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Abstract. We consider the problem ε2Δu + (u− a(x))(1 − u2) = 0 in Ω, ∂u
∂ν

= 0 on ∂Ω, where

Ω is a smooth and bounded domain in R
2, −1 < a(x) < 1. Assume that Γ = {x ∈ Ω, a(x) = 0} is a

closed, smooth curve contained in Ω in such a way that Ω = Ω+ ∪ Γ ∪ Ω− and ∂a
∂n

> 0 on Γ, where
n is the outer normal to Ω+. Fife and Greenlee [Russian Math. Surveys, 29 (1974), pp. 103–131]
proved the existence of an interior transition layer solution uε which approaches −1 in Ω− and +1
in Ω+, for all ε sufficiently small. A question open for many years has been whether an interior
transition layer solution approaching 1 in Ω− and −1 in Ω+ exists. In this paper, we answer this
question affirmatively when n = 2, provided that ε is small and away from certain critical numbers.
A main difficulty is a resonance phenomenon induced by a large number of small critical eigenvalues
of the linearized operator.

Key words. interior transition layer, Fife–Greenlee problem, infinite-dimensional reduction,
spectral gap

1. Introduction and statement of main result. Let Ω be a bounded, smooth
domain in R

2. In the gradient theory of phase transitions it is common to seek critical
points in H1(Ω) of energy of the form

Jε(u) =
ε

2

∫
Ω

|∇u|2 + ε−1

∫
Ω

W (x, u),

where W (x, ·) is a double-well potential with exactly two strict local minimizers at
u = +1 and u = −1, which also correspond to trivial local minimizers of Jε in H1(Ω).
For simplicity of exposition we shall restrict ourselves to a potential of the form

W (x, u) =

∫ u

−1

(s2 − 1)(s− a(x))ds,(1.1)

for a smooth function a(x) with

−1 < a(x) < 1 for all x ∈ Ω.

Critical points of Jε correspond to solutions of the problem⎧⎨
⎩
ε2Δu + (u− a(x))(1 − u2) = 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.2)
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where ε > 0 is a small parameter and ν denotes unit outer normal to ∂Ω. The
function u(x) represents a continuous realization of the phase present in a material
confined to the region Ω at the point x which, except for a narrow region, is expected
to take values close to +1 or −1. Of interest are, of course, nontrivial steady state
configurations in which the two phases coexist.

The case a ≡ 0 corresponds to the standard Allen–Cahn equation [6]{
ε2Δu + u(1 − u2) = 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.3)

for which extensive literature on transition layer solutions is available; see, for instance,
[4, 17, 18, 24] and the references therein. We observe that in this case, +1 and −1 are
both global minimizers of the potential (1.1). We are interested in an inhomogeneous
situation in which +1 is the absolute minimizer of W (x, ·) in one region of the domain,
while −1 is such a minimizer in its complement. More precisely, we shall assume that
the set

Γ = {x ∈ Ω / a(x) = 0}

is a smooth, simple, closed curve in Ω which separates the domain into two disjoint
components,

Ω = Ω− ∪ Ω+ ∪ Γ(1.4)

such that

a(x) < 0 in Ω+, a(x) > 0 in Ω−,
∂a

∂n
> 0 on Γ .(1.5)

Observe in particular that for the potential (1.1) we have

W (x,−1) < W (x,+1) in Ω−, W (x,+1) < W (x,−1) in Ω+ .

Thus, if one considers a global minimizer uε for Jε, which exists by standard ar-
guments, then uε should minimize W (x, u); namely, uε should intuitively have the
following asymptotic behavior as ε → 0:

uε → −1 in Ω−, uε → +1 in Ω+.(1.6)

A solution uε to problem (1.2) with these characteristics was constructed, and pre-
cisely described, by Fife and Greenlee [15] in 1974 via matching asymptotic and
bifurcation arguments.

Supersubsolutions were later used by Angenent, Mallet-Paret, and Peletier in the
one-dimensional case [7] for construction and classification of stable solutions. Radial
solutions were found variationally by Alikakos and Simpson [5]. The construction of
the Fife–Greenlee solution allowing Γ to be any closed subset of Ω in any dimension
was given by the first author in [10]. Further constructions have been found recently
by Dancer and Yan [9] and Do Nascimento [13]. In particular, it was found in [9] that
this solution is precisely a minimizer of Jε. Related results can be found in [1, 3].

On the other hand, a solution exhibiting a transition layer in the opposite direc-
tion, namely,

uε → +1 in Ω−, uε → −1 on Ω+,(1.7)



MANUEL DEL PINO, MICHA�L KOWALCZYK, AND JUNCHENG WEI

has been believed to exist for many years. Hale and Sakamoto [19] established the
existence of this solution in the one-dimensional case, while this was done in the
radial case in a ball in [11]; see also [8]. The opposite direction layer (1.7) in this
scalar problem is meaningful in finding transition layer solutions in pattern-formation–
reaction-diffusion systems such as the Gierer–Meinhardt system with saturation; see
[11, 14, 25, 28, 27] and the references therein. While the singular perturbation methods
used in these one-dimensional or radial equations and systems do not see a substantial
difference between the stable and unstable layers, except for the sign of the principal
O(ε) eigenvalue of the linearization, one faces a dramatically different situation in
higher-dimensional, nonsymmetric situations. This is clearly seen when linearizing
around a spherically symmetric solution like (1.7), as bifurcations of nonradial solu-
tions along certain infinite discrete sets of values for ε → 0 take place, as established
in [27]. In particular, the radial solution has a large ε-dependent Morse index. This
poses an important difficulty for a general construction. A phenomenon of this type
was previously observed in the one-dimensional case by Alikakos, Bates, and Fusco
[2] in a construction of solutions with any prescribed Morse index.

In this paper we are able to prove that the opposite-layer solution (1.7) exists as
long as ε remains properly away from a set of critical values. More precisely, there is
an explicit number λ∗ > 0 such that given c > 0, if ε is sufficiently small and satisfies
the gap condition

|k2ε− λ∗| ≥ c
√
ε for all k ∈ N,(1.8)

then a solution uε with the required concentration property indeed exists. In other
words, this will be the case whenever ε is small and away from the critical numbers
λ∗
k2 , in the sense that for fixed and arbitrarily small c < λ∗,

ε 	∈
[
λ∗
k2

− c

k3
,
λ∗
k2

+
c

k3

]
for all k ∈ N.

