoj Zoj . For the part of Azoj

supported on r = 177 we have
hR4

(B —v)log

yR4

~(B-p)log;
- Ty

(B—y)log}

Analogously, for the part supported on » = A~# we find that

/ (14 O(xD)z;p dx
r=A"7

A+0R""))+ 00 mr™

2B
(B —y)log
since p(k‘ﬂ) = 0. Also,

/ (1+0()»Ix|))z%jpdx=0
r=r—8

+01?%  0<6 <min(y,1-p).

/ 2V pVzoj + OMx|IV3Z0;]) + (A VZ0;1))z0, p dx = O(0).
ATV <|x|<AP

Thus,

/ AZo;Zoj = —Ll +009).
. (B—y)logz

Finally, similarly to (3.22)

5 [0Z, 5 _
/ %«3J_W%J=0Wﬂx
082, v

and this proves (3.31). O

Proposition 2. Let d > 0 and m a positive even integer. Then there exists Ag > 0
such that for any 0 < A < Ao, any family of points &1, ... , &, € 092 satisfying
(3.2) (i.e. |& —&j| 2 dVi # j), and any h € L*(3K,), f € L*®(y) there is a

unique solution ¢ € L*°(2;), co, ¢1,...,cm € Rito
—A¢ =f inQ,

% —W¢ =h +Z?=1 cixjZij+coxZ ond2

fQA)(j'le(ﬁ:O Vi=1,...,m, fQ)LXZ(]ﬁ:O.

Moreover, there is C > 0 independent of A such that

1
$llL>(e,) = Clog X(Ilhll* + 1 )
max(lcol, ..., [emD) = CURl + 1| f 1l

(3.32)
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Proof. We first deal with the following linear problem
—A¢ :f+ZT=1dejZIj +doxZ in Q2
—W¢ =h ondQ, (3.33)
fmszqu&:o Vi=1,...,m, fQA)(Z(j):O,

where h € L*°(0R,), f € L°°(,) are given. Let us show that for any ¢ €

L*®(R)),dy, d, ... ,d, solution to (3.33) we have
1
lpllL=(0,) = Clog X(Ilhll* + 1 Nl) (3.34)
ldil = C(lAlls« + 1 flls) Yj=0,... m. (3.35)

Given that from Proposition 1 we have

1
@1l Lo () = Clog = { 171l + [1f e + Z ldjl ] . (3.36)
j=0

it suffices to prove that (3.35) holds.
Consider a cut-off function 7 such that

i=1inBy (O)n_OlnR2\B : (0)
07 < ,|Vn|§cx/s,|v2n|§cx /8% in R?,

andfor j =1,...,m set
nj(y) = 1(F; (),

where FJ’\ is defined in (3.3). Multiplying (3.33) by 5;Z1;, i = 1,...,m and
integrating by parts we obtain

ani
di/ XiZl = —/ hni Zy; —/ fniZi +/ ¢_lzlt
o aQ, o, Ov

Z1
+/ éni (8_ - WZu) ¢AMmiZyi). (3.37)
IO Q)

Since Z1; = O (1+r) and Vi = O()), we have

an;
/ P—2)
A Jv

As in the proof of (3.19) we have

1
< CligllLoe(@y)A log T (3.38)

aZ”( )= WZiu(y) =0 s €I, |y — &l °
—_— —_ P = _— . —_ . <—7
5y NZii(y R y o ly =il <
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and this implies

0Zy;
ni|—— —WZy
I, ov

where 0 < o/ < . Since 0 < o < 1 is arbitrary, so is a’, and so from now on we
will just write o.
We also compute

=00, i=1,....m, (3.39)

AMiZy) = AniZy; +2V,VZ1; + 0 AZy;

o) 4o (2 ) 4+ maz,
B 1+r [+ p2) TSN

However, Ay Z1; = Acz1 + O (Mx||V?z1]) + O(A|Vz1|) (where we have rotated
2 appropriately and x = F}*(y)). Thus,

AZ;,; =0 ~ + O i
= 1472 1+r

/ |A(m;i Z1})| = O ()» log l) =0Y). (3.40)
o A

and it follows that

Combining (3.37), (3.39) and (3.40) we conclude that
di/SZ XiZti S ClRls + 1Lf s + 2% 1Bl o))
75

and this together with (3.36) yields

m

ldi| = C ||h||*+||f||**+?»“2|dj| , i=1,....,m. (341
Jj=0

On the other hand, multiplying (3.33) by Z we obtain

0Z
d()/ XZ2=— fZ—/ hZ—l—/ ¢><——WZ)— OAZ.
Q, . I aq,  \0v Q.
(3.42)