Here λ∗ is defined by

λ∗ =
1

3π2
∫

R
H2

xdx

(∫
Γ

√
∂a

∂ν

)2

,(1.9)

where H(y) is the unique heteroclinic solution of

H
′′

+ H −H3 = 0, H(0) = 0, H(±∞) = ±1.(1.10)

We can now state our main result.
Theorem 1. Given c > 0, there exists ε0 > 0 such that for all ε < ε0 satisfying

the gap condition (1.8), problem (1.2) has a solution uε satisfying

uε(x) → +1 in Ω−, uε(x) → −1 in Ω+

as ε → 0.
Much more accurate information on the solution will be provided by its construc-

tion; in particular, its shape near Γ is governed by the heteroclinic solution H, in the
sense that

uε(x) ∼ H

(
t− εf(θ)

ε

)
,
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where f is a bounded function of θ, a choice of arclength coordinate of Γ, and t is the
(signed) normal coordinate along the outer normal to Ω+ on Γ.

The main difficulty in the construction of the interior layer solution in the op-
posite direction is the appearance of a large number of small critical eigenvalues, or
resonance. This kind of phenomenon has been dealt with in various problems, for
example, in the study of periodic orbits for strongly attractive potentials [21, 29] and
in boundary concentrations for singularly perturbed Neumann problems [22, 23]. It
also arises in our previous work [12] on the construction of a concentrating solution on
weighted geodesics for nonlinear Schrodinger equations. The scheme employed here
follows the general lines set in [12].

More precisely, the solution to the full problem is roughly decomposed into the
form

uε(x) = H (s− f(εz)) + φ1 (s− f(εz)) + φ̃(s, z),(1.11)

where x = (t, θ) = (εs, εz), t = εs is the signed distance to Γ, θ = εz is the arclength
coordinate of Γ whose length is l, f is an l-periodic function left as a parameter, and
φ1 is the correction term to be defined, while φ̃(s, z) is L2(ds)-orthogonal for each z
to Hs(s − f(εz)). Solving first in φ̃ a natural projected problem, where the linear
operator is uniformly invertible, the resolution of the full problem becomes reduced
to a nonlinear, nonlocal second order system of differential equations in f which
turns out to be directly solvable thanks to the assumptions made. This approach
is familiar when the parameter f lies in a finite-dimensional space (as in the papers
[5, 9, 13, 19]), corresponding this time to adjusting infinitely many parameters. To
stress the difference in the radial case, we note that the parameter f is just a single
number. The analysis we make takes special advantage through Fourier analysis of the
fact that the objects to be adjusted are one-variable functions, while we still believe
that the current approach may be modified to the higher-dimensional case. We also
believe that the gap condition may be improved to size εq, any q > 1

2 .
Additionally we point out the following:
1. The results of Theorem 1 remain true when Ω is an unbounded domain, for

instance, Ω = R
2. Indeed, our proofs, and in particular the matching argument below,

can easily be adapted to handle this case.
2. The method and results presented in Theorem 1 can be generalized to more

general bistable equations of the form

ε2Δu− h(x, u, ε) = 0 in Ω, ε
∂u

∂ν
− σ(x, ε)u = f(x, ε) on ∂Ω,

as treated originally by Fife and Greenlee [15].
3. Our general approach seems also to work when N = 3. It will be an interesting

problem to consider N ≥ 4. Note that there is no restriction of dimension in the
construction of Fife–Greenlee solutions (1.6); see [10].

The organization of this paper is as follows. In section 2, we set up the local
coordinates near Γ and transform (1.2) into a new equation in the stretched variable
(s, z). We then introduce the first correction term φ1 and estimate the errors. In
section 3, we use a gluing procedure to reduce the nonlinear problem to one on the
infinite cylinder and another one away from the interface. Then we solve the inner
problem modulo the projections in section 4 and the full problem modulo projections
in section 5. In section 6 and section 7, we derive a nonlinear ODE for f , which will
be solved in section 8 using the gap condition.
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2. The setup near the curve. Let Γ = {x ∈ Ω, a(x) = 0} be a simple, closed,
smooth curve in Ω ⊂ R

2 and let � = |Γ| denote its total length. We consider the
natural parameterization γ(θ) of Γ with positive orientation, where θ denotes the
arclength parameter measured from a fixed point of Γ. Let ν(θ) denote outer unit
normal to Γ. Points y which are δ0-close Γ for sufficiently small δ0 can be represented
in the form

y = γ(θ) + t ν(θ), |t| < δ0, θ ∈ [0, �) ,(2.1)

where map y → (t, θ) is a local diffeomorphism. By slight abuse of notation we denote
a(t, θ) to actually mean a(y) for y in (2.1). Let k(θ) denote the curvature of Γ.

Stretching variables, absorbing ε from Laplace’s operator, and replacing u(y) with
u(εy), (1.2) becomes

Δu + (u− a(εy))(1 − u2) = 0 in Ωε,
∂u

∂ν
= 0 on ∂Ωε,(2.2)

where Ωε = Ω
ε .

Let (s, z) = ε−1(t, θ) be the natural stretched coordinates associated with the
curve Γε = ε−1Γ, now defined for

z ∈ [0, ε−1�), s ∈ (−ε−1δ0, ε
−1δ0).(2.3)

Equation (2.2) for u expressed in these coordinates becomes

uzz + uss + B1(u) + B2(u) + u− u3 = 0,(2.4)

in the region (2.3), where

B1(u) = −uzz

[
1 − 1

(1 + εk(εz)s)2

]
+

εk(εz)us

1 + εk(εz)s
− ε2s k′(εz)uz

(1 + εk(εz)s)3
,

B2(u) = −a(εs, εz)(1 − u2).

For further reference, it is convenient to expand B1 in the form

B1(u) = (εk(εz) − ε2sk2(εz))us + B0(u),(2.5)

where

B0(u) = ε2sa1(εs, εz)uz + εsa2(εs, εz)uzz + ε3s2a3(εs, εz)us,(2.6)

for certain smooth functions aj(t, θ), j = 1, 2, 3. Observe that all terms in the operator
B1 have ε as a common factor.