We estimate as before

iz _ wz‘ < O ¢l

9Z Z
¢ i WZ || = llgllre
LI % Q.

av

(3.43)

and

'/Q ¢AZ‘ < ”(b”Lw(m)/sz IAZ] £ CAP 1@l 0y)- (3.44)
A 78
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From (3.42) and (3.36) we see that

m
ol < C [ I1Als + I flls + 272> 1dj
j=0

Using this and (3.41) we deduce (3.35) and (3.34).
Now consider the Hilbert space

H:{qﬁeHl(QA):/ XZ¢=O,/ ijljd):ov]':l,...,m}
Q Q

with the norm ||¢||ill = fo |V¢|?. Indeed, this is a norm in H since by choosing

Ry large enough (the size of the support of the cut-off functions yx;, c.f. (3.4)) we
have ka xZ # 0. Equation (3.33) can be formulated as to find ¢ € H such that

/ ww—/ Wy = fw+/ W VY el
Q5 a2, Q). A2,

By (3.34) this problem has at most one solution, and by Fredholm’s alternative we
deduce that given f, h there indeed exists a solution.
For convenience of notation in the rest of the proof we write

Zo=Z2, xo=x and Z;=2;; Vj=1,...,m.

LetY; € L*(;),d;; € Ri, j =0, ..., mbethesolutionto (3.33) withz = ; Zy;
and f = 0, that is

—AY; = Z?:O dijx;jZ; 1in
W wy, =—xizi ond (3.45)
fQAXijYiZO Vj:O,...,m.

There exists a unique ¥; € L°(£2,) solution to this equation and we have the
estimates

1
I YillLo,) = Clog e |dij| = C, (3.46)

for some constant C independent of A. We shall show that d;; = Ad;; + O(Ab/ 2)
where A > 0 is independent of A. Indeed, writing no = 1, let us multiply (3.45) by
n;Z; and integrate by parts

0Z; on;
d--/ ~ZZ-+8~~/ »22:/ (—’—Wz) ~Y-+f iz
Y Ja, iy o I, it g, \ 0V J )it a0, v

—/ YiA(m;Z;)
Q2
= 0(\/?).

To estimate the integrals in the right-hand side above forthecase j = 1, ... ,m,
we argue exactly as in (3.38), (3.39), and (3.40). For the case j = 0 we use (3.43)
and (3.44).
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It follows that the matrix D with entries d;; i, j = 0, ..., m is invertible for
small A and |D~!|| £ C uniformly in A. To prove the solvability of (3.32) let
f € L*®(R)), h € L*®(02,) be given. We find ¢1, dp, ... , d, the solution to
(3.33) and define

m
¢=¢1+ ) ai
=0

where ¢; is such that Z;”IO cidij = —dj Vj =0, ... ,m. Then ¢ satisfies (3.32)
and we have the estimate

m m
1
I¢le@s) = Idtllicen + D leil £ Clog—(Iflles + Il + C Y _1dki|
i=0 i=1
1
< Clog = (1f e + 11l).
by (3.35). O

The previous result implies that the unique solution ¢ = T (h) of (3.32) with
f = 0 defines a continuous linear map from L°°(9€2;) with the norm || - |4 into
L*>(2,). For fixed h € L*°(9L2) let us compute the derivative of ¢ = T (h) with
respect to &/. Formally ¥ = 851415 satisfies the equation

AY =0 in 2y,

and on 02, the boundary condition

Yy “
o5 WY =0y (W) o+ 95 (Zux) + Y dj Zijxj + cody (X Z) +dox Z
j=1
where (still formally) d; = 85/ (¢j), j =0,...,m. The orthogonality conditions

now become

f Z]ijY:O, lfj;él
Q2

/ ZuxY = —/ 3/ (Z1ux)9-
Q)L Qk
/ xXZY = —/ agl’(XZ)¢~
Q) Q)