We consider now a further change of variables in (2.4). Let f(θ) be a twice
differentiable, �-periodic function whose exact form is to be specified later (see (2.25)).
We define v(x, z) by the relation

u(s, z) = v(x , z), x = s− f(εz).(2.7)
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We want to express (2.4) in terms of these new coordinates. We compute

us = vx, uss = vxx,(2.8)

uz = vx(−f)z + vz,(2.9)

uzz = vxx|fz|2 + 2vxz(−f)z + vx (−f)zz + vzz.(2.10)

In order to write down the equation it is also convenient to expand

a(εs, εz) = a(0, εz) + at(0, εz)εs +
1

2
att(0, εz)ε

2s2 + a4(εs, εz)ε
3s3(2.11)

for a smooth function a4(t, θ). It turns out that u solves (2.4) if and only if v defined
by (2.7) solves

S(v) ≡ vzz + vxx + B3(v) + B4(v) + v − v3 = 0,(2.12)

where B3(v) is a linear differential operator defined by

B3(v) =
[
εk − ε2k2 (x + f )

]
vx

+
[
ε2 |f ′|2 vxx − 2εf ′vxz − ε2f ′′vx

]
+B5(v),

with

B5(v) = B0(u) − a4(εs, εz)ε
3s3(1 − v2)(2.13)

and

B4(v) = −
[
εat (x + f) +

ε2

2
att (x + f)

2

]
(1 − v2).(2.14)

B0(u) is the operator in (2.6), where the derivatives are expressed in terms of the
formulas (2.8)–(2.10), a4 is given by (2.11), and s is replaced with x + f .

Let H(x) denote the unique positive solution of (1.10). Then, taking H(x) as
a first approximation, the error produced is of ε times a function with exponential
decay. Let us be more precise. We need to identify both the terms of order ε and
those of order ε2:

S(H) = B3(H) + B4(H) =
[
εk − ε2k2 (x + f )

]
Hx

+
[
ε2|f ′|2 Hxx − ε2f ′′Hx

]
−

[
εat (x + f) +

ε2

2
att (x + f)

2

]
(1 −H2) + B5(H),

where

B5(H) = B0(H) − ε3s3a4(εs, εz)(1 −H2).
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Gathering terms of order ε and ε2 we get

S(H) = −εatx(1 −H2)

+ ε
[
kHx − atf(1 −H2)

]
− ε2

[
k2(xHx) − |f ′ |2Hxx + attfx(1 −H2)

]
− ε2

[
k2fHx + f

′′
Hx +

att
2

[x2 + f2](1 −H2)
]

+ B6(H)

= εS1 + εS2 + ε2S3 + ε2S4 + B6(H) .

Let us observe that, grouped this way, the quantities S1, S3 are odd functions of x
while S2, S4 are even. In addition, B6(H) is a term of order ε3 times an exponen-
tially decaying function. We want now to construct a further approximation to a
solution which eliminates the terms of order ε in the error. If φ represents such an
approximation, then we see that

S(H + φ) = S(H) + L0(φ) + B7(φ) + N0(φ),

where

L0(φ) = φzz + φxx + (1 − 3H2)φ,(2.15)

B7(φ) = B3(H + φ) + B4(H + φ) −B3(H) −B4(H),(2.16)

and

N0(φ) = −3Hφ2 − φ3.(2.17)

We write

S(H + φ) = [ ε(S1 + S2) + φxx + (1 − 3H2)φ](2.18)

+ε2S3 + ε2S4 + B6(H) + φzz + B7(φ) + N0(φ).

We choose φ = φ1 in order to eliminate the term between brackets in the above
expression. Namely, for fixed z, we need a solution of

−φxx + (3H2 − 1)φ = ε(S1 + S2), φ(±∞) = 0.

As it is well known, this problem is solvable provided that∫ ∞

−∞
(S1 + S2)Hx dx = 0.(2.19)

Furthermore, the solution is unique under the constraint∫ ∞

−∞
φHx dx = 0.(2.20)

We compute∫ ∞

−∞
(S1 + S2)Hx dx =

∫ ∞

−∞
S2Hx dx = k

∫ ∞

−∞
H2

x − atf

∫ ∞

−∞
(1 −H2)Hx,
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where ∫ ∞

−∞
(1 −H2)Hx =

4

3
.

Since at(0, θ) 	= 0, we have that the first approximation of f should be

f0(θ) = c0
k(θ)

at(0, θ)
, where c0 =

3
∫

R
H2

x

4
.

The solution has the form

φ1 = φ11 + φ12,(2.21)

where

φ11 = εa11(εz)H1(x), φ12 = εf0(εz)a12(εz)H2(x),(2.22)

a11 = at(0, θ), a12 = k(θ),

H1 is the unique odd function satisfying

−H1,xx −H1 + 3H2H1 = x(1 −H2),(2.23)

and H2 is the unique even solution satisfying

−H2,xx −H2 + 3H2H2 = Hx − c0(1 −H2),

∫
R

H2Hxdx = 0.(2.24)

Let us now choose f :

f(θ) = f0(θ) + f(θ).(2.25)

In all what follows, we will assume the validity of the following constraints on the
parameter f :

‖f‖ ≡ ε‖f ′′‖L2(0,�) +
√
ε‖f ′‖L2(0,�) + ‖f‖L∞(0,�) ≤ ε,(2.26)

so that

‖f‖L∞(0,�) ≤ ε, ‖f ′‖L2(0,�) ≤
√
ε, ‖f ′′‖L2(0,�) ≤ 1.(2.27)

By interpolation, it also holds that

‖f ′‖L∞(0,�) ≤
√
ε.(2.28)

We now take our basic approximation to a solution to the problem near the curve
Γε to be

f(θ) = f0(θ) + f(θ), H = H + φ1.(2.29)

Substituting φ = φ1 in (2.18), we can compute the new error:

E1 = S(H) = S(H + φ1)

= ε(S1 + S2) + φ1,xx + (1 − 3H2)φ1

+ ε2S3 + ε2S4 + B6(H) + φ1,zz + B7(φ1) + N0(φ1)

= −εatf(1 −H2) + ε2S3 + ε2S4 + B6(H) + φ1,zz + B7(φ1) + N0(φ1).(2.30)
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Observe that since φ1 and f are of size O(ε), all terms above carry ε2 in front.
Observe also that all functions involved are expressed in (x, z) variables, and the
natural domain for those variables is the infinite strip

S = {−∞ < x < ∞, 0 < z < �/ε}.

We now want to measure the size of the error in the L2(S) norm.
Note that

‖ − εatf(1 −H2) + ε2S3 + ε2S4‖L2(S) ≤ Cε
3
2 .(2.31)

A rather delicate term in the cubic remainder B6(H) is the one carrying f ′′ since
in reality we shall only assume a uniform bound on ‖f ′′‖L2(0,�). For instance, one
term arising from B6(H) can be written as

R = ε3(x + f)f ′′(εz)a2(ε(x + f), εz)Hx(x), f = f0 + f ,

with a2 smooth (see (2.6)). Observe that

∫
S
|R|2 ≤ Cε6

∫ �
ε

0

|f ′′(εz)|2dz = ε5‖f ′′‖2
L2(0,�).

Hence

‖R‖L2(S) ≤ Cε
5
2 ‖f ′′‖L2(0,�).

Since φ1 can be bounded by Cε|x|2e−c|x| for large |x|, we obtain that

‖B7(φ1)‖L2(S) ≤ Cε
3
2 .

A similar bound holds for the term N0(φ1):

‖N0(φ1)‖L2(S) ≤ Cε
3
2 .(2.32)

In summary, we have

‖S(H + φ1)‖L2(S) ≤ Cε
3
2 .(2.33)

We set up the full problem in the form S(H + φ) = 0, which takes the form near
the curve,

S(H + φ) = L0(φ) + B8(φ) + E1 + N1(φ) = 0,(2.34)

where E1 = S(H) and

L0(φ) = φxx + φzz + (1 − 3H2)φ ,(2.35)

B8(φ) = B7(φ + φ1) −B7(φ1),(2.36)

N1(φ) = N0(φ + φ1) −N0(φ1).(2.37)

We recall that the description made here is only local. However, we will be able to
reduce the problem to one qualitatively similar to that of the above form in the infinite
strip.
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3. The matching procedure. We follow [12] to perform a procedure that we
refer to as an infinite-dimensional Liapunov–Schmidt reduction (see the explanations
at the end of this section). Since it is quite similar to that of [12], we shall only sketch
the proofs.

First, we need to match solutions near and outside Γ. The idea is to solve the
problem outside a tubular neighborhood of Γ and then to reduce the problem to an
infinite strip.

Let H(y) denote the first approximation constructed near the curve in the coor-
dinate y = (y1, y2) in R

2. Let δ < δ0/100 be a fixed number. We consider a smooth
cut-off function ηδ(t) such that ηδ(t) = 1 if |t| < δ and = 0 if |t| > 2δ. Denote as well
ηεδ(s) = ηδ(ε|s|), where s is the normal coordinate to Γε. We define our first global
approximation to be simply

H(y) =

{
ηε3δ(s)(H + 1) − 1 if y ∈ Ω+,

ηε3δ(s)(H− 1) + 1 if y ∈ R
2 \ Ω+.

Denote S(u) = Δu + (u− a(εs, εz))(1 − u2) for u = H + φ̃. Then S(H + φ̃) = 0
if and only if

L̃(φ̃) = Ẽ + Ñ(φ̃),(3.1)

where

Ẽ = −S(H),

L̃(φ̃) = Δφ̃ + [1 − 3H2 + 2a(εy)H]φ̃,

and

Ñ(φ̃) = −3H(φ̃)2 − (φ̃)3 + a(εy)(φ̃)2.

We further separate φ̃ in the following form:

φ̃ = ηε3δφ + ψ,

where, in coordinates (x, z), we assume that φ is defined in the whole strip S. We
want

L̃(ηε3δφ) + L̃(ψ) = Ẽ + Ñ(ηε3δφ + ψ).

We achieve this if the pair (ψ, φ) satisfies the following nonlinear coupled system:

ηε3δL̃(φ) = ηεδẼ + ηεδÑ(ηε3δφ + ψ) − 3ηεδ(1 − H2)ψ,(3.2)

Δψ − 2(1 − aH)ψ + 3(1 − ηεδ)(1 − H2)ψ = (1 − ηεδ ) Ẽ − 2ε∇ηε3δ ∇φ

− 2ε2(Δηε3δ)φ + (1 − ηεδ) Ñ( ηε3δ φ + ψ ),(3.3)

where φ is defined globally on S and ψ is defined in Ωε and is required to satisfy the
Neumann boundary condition.

Notice that the operator L̃ in the strip S may be taken as any compatible extension
outside the 6δ/ε-neighborhood of the curve.
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What we want to do next is to reduce the problem to one in the strip. To do this,
we solve, given a small φ, problem (3.3) for ψ. This can be done in an elementary
way: Let us observe first that since |a(x)| < 1, we have

γ2
0 = min

x∈Ω̄
2(1 − |a(x)|) > 0.(3.4)

Since 1−H2 is exponentially small for |s| > δε−1, where s is the normal coordinate
to Γε, then the problem

Δψ − 2(1 − a(εy)H)ψ + 3(1 − ηεδ)(1 − H2)ψ = h, in Ω,
∂ψ

∂ν
= 0 on ∂Ωε,(3.5)

has a unique bounded solution ψ whenever ‖h‖∞ < +∞. Moreover,

‖ψ‖∞ ≤ C‖h‖∞.

Assume now that φ satisfies the following decay condition:

|∇φ(y)| + |φ(y)| ≤ e−
γ
ε for |s| > δ

ε
.(3.6)

Since Ñ has a power-like behavior with power greater than one, a direct application
of the contraction mapping principle yields that problem (3.3) has a unique (small)
solution ψ = ψ(φ) with

‖ψ(φ)‖∞ ≤ Ce−δ/ε + Cε[ ‖φ‖L∞(|s|>δε−1) + ‖∇φ‖L∞(|s|>δε−1) ],

where with some abuse of notation by {|s| > δ/ε} we denote the complement of the
δ/ε-neighborhood of Γε. The nonlinear operator ψ satisfies a Lipschitz condition of
the form

‖ψ(φ1) − ψ(φ2)‖∞ ≤ Cε[ ‖φ1 − φ2‖L∞(|s|>δε−1) + ‖∇(φ1 − φ2)‖L∞(|s|>δε−1) ].

The full problem has been reduced to solving the (nonlocal) problem in the infinite
strip S,

L2(φ) = ηεδẼ + ηεδÑ(ηε3δφ + ψ(φ)) − 3ηεδ(1 − H2)ψ(φ),(3.7)

for a φ ∈ H2(S) satisfying condition (3.6). Here L2 denotes a linear operator that
coincides with L̃ on the region |s| < 10δ/ε.

We shall define this operator next. The operator L̃ for |s| > 20δ/ε is given in
coordinates (x, z) by

L1(φ) = φxx + φzz + (1 − 3H2)φ.