Letus write Y = Y + bix1Z1; + box Z where by, b; are defined through

bof xzzzzf ¢ 3/ (x2), bz/ fo%,zf ¢ 3 GuZu)-
Qi Q) Qi Qi

Hence, fQA ?Xj Zyj =0forall j and fQA YxZ =0, Y satisfies the equation

AY =a in
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and the boundary condition

aY “
o WY =b+ Zdj Zyjxj+doxZ,
j=1
where
a=bAxiZu) +boA(xZ)
and
d(xi1Zi)
b =8 (W) ¢+ 19 (Zuxi) + codgyy (X 2) + b | ——— = WxiZu
av
A(xZ
+bo< 2 _y z),
av
with
1 1
b« = Clog Xllhll*, lalle = ClOgXIIhII*-
Thus,
1\2
105 @1l o) = C <10g X) (7]l (3.47)
4. The nonlinear problem with constraints
Let t be a small parameter and consider
Vi =V() +1Z(y) ye, 4.1

where V is given by (2.16), and Z is the function introduced in (3.5) at the beginning
of Section 3.
A function v of the form

v = Vi) + (), ye

is a solution for (2.15) if and only if ¢~5 solves

A~¢~> =0 inQ;, ws)
¥ —Wig =R +Ni($) ondy,
where
Wi = 2% cosh Vi, (4.3)

Y%
R = — [8—1 — 2)2sinh Vl] (4.4)
vV
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and
Ni($) = 222 [sinh(V1 + @) —sinh v} — cosh(Vl)cf)] . (4.5)

Observe that from the definition of the function Z we see that Z(y) = O(1) all
over 2,. This readily implies that

Vi) =V(y) + O(zl) Vy € Q. (4.6)
We consider first the following auxiliary nonlinear problem
Ay =0 inQy,
B —Wigr = Ri+Ni(p) + X1 cjx;Z1j +coxZ ondy, (4.7)
Jo, XiZ1jo1 =0 Vj=1,..m, [o xZ$1=0
where W is as in (4.3) and N1, R are defined in (4.5) and (4.4) respectively.

Lemma 8. Let m > 0, d > 0. Let o« be any number in the interval (0, 1) and
=00 witho > % Then there exist g > 0, C > 0 such that for 0 < A < Ao

and for any &1, . .. , &, € 09 satisfying (3.2), problem (4.7) admits a unique solu-
tion ¢1, co, C1, - - . , Cy Such that
l1llLoe(g,) = CA7. (4.8)

Furthermore, the function (t, &' — ¢1(t, €') € C(y) is C! and
| Derdill oo,y = C A%, 1Dy S CA, 61 <6, (4.9)
Proof. First we observe that
Wi(y) = W(y) 4+ 222 sinh (V)1 Z 4+ 1212 cosh(V + TZ)Z?,
where || < |t|. The equation for ¢; can be written as
Ay =0 inQy,
%L We1 =1Bi+ R+ Ni(¢)+ X1y cixjZ1j + coxZon iy,

Jo, XiZ1j¢1 =0 Vji=1,....m  [o xZ¢1 =0,
(4.10)

where B = 212 sinh(V)Z + tA2 cosh(V + 7Z)Z?%. Remark that from (2.23) and
(2.27) we have the estimate || B, < C.

Let A be the operator that associates with any ¢ € L°°(£2;) the unique solution
given by Proposition 2 for 4 = 1 B¢ + Ry + N1(¢1) and f = 0. In terms of the
operator A, equation (4.10) is equivalent to the fixed point problem

d1 = A(d1). 4.11)

Let us consider the set

F={peC) : llgllreg,) = 1)
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From Proposition 2 we get

1A@D L@, < Cllogal [ 121181l + [N @Dl + IR - |-

Let us estimate || R ||«. We have

|:3V 0Z
R = —

— 41— =222 sinh(V 4+ tZ)
av av

0Z 5 . 2 .
= R(y) — ra— + 2A“sinh(V +tZ) — 2A“sinh V
v

9Z 2.2 = 2
= R(y) = 7| 5= = WZ | +32c sinh(V +72)22,
v

where |7| < |t|. For |y — éj’.l < %, we have %—f -WZ =0 (#—E}I) where

0 < a < 1 will be fixed shortly, while for |y —&/| > ¢ wehave 22 —WZ = 02,
thus ||% — WZ|l, £ CA*9. Similarly ||R|x £ CA%?. On the other hand
A% sinh(V + 7Z)Z?||x« < C, and hence

IR S IRIlx + [TIA™7 + CT? £ COA7 + %)

since T = O(A?). We choose 0 < a < 1 and o > 0 small so thata — o > « (o is
the number that appears in the definition of the norms || - |4 and || - |44
Furthermore, | N1(¢1) ]« < C ||¢1 ”%""(Qw as a direct consequence of (4.5) and

Tl B1llx < |tlligll Loy I Bllx < CAYFE.