We extend it for functions φ defined in the entire strip S, in terms of (x, z), as follows:

L2(φ) = L1(φ) + 2χ (ε|x|)a(εs, εz)Hφ + χ (ε|x|)B1(φ),(3.8)

where χ (r) is a smooth cut-off function which equals 1 for r < 10δ and vanishes
identically for r > 20δ.
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Rather than solving problem (3.1) directly, we shall do it in steps. We consider
the following projected problem in H2(S): Given f = f0 + f , with f satisfying bounds
(2.26), find functions φ ∈ H2(S), c such that

L2(φ) = ηεδẼ + N2(φ) + c(εz)χε
δ Hx in S,(3.9)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(3.10) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
.(3.11)

Here N2(φ) = ηεδÑ(ηε3δφ + ψ(φ)) − 3ηεδ(1 − H2)ψ(φ) and χε
δ(x) = χ1(ε|x|/δ), where

χ1(t) is a cut-off function equal to 1 for |t| < 1/2 and equal to 0 for |t| > 1.
We will prove that this problem has a unique solution whose norm is controlled by

the L2 norm of ηεδẼ = E1 = S(H). The main step here is to show bounded invertibility
of a suitable perturbation of the operator L2. The proof of this fact is a combination
of an a priori estimate (Lemma 4.1) with an application of the Fredholm alternative
(Lemma 4.2). After this first step, our task is to adjust the parameter f in such a way
that c is identically zero. As we will see, this turns out to be equivalent to solving a
nonlocal, nonlinear, second order differential equation for f under periodic boundary
conditions. This system is solvable in a region where the bound (2.26) holds.

We call the entire procedure described above as infinite-dimensional Lyapunov–
Schmidt reduction because of its analogy to a method devised by Floer and Weinstein
[16] in a finite-dimensional context for a related problem. In a finite-dimensional
setting, the main step in this method, which corresponds to adjustment of a parameter
to make c = 0, is also known as quasi-invariant manifold reduction. The whole scheme
has been refined and widely used in singular perturbation elliptic problems.

We will carry out the outlined program in the next sections. To solve (3.9)–(3.11)
we need to investigate invertibility of L2 in the L2-H2 setting under periodic boundary
conditions and orthogonality conditions.

4. Invertibility of L2. Let L2 be the operator defined in H2(S) by (3.8). In
this section we study the linear problem

L2(φ) = h + c(εz)χε
δ Hx in S,(4.1)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(4.2) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
(4.3)

for a given h ∈ L2(S). Our main result in this section is the following.
Proposition 4.1. If δ in the definition of L2 is chosen sufficiently small, then

there exists a constant C > 0, independent of ε, such that for all small ε, problem
(4.1)–(4.3) has a unique solution φ = T (h), which satisfies the estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

For the proof of this result we need the validity of the corresponding assertion for
a simpler operator which does not depend on δ. Let us consider the problem

L(φ) = φss + φzz + (1 − 3H2)φ = h in S,(4.4)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(4.5) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
.(4.6)
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Lemma 4.1. There exists a constant C > 0, independent of ε such that the
solutions of (4.4)–(4.6) satisfy the a priori estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

Proof. Let us consider Fourier series decompositions for h and φ of the form

φ(x, z) =

∞∑
k=0

[
φ1k(x) cos

(
2πk

�
εz

)
+ φ2k(x) sin

(
2πk

�
εz

)]
,

h(x, z) =

∞∑
k=0

[
h1k(x) cos

(
2πk

�
εz

)
+ h2k(x) sin

(
2πk

�
εz

)]
.

Then we have the validity of the equations

−4π2k2ε2

l2
φlk + L0(φlk) = hlk, x ∈ R,(4.7)

with orthogonality conditions ∫ ∞

−∞
φlk Hx dx = 0.(4.8)

We have denoted here

L0(φlk) = φlk,xx + (1 − 3H2)φlk.

Let us consider the bilinear form in H1(R) associated with the operator L0, namely,

B(ψ,ψ) =

∫ ∞

−∞
[|ψx|2 + (3H2 − 1)|ψ|2] dx .

Since (4.8) holds, we conclude that

C[‖φlk‖2
L2(R) + ‖φlk,x‖2

L2(R)] ≤ B(φlk, φlk)(4.9)

for a constant C > 0 independent of l, k. Using this fact and (4.7) we conclude with
the estimate

(1 + k4ε4)‖φlk‖2
L2(R) + ‖φlk,x‖2

L2(R) ≤ C‖hlk‖2
L2(R).

In particular, we see from (4.7) that φlk satisfies an equation of the form

−φlk,xx + 2φlk = h̃lk, x ∈ R,

where ‖h̃lk‖L2(R) ≤ C‖hlk‖L2(R). Hence it follows that additionally we have the
estimate

‖φlk,xx‖2
L2(R) ≤ C‖hlk‖2

L2(R).(4.10)

Adding up estimates (4.9), (4.10) in k and l we conclude that

‖D2φ‖2
L2(S) + ‖Dφ‖2

L2(S) + ‖φ‖2
L2(S) ≤ C‖h‖2

L2(S),

which ends the proof.



RESONANCE AND INTERIOR TRANSLATION LAYER

We consider now the following problem: Given h ∈ L2(S), find functions φ ∈
H2(S), c ∈ L2(0, �) such that

L(φ) = h + c(εz)χε
δHx in S,(4.11)

φ(x, 0) = φ(x, �/ε), φz(x, 0) = φz(x, �/ε), −∞ < x < +∞,(4.12) ∫ ∞

−∞
φ(x, z)Hx(x) dx = 0, 0 < z <

�

ε
.(4.13)

Lemma 4.2. Problem (4.11)–(4.13) possesses a unique solution. Moreover,

‖φ‖H2(S) ≤ C‖h‖L2(S).

Proof. To establish existence, we assume that

h(x, z) =

∞∑
k=0

[
h1k(x) cos

(
2πk

�
εz

)
+ h2k(x) sin

(
2πk

�
εz

)]

and consider the problem of finding φlk ∈ H1(R), and constants clk, such that

−4π2k2ε2

l2
φlk + L0(φlk) = hlk + clkχ

ε
δHx, x ∈ R,

and ∫ ∞

−∞
φlk Hx dx = 0.

Fredholm’s alternative yields that this problem is solvable with the choices

clk = −
∫∞
−∞ hlkHxdx∫∞
−∞ H2

xχ
ε
δdx

.

Observe in particular that

∞∑
k=0

|clk|2 ≤ Cε‖h‖2
L2(S).(4.14)

Finally, define

φ(x, z) =

∞∑
k=0

[
φ1k(x) cos

(
2πk

�
εz

)
+ φ2k(x) sin

(
2πk

�
εz

)]
,

and correspondingly

c(z) =
∞∑
k=0

[
c1k cos

(
2πk

�
z

)
+ c2k sin

(
2πk

�
z

)]
.