For any 1, ¥, ¥ € F, we get the existence of a positive constant C, such that

IAW) @y < Clloga] [ 25 4+ 22 42977 452
1AW — AW llm@,) < C 1oglG + %) v = Yali,)-

It follows that for all A sufficiently small, A is a contraction mapping of F, and
therefore a unique fixed point of A exists in F.

Let us now discuss the differentiability of ¢;. Since R depends continuously
(in the *-norm) on

(T,8) = (T.&,... . &),

using the fixed point characterization (4.11) we deduce that the map (z, &) — ¢
is also continuous. Then, formally, for 8 = & or g =7,

—9pN1 (1) = 2A2[<cosh(Vl +é1) — cosh V| — sinh V1¢1)aﬁ Vi

+<sinh(V1 + é1) — cosh vl)aﬁ ¢1].
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It can be checked that [|dg V1 ||« is uniformly bounded, for both 8 = 5,2 and 8 =1,
so we conclude that

l0gN1 (@D« = C [||¢1 Lo (;) + 1101 ||L°°(Q~A)i|||¢l Lo (2,

< ¢ [1 + lppliieion e

Using the notation 7 (k) for the operator that 4 € L% (£2,) associates the solution
of the linear problem (3.32) with f = 0, we may write for 8 = &,

0 d1 = (0 ) (tBo1 + Ni(@) + R ) + T (0 [t B + Ni@) + Ri ).
while for § = 7,
01 = T(Bd1 + 13:(Bd1) + 9 N1(¢1) + 9: Ry).

Thus, from Proposition 2 and (3.47) we deduce for g = &/

105 p1ll Loy = C log A2 [[(N1(¢1) + RD 1+ + [log Al[|dg; N1(#1) 1«
+[19g; R ll+)

< CA% % loga)? £ CAY,

since it can be seen that ||8§]£R1 |« £ CA¥. For B = T we get

18:01 1l L0y < Cllog A1l + 2177 +29) S A%, 6, <6

since
9Z 2 . 0
0 Ry I+ = C(Ila—v — WZ|s + tl|A°sinh(V + TZ2)Z7||4) < CA7.

The above computation can be made rigorous by using the implicit function
theorem and the fixed point representation (4.11) which guarantees C' regularity
intand&¢’. O

Remark. Itis possible to verify that given 71, 7o = O(A?) with 6 > 5, the unique

solutions ¢1, ¢ of Lemma 8§ satisfy
g1 = d2ll (e, < CAlT1 — 1ol (4.12)

This follows from the fixed point characterization (4.11) of these solutions. Indeed,
let A(t, ¢) be the nonlinear operator introduced in this lemma, i.e. the one that
¢ € L%°(£2,) associates the unique solution given by Proposition 2 for s = t B¢ +
Ri(7) + N1(¢1) and f = 0 to. Using Proposition 2 we see that

A(T1, ¢) — A(t2, 9) |l L0y < CAV Ty — 1ol
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Lemma9. Letm > 0,d > 0. For any 0 < o < 1, there exist Ao > 0, C > 0
such that for 0 < A < Ao, any &1, ..., &, € 0R2 satisfying (3.2), there exists a
unique T with |t| < CA*~%/2 such that problem (4.7) admits a unique solution ¢,
€0, Cly . ,Cm With co = 0, and such that

@l oo,y = CA”. (4.13)
Furthermore, the function €' — ¢(&') is C' and
I Dg:dllLo(n,) = CAY.