The estimate (4.14) gives that c(εz)χε
δHx has the L2(S) norms controlled by that

of h. The a priori estimates of the previous lemma tell us that the series for φ is
convergent in H2(S) and defines a unique solution for the problem with the desired
bounds.
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Proof of Proposition 4.1. Problem (4.1)–(4.3) can be reduced to a small pertur-
bation of a problem of the form (4.11)–(4.13) in which Lemma 4.2 is applicable. In
fact, we have

L2(φ) = L(φ) + B̃(φ),(4.15)

where

B̃(φ) = 3(H2 − 3H2)φ + 2χ(ε|x|)a(εs, εz)φ + χ(ε|x|)B1(φ).

In the operator B1(φ), consider for instance the following term involving f ′′:

Bf (φ) = ε2f ′′(εz)φx.

Then we have

‖Bf (φ)‖2
L2(S) ≤ ε3

∫ �

0

|f ′′(θ)|2dθ
(

sup
z

∫ ∞

−∞
|φx(x, z)|2 dx

)
.

Let ϕ(z) =
∫∞
−∞ |φx(x, z)|2dx. Then

sup
z

ϕ(z) ≤ ε

∫
S
|φx|2 + 2

∫
S
|φx||φxz|

≤ 1

2
sup
z

ϕ(z) + 4ε−1

∫
S
|φxz|2 + ε

∫
S
|φx|2.

Hence

ϕ(z) ≤ Cε−1‖φ‖2
H2(S),(4.16)

so that finally

‖Bf (φ)‖L2(S) ≤ Cε‖f ′′‖L2(0,�).

For other terms the analysis follows in a simpler way. In fact we get

‖B̃(φ)‖L2(S) ≤ Cδ‖φ‖H2(S).

This last estimate is a rather straightforward consequence of the fact that |εs| < 20δ
wherever the operator χ(ε|x|)B1 is supported, and |a(εs, εz)| ≤ Cδ in S. Thus, by
reducing δ if necessary, we apply the invertibility result of Lemma 4.2. This concludes
the proof.

5. Solving the nonlinear intermediate problem. In this section we will
solve problem (3.9)–(3.11). For brevity we let E2 = ηεδẼ.

Notice that

‖E2‖L2(S) ≤ Cε
3
2 .

For further reference, it is useful to point out the Lipschitz dependence of the term
of error E2 on the parameters f for the norms defined in (2.26). We have the validity
of the estimate

‖E2(f1) − E2(f2)‖L2(S) ≤ Cε
1
2 [‖f1 − f2‖].(5.1)
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Let T be the operator defined by Proposition 4.1. Then the equation is equivalent
to the fixed point problem

φ = T (E2 + N2(φ)) ≡ A(φ).(5.2)

The operator T has a useful property: Assume h has support contained in |x| ≤ δ
ε .

Then by elliptic estimates, φ = T (h) satisfies the estimate

|φ(x, z)| + |∇φ(x, z)| ≤ ‖φ‖∞e−
γ0δ

ε for |x| > δ

ε
.(5.3)

Now we recall that the operator ψ(φ) satisfies, as seen directly from its definition,

‖ψ(φ)‖L∞ ≤ C
[
‖ |∇φ| + |φ| ‖L∞(|s|> δ

ε ) + e−
γ0δ

ε

]
,(5.4)

and also the Lipschitz condition

‖ψ(φ1) − ψ(φ2)‖L∞ ≤ C
[
‖ |∇(φ1 − φ2)| + |φ1 − φ2| ‖L∞(|s|> δ

ε )

]
;(5.5)

here s = x + f . These facts will allow us to construct a region where the contraction
mapping principle applies. As we have said,

‖E2‖L2(S) ≤ C∗ε
3
2

for certain constant C∗ > 0. We consider the following closed, bounded subset of
H2(S):

B =

⎧⎨
⎩φ ∈ H2(S)

∣∣∣∣∣∣
‖φ‖H2(S) ≤ Dε

3
2 ,

‖ |φ| + |∇φ| ‖L∞(|s|> δ
ε ) ≤ ‖φ‖H2(S)e

− γ0δ

2ε

⎫⎬
⎭ .

We claim that if the constant D is fixed sufficiently large, then the map A defined in
(5.2) is a contraction from B into itself.

Let us analyze the Lipschitz character of the nonlinear operator N2(φ), involved
in A for functions in B. Arguing as in [12], we have the following Lipschitz estimates
for N2(φ):

‖N2(φ1) −N2(φ2)‖L2(S) ≤ Cε
3
2 ‖φ1 − φ2‖H2(S).(5.6)

Now let φ ∈ B; then ϕ = A(φ) satisfies

‖ϕ‖H2(S) ≤ C∗ε
3
2 ‖T‖.

Choosing any number D > C∗‖T‖ we get that for small ε

‖ϕ‖H2(S) ≤ Dε
3
2 .

On the other hand we have

‖ϕ‖L∞(S) ≤ C‖ϕ‖H2(S).

But ϕ satisfies an equation of the form L2(ϕ) = h with h compactly supported. Hence
ϕ belongs to B thanks to the discussion above. A is clearly a contraction mapping
thanks to (5.6). We conclude that A has a unique fixed point in B.



MANUEL DEL PINO, MICHA�L KOWALCZYK, AND JUNCHENG WEI

We recall that the error E2 and the operator T themselves carry the function f as
a parameter. A tedious but straightforward analysis of all terms involved in the dif-
ferential operator and in the error yield that this dependence is indeed Lipschitz with
respect to the H2 norm (for each fixed ε). Indeed, emphasizing now the dependence
of L2 on f we can write

L2,f1(φ(f1)) − L2,f2(φ(f2)) = L2,f1 [φ(f1) − φ(f2)] + [L2,f1 − L2,f2 ](φ(f1))

and use the theory just developed to estimate φ(f1)− φ(f2). Taking advantage of the
Lipschitz character of the error term E2(f), we can show the Lipschitz character of
T , and we find

‖Tf1 − Tf2‖ ≤ Cε‖f1 − f2‖.
Hence

‖φ(f1) − φ(f2)‖H2(S) ≤ Cε‖f1 − f2‖.(5.7)

We summarize the result we have obtained in the following.
Proposition 5.1. There is a number D > 0 such that for all sufficiently small ε

and all f satisfying (2.26), problem (3.9)–(3.11) has a unique solution φ = φ(f) which
satisfies

‖φ‖H2(S) ≤ Dε
3
2 ,

‖ |φ| + |∇φ| ‖L∞(|s|> δ
ε ) ≤ ‖φ‖H2(S)e

− γ0δ

2ε .