Proof. Given &1, ... ,§, in 92 such that |§ — &;| > d and 7 = 0(1?) with

o

5 <0 <a,letgr,co,ci, ..., cpy be solutions to (4.7). Multiplying (4.7) against
Z and integrating by parts, we get

37
Co/ x22=—f o1 (le——>—f rRzZ-[ M@z
EIo FIon v FIon FIon
m
- ¢1Az—2cj/ XixZ1Z. (4.14)
o) i ElIoN

Now we have:

PIAZ| £ ClidrllLe@)r? < CA*TP;

Ni@DZ| < Clillxq,) S CA*

0Z
f 1 (le — —) < CA%||1 ||z, S CA™
Bl v

/ XjXZ]jZ § Chi
Q

3z
/ R1Z=/ RZ—i—t/ [——+WZ}Z+12k2/ sinh(V +72)Z°
I, 9 aq, L v TN

Let us estimate the second integral in the right-hand side. Observe that in the regions
{Z < 1 — AP} (which are of size |y — E}| < /Lj)fb/z) we have by a calculation
similar to (3.19)

0Z
—Z 4 WZ|Z=00%.
ly—&l<puab/2 yeaq, L 9V

For the rest at distance ujk_b/z <|y-— Ej/.| < % we have that Z is constant, so for
agivenj=1,...,m

0z )
- +wz|z= ‘ wz
uph P <ly—g)l<dyeoe, L OV Hih b <ly—gj1 <4 yeog;

= 41P12 4 o(AP/?).
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Hence,

Z
f [—— + WZi| Z = 4mib’? + o(AP/?).
FIoN v

‘We also have

/ RZ' <
EI9N

and from the expansion (2.27)
AZ/ sinh(V 4+ 72)Z3 = 0(\"/?).
IO

This shows that it is possible to find T = 0 (Z2~5/2) 50 that ¢y = 0. The unique-
ness of T can be seen also from the previous estimates. Indeed, suppose we have
7,7 = O(A\Y) and solutions ¢, ¢ such that for the corresponding coefficients we
have cop = ¢o = 0. From equation (4.14) and the estimates that follow we obtain

APt — 7 S CA%N¢ — Plie(e, + Clr — (7] + [EhAP/?

and using (4.12) we deduce 7 = 7.
Let us now discuss the differentiability of ¢ with respect to &’. We have

pE) =¢1(r(¢), &)

where ¢, is the solution to problem (4.7) given by Lemma 8 while t(§') is the
unique positive number so that in problem (4.7) we have ¢y = 0.
Hence,

Dy ¢(&) = De1(1().§') Dy T () + Dy oy ((8), €.

Since from (4.14) with ¢y = 0 we can deduce that |ng/r(.§’)| < CAY, from (4.8)
and (4.9) we conclude that

IDg ¢ (EN L=, = CA%. O

5. Variational reduction

In view of Lemmas 8 and 9, given & = (&1, ..., &,) € 0Q2" satisfying |& —
&l 2 dVi # j, we define ¢ (&) and ¢ (&) to be the unique solution to (4.7) with
co = 0 satisfying the bounds (4.8) and (4.9).

Let

1
L) == [ |Dul®> =22 coshudx.
2 Q) a2,

Given & = (&1,...,&,) € 0Q™, define

Fy (&) = Lh(Vi(§) + ¢(8)), (5.1
where V1 (&) = V(&) 4+ t(§)Z (&) with t(£§) given by Lemma 9.
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Lemma 10. If & = (&4, ..., &) € (0Q)™ satisfying (3.2) is a critical point of F),
then v = V(&) 4+ ¢ (&) is a critical point of Jy, that is, a solution to (2.15).

Proof. Let &' = &£/A. Therefore,

0F, _ 10L(ViE) +9¢") 1 / w[OViIED) | 09N
o = -DI(V, :
08 % o¢] T DL(ViE) + (& ))[ o] + %, ]

Since v/ = V(&) + ¢ (&) solves (4.7) with cg = 0
AF, 1« aVi(E) | 9apE)
_Az—Zci/ Xizli[ — + — .
W 2= oo, 9§, 0§,

Let us assume that D F), (§) = 0. From the previous equation we conclude that

% IVI(E) a¢><s’>}
i iZ1i — + -~ |=0 Vk=1,...,m.
;C /mex : |: agk ng "

. H < A% and YE) — 7., 4+ o(1) where o(1) is in the
38 Nl Loo(ey) 98

L norm as a direct consequence of (4.6), it follows that

Since ”

m

Zci/ XiZu(EZy +0(1) =0  Vk=1,....m,

i=1 705
which is a strictly diagonal dominant system. This implies that ¢; =0
Vi=1,...,m. O

In order to solve for critical points of the function Fj, a key step is its expected
closeness to the function J; (V1 (£)), which we will analyze in the next section.