Besides, φ depends Lipschitz continuously on f in the sense of estimate (5.7).
Next we carry out the second part of the program, which is to set up an equation

for f , which is equivalent to making c identically zero. The equation is obtained by
simply integrating the equation (only in x) against Hx. It is therefore of crucial im-
portance to carry out computations of the terms

∫
R
E2Hx dx. We do that in the next

section.

6. Estimates for projections of the error. In this section we carry out some
estimates for the terms

∫
R
E2Hx dx, where E2 = ηεδE1 and E1 was defined as in (2.30).

Observe that it suffices to evaluate
∫

R
E1Hx dx instead since the difference E2 − E1

is exponentially small in ε. Notice that the odd terms in x in E1 do not contribute
to the value of the integral since Hx is an even function.

We recall

S(H + φ1) = −εatf(1 −H2) + ε2S3 + ε2S4 + B6(H) + φ1,zz + B7(φ1) + N0(φ1),

where S3 is an odd function, S4 is an even function, and B6(H) is of order ε3. Thus,
we see that∫

R

S(H + φ1)Hx

= −εatf

∫
R

(1 −H2)Hx

−ε2

{
f ′′

∫
R

H2
x + f

[
k2

∫
R

H2
x + attf0

∫
R

(1 −H2)Hx

]

+
f2

2
att

∫
R

(1 −H2)Hxdx

}

+

∫
R

N0(φ1)Hx +

∫
R

B7(φ1)Hx + ε2γ0(εz) + ε3b1εf
′′ + ε3b2ε .
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Here and below we denote by blε, l = 1, 2, generic, uniformly bounded continuous
functions of the form

blε = blε(z, f(εz), f
′(εz)),

where additionally b1ε is uniformly Lipschitz in its last two arguments. Here and
below, functions γj(θ), j = 0, 1, 2, . . . , are C2 smooth in its argument θ ∈ (0, �).

Next we estimate
∫

R
N0(φ1)Hx. This term is to main order of the form

∫
R
Hφ2

1Hx.
Since φ1 doesn’t depend on f , we have∫

R

N0(φ1)Hx = ε2γ1(εz).

Now, let us consider
∫

R
B7(φ1)Hx. All terms in this expression, with the exception of

the terms of size ε in B7, carry in the L2 norm as functions of θ = εz powers 3 or
higher. Thus, we find∫

R

B7(φ1)Hx = ε

∫
R

[kφ1,x − at(0, εz)(x + f)φ1] Hx + O(ε3)

= −ε2fat(0, εz)

∫
R

φ1Hx dx + ε2γ2(εz) + ε3b3εf
′′

+ ε3b4ε,

where b3ε is uniformly Lipschitz in f and f
′
.

In summary, we have established that

∫
R

S(H + φ1)Hx dx = −
[
ε2(f ′′(εz) + γ3(εz)f ) + εfγ4(εz)

]∫
R

H2
x

+ ε2γ5(εz) + ε3[b5εf
′′ + b6ε],(6.1)

where γ4 is given by

γ4(θ) =
at(0, θ)

∫
R
(1 −H2)Hx∫

R
H2

x

,(6.2)

and b5ε is uniformly Lipschitz in f and f
′
.

7. Projections of terms involving φ. We will estimate next the terms that
involve φ in (3.9)–(3.11) integrated against Hx. We call the sum of them ϕ(φ):

ϕ = −2

∫
R

χ(ε|x|)a(εs, εz)φHx dx

−
∫

R

χ(ε|x|)B8(φ)Hx dx +

∫
R

N2(φ)Hx dx

+ 3

∫
R

[H2 −H2]φHx dx =

4∑
i=1

ϕi.

Let ϕ1(εz) = −2
∫

R
a(εs, εz)χ(ε|x|)φHx. Then it is easy to see that

∫ �

0

|ϕ1(θ)|2dθ ≤ Cε3‖φ‖2
H2(S),
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and hence

‖ϕ1‖L2(0,�) ≤ Cε3.

The Lipschitz continuity of ϕ1 follows from the Lipschitz continuity of φ.
Next we let ϕ2(εz) =

∫
R
B1(φ)χ(ε|x|)Hx. We make the following observation: All

terms in B1(φ) carry ε and involve powers of x times derivatives of powers of 0, 1 or
two orders of φ. The conclusion is that since Hx has exponential decay, then∫ �

0

|ϕ2(θ)|2dθ ≤ Cε3‖φ‖2
H2(S).

Hence

‖ϕ2‖L2(0,�) ≤ Cε3.

To prove the Lipschitz regularity of ϕ2, we single out one less regular terms in B8(φ).
The one whose coefficient depends on f ′′ explicitly has the form

ϕ2∗ = ε2f ′′
∫

R

φxHx = −ε2f ′′
∫

R

φHxx.

Since φ has Lipschitz dependence on f in the form (5.7), we see that this is transmitted
from Sobolev’s embedding into

‖φ(f1) − φ(f2)‖L∞(S) ≤ Cε
3
2 ‖f1 − f2‖,

from where it follows

‖ϕ2∗(f1) − ϕ2∗(f2)‖L2(0,�) ≤ Cε1+α‖f1 − f2‖.

The remainder ϕ2 − ϕ2∗ actually defines for fixed ε a compact operator for f in
L2(0, �). This is a consequence of the fact that weak convergence in H2(S) implies
local strong convergence in H1(S), and the same is the case for H2(0, �) and C1[0, �].
If fj are weakly convergent sequences in H2(0, �), then clearly the functions φ(fj)
constitute a bounded sequence in H1(S). In the above remainder one can integrate
by parts, if necessary, once in x. Averaging against Hx, which decays exponentially,
localizes the situation, and the desired fact follows.

We observe also that ϕ3(εz) =
∫

R
N2(φ)Hx can be estimated similarly. Using the

definition of N2(φ) and the exponential decay of Hx we obtain

‖ϕ3‖L2(0,�) ≤ Cε
1
2 ‖φ‖2

H2(S) ≤ Cε3.

Let us consider now

ϕ4(εz) =

∫
R

3[H2 −H2]φHx.

Since H = H + φ1 and φ1 can be estimated as

|φ1(x, z)| ≤ Cε(|x|2 + 1) e−c|x|,

we easily see that

‖ϕ4‖L2(0,�) ≤ Cε
3
2 ‖φ‖H2(S) ≤ Cε3 .