Lemma 11. Assume o € (%, 1). The following expansion holds
Fy(§) = (V) +6,(),
where
621 — 0,
uniformly on points satisfying the constraints (3.2).

Proof. We write

LV +¢) = L(V) =1LV +¢) = L(VDI+[ L (V1) = Ju(V)]
=A+B.
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Let us estimate A first. Taking into account that DJ, (V| + ¢)[ ¢]= 0, a Taylor
expansion and an integration by parts gives

1
A :/ D>*L.(Vi + td)[¢]> (1 — 1) dt
0
1
:/ (2x2/ [cosh(V] + 1¢) — cosh(V} + ¢)] ¢>
0 a2

[ @+ RI6) - D 52
082,

So we get
H(Vi+¢) — L (Vi) = 0(A*)

taking into account that ||¢]| o (q,) = CA%.
On the other hand,

B=1tJ{(V+T2)|Z]
for || < |z|, and since Z is almost an element of the kernel of J; (V), we get
Jri(Vi) — L, (V) =0(1)t — 0.

Hence, 65 (£)| = o(1) uniformly on points satisfying (3.2).
The continuity in & of all these expressions is inherited from that of ¢ and its
derivatives in £ in the L* norm. O

6. Energy computations and proof of the theorem

In this section we compute the expansion of the energy functional J, evaluated
at V and we give the proof of Theorem 1.
We have

Lemma 12. Letm > 0, d > 0. Let jj be given by (2.21) and let V be the function
defined in (2.16). Then for any 0 < a < 1 the following expansion holds true

Sri(V) =2mnm log% +m(Bo — 27w + 27 log2)
—m(€) + O(1%) (6.1)

uniformly on points & = (&1, ... ,&y,) € (0Q)™ such that |§ — &;| > d for all
i # j. In the previous formula, ¢, (&) is the function introduced in (1.5), namely

On (&) = om(E1, ... En) = [Z HE &)+ ) (—D"GE, sz)]

I=1 j#l

while By is the constant defined by

1 1
- ] .
Po /Rl+x2 T2
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Proof. Since V(y) = 2?21(—1)-/—1(u§(xy) + H}(Ay)) satisfies AV = 0in ,,
we write

1 v
J(V) = —/ V— —2,\2f cosh(V).
2 Jaq, dv I

We compute the second term first:

m

Z/ @)+ 00
—1 J9.NBs/ ()

222 f cosh(V) = A2
082;, i

Suppose [ is odd first. Then, recalling the notation introduced in Section 2, v;(y) =
u}(y) + 2log A, we get

ﬂf (e +e V) = AZ/ eV +0o0
0QxNBs/s.(§;) 92N Bs/.(§))
:/ ot gD T HP Yy (— DI W )
QN Bs/1. (&

+O(AY)
=27 + 0O(AY).

Thus,
ﬂ/ @ +e )y =2m+00%. (6.2)
0QxNBs/(§;)
Similarly for / even, we also have (6.2), so we obtain
222 / cosh(V) = 2mm + O (A%). (6.3)
082,

- V.
It remains to compute [, V50

Vv
V— = 1)/ ! —|—H’\)
[ Vir = [, (v s
i1l v i—1 v;
x(g( DTl - oo |Z( ) fa e)

Q2

/m (Z(—l)f—l(uﬁ + H})) <Z(—1)f—1e“f>

j=1 i=1

1 _1)i—1 v; 1 A
(S Lo ) o (ot )

N D [ el + 00,

i,j=1



JUAN DAVILA, MANUEL DEL PINO, MONICA MUSSO & JUNCHENG WEI

since by (2.26)

Q

Z(—l)j_lf €% = O(L).
j=1 ?

For j # i, we have
f e’ (s + Hp) =21G(E}, &) + 009). (6.4)
082,

For j =i, we have using (2.21),

/ " (i + Hy)
I
20 1 2
:/ —J,2<<log —2)+log —],2+H(§j»S.i—f-)»y)—log(QMj))
02|y — wjv;| A |y —pjv;l
+0(%)
1
=27 logﬁ +2n(H(Ej, &) —log2u;) + 280 + O(L%).

Thus,

1
/ eV (ul + H}) = 27 log — +2Bo +4m log2
A, A

+2n< —H(Ej. ) —2) (—D G, Si)) + 00
i#]
(6.5)

Combining (6.4) and (6.5), we obtain that

A% " L
/ V— = Z (—1)’+J/ e’ (s + H}) + 0O(W%)
EIoN av i=1 FIoN p .
1
= 2mm log el + 2mpBo + 4mm log 2

+2”< =Y HGE.&) - Y (DG, &)) 100 (6.6)

i=1 i

Summing up equations (6.3) and (6.6), we finally arrive at
1
J(V) =2mm log : 4+ m(Bo — 27 + 2w log2)

—n[z HE &) + Y ()G, a)] +0G%. o

=1 j#l

We now have all ingredients to give the proof of Theorem 1.
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Proof of Theorem 1. Define for £ = (§,...,&,) € (9Q)™ with |§ — &;| = d,
the function

v(y) =Vi©) () +E)(y) y ey,

where Vi (§) is given by (4.1) and ¢ (&) is the unique solution to problem (4.7)
with ¢g = 0, whose existence and properties are established in Lemma 9. Then,
according to Lemma 8, v is solution to (2.15) provided that £ is a critical point of
the function F} (¢) defined in (5.1), or equivalently, £ is a critical point of

F;\(f;‘) <2m7‘r log ! +m(By — 2w + 2w log2) — FA(§)> .

Let m = 2k and €, be the set of points § = (&1,...,&,) € (02)™ ordered
clockwise along a given connected component of 32, such that |§; — &;| = d for
all i # j for some d > O sufficiently small, so that all the previous results hold
true. Namely, if we denote by p :[0, 27] — 92 a continuous parametrization of
this connected component of €2, we can then write

Qu={= (PO, ..., p6n) € OV : |p6:) —pO)| Zd if i#j}.
Itis not restrictive to assume that 0€3$2. Lemmas 11 and 12 guarantee that for £ €2,,,

Fo(£) = gm (&) + 2705 (8), (6.7)

where ®), is uniformly bounded in the considered region as . — 0. We will show
that F), has at least two distinct critical points in this region—a fact that when used
will prove our result. The function ¢y, is C!, bounded from above in S~2m, and if
two consecutive points get closer it becomes unbounded from below, implying that

om1, ... &m) — —ooas |&§ — &;| — 0 for some i # j.

Hence, since d is arbitrarily small, ¢,, has an absolute maximum My in fzm, and
so does I:) whenever A is sufficiently small. Let us call M, this value, so that
M, = Mo+ o(1) as A — 0. On the other hand, Ljusternik—Schnirelmann theory is
apphcable in our setting, so we can estimate the number of critical points of ¢,, in

m by cat (Qm) the Ljusternik—Schnirelmann category of Qm relative to Qm We
clalm that cat (€,,) > 1. Indeed, by contradiction, assume that cat (€) = 1. This
means that €2, is contractible in itself, namely there exist a point £9¢ Q, anda
continuous function I" :[ 0, 1] xSZ — Qm such that for all £ € Qm,

ro,& =& I(,&) =&"

Let f : S' — ,, be the continuous function defined by

1 m—1
f(x)=(P(Q),p<9+27t—>,...,p(@—l—Zn )),
m m

x=¢% 0 ¢€[0,2n].
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Let 5 :[0, 1] xS! — S! be the well-defined continuous map given by

PR /RS KO Co)
T o T FOI

where 1 denotes the projection on the first component. The function 7 is a con-
traction of S! to a point and this gives a contradiction. Thus we conclude that

co = sup inf ¢, (£), (6.8)
CezéeC

where
E={C C Qp : Cclosed and cat (C) = 2}

is a finite nulpber, and a critical level for ¢,,. Call ¢, the number (6.8) with ¢,
replaced by F;, so that ¢, = co + 0(1).~If c) # M,, we conclude that there are
at least two distinct critical points for F (distinct up to cyclic permutations) in

Q. If ¢;, = M, we get that there must be a set C, with cat (C) = 2, where the
function F 3, reaches its absolute maximum. In this case we conclude that there are
infinitely many critical points for F; in €,,. Since cyclic permutations are only
finite in number, the result is thus proven. O
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