These terms define compact operators similarly as before.
In summary, we have

‖ϕ(φ)‖L2(0,�) ≤ Cε3.(7.1)
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8. The reduced equation for f: Proof of the theorem. In this section we
set up an equation relating f such that for the solution φ of (3.9)–(3.10) obtained via
Proposition 5.1 one has that the coefficient c(εz) is identically zero. To achieve this
we multiply first the equation against Hx and integrate only in x. The equation c = 0
is then equivalent to the relation∫

R

E2Hxdx + ϕ(φ) = 0.

Using the estimates in the previous sections we then find that these relations are
equivalent to the following nonlinear, nonlocal, differential equation for f :

L(f) ≡ εf ′′ + (εγ3 + γ4)f = εγ5(εz) + ε2Mε.(8.1)

We further set

f = ε
γ5

γ4 + εγ3
+ f̂ .

Then (8.1) becomes a nonlocal equation for f̂ ,

L(f̂) ≡ εf̂ ′′ + (εγ3 + γ4)f̂ = ε2Mε.(8.2)

The operators Mε = Mε(f̂) can be decomposed into the following form:

Mε(f̂) = Aε(f̂) + Kε(f̂),

where Kε is uniformly bounded in L2(0, �) for f̂ satisfying constraints (2.26) and is
also compact. The operator Aε is Lipschitz in this region:

‖Aε(f̂1) −Aε(f̂2)‖L2(0,�) ≤ Cε‖f̂1 − f̂2‖.

The functions γi, i = 1, 2, are smooth. Furthermore, we have

γ4 =
4

3

(∫
R

H2
x

)−1

at(0, θ) > 0.

We will solve now (8.2). First we need to use assumption (1.8) to deal with the
invertibility of L. We have the following lemma.

Lemma 8.1. Assume that condition (1.8) holds. If d ∈ L2(0, �), then there is a

unique solution f̂ ∈ H2(0, �) of L(f̂) = d which is �-periodic and satisfies

ε‖f̂ ′′‖L2(0,�) +
√
ε‖f̂ ′‖L2(0,�) + ‖f̂‖L∞(0,�) ≤ Cε−1/2‖d‖L2(0,�).

Moreover, if d is in H2(0, �), then

ε‖f̂ ′′‖L2(0,�) + ‖f̂ ′‖L2(0,�) + ‖f̂‖L∞(0,�) ≤ C[‖d′′‖L2(0,�) + ‖d′‖L2(0,�)]

+C‖d‖L2(0,�).

Let us accept for the moment the validity of this result and let us conclude the
proof of the theorem. From the contraction mapping principle, the equation

Lf̂ = g
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is uniquely solvable for f̂ satisfying (2.26) if ‖g‖2 < ε
3
2+ρ for some ρ > 0. The desired

result for the full problem (8.2) then follows directly from Schauder’s fixed point

theorem. In fact, refining the fixed point region, we can actually get ‖f̂‖ = O(ε3/2)
for the solution.

Proof of Lemma 8.1. We consider the boundary value problem

L(f̂) = d, f̂(0) = f̂(�), f̂ ′(0) = f̂ ′(�).(8.3)

We notice that it suffices to show Lemma 8.1 with

L1(f̂) = εβ−2f̂ ′′ + f̂ ,

where β =
√
γ4. We make the following Liouville transformation (cf. [20]):

�0 =

∫ �

0

β(θ)dθ, t =

∫ θ

0
β(θ)dθ

�0
π, λ0 =

�20
π2

,

Ψ(θ) = (β(θ))−
1
2 , y(t) = Ψ−1(θ)f̂(θ), q(t) =

�20
π2

Ψθθ

β2Ψ
,

d̃(t) = Ψ−1(θ)d(θ).

Then (8.3) with L replaced by L1 is transformed into

L̃2(y) = ε(y′′ + q(t)y) + λ0y = d̃, y(0) = y(π), y′(0) = y′(π),(8.4)

and it then suffices to establish the estimates in Lemma 8.1 for the solution of this
problem in terms of the corresponding norms of d̃. It is standard that the eigenvalue
problem

y′′ + q(t)y + λy = 0, y(0) = y(π), y′(0) = y′(π)(8.5)

has an infinite sequence of eigenvalues λk, k ≥ 0, with an associated orthonormal basis
in L2(0, π), {yk}, constituted by eigenfunctions. A result in [20] provides asymptotic
expressions as k → +∞ for these eigenvalues and eigenfunctions, which turn out to
correspond to those for q ≡ 0. We have

√
λk = 2k + O

( 1

k3

)
, k → ∞.(8.6)

Problem (8.4) is then solvable if and only if λkε 	= λ0 for all k ≥ 1. In such a
case, the solution to (8.3) then can be written as

y(t) =

∞∑
k=1

d̃k
λ0 − λkε

yk(t)

with this series convergent in L2. Hence

‖y‖2
L2(0,π) =

∞∑
k=0

|d̃k|2
(λ0 − λkε)2

.

We then choose ε such that

|4k2ε− λ0| ≥ c
√
ε(8.7)
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for all k, where c is small. This corresponds precisely to condition (1.8). From (8.6)
we then find that |λ0 − λkε| ≥ c

2

√
ε if ε is also sufficiently small. It follows that

‖y‖L2(0,π) ≤ Cε−
1
2 ‖d̃‖L2(0,π). Next we notice that

|y(t)| ≤
∞∑
k=1

∣∣∣∣∣ d̃kyk(t)

λ0 − λkε

∣∣∣∣∣
≤

( ∞∑
k=1

d̃2
ky

2
k(t)

)1/2 ( ∞∑
k=1

1

(λ0 − λkε)2

)1/2

≤ C√
ε
‖d̃‖L2(0,π);

hence the L∞ estimate for y follows, and thus we get

ε‖y′‖L2(0,π) + ‖y‖L∞(0,π) ≤ Cε−
1
2 ‖d̃‖L2(0,π).

Observe also that

‖y′‖2
L2(0,π) ≤ C

∞∑
k=0

|d̃k|2
1 + |λk|

(λ0 − λkε)2
≤ C

∞∑
k=0

(1 + k4)|d̃k|2.

Besides, if d is in H2(0, π) with d(0) = d(π), d′(0) = d′(π), then the sum
∑

k k
4d2

k is
finite and bounded by the H2 norm of d. This and the equation automatically imply

ε‖y′′‖L2(0,π) + ‖y′‖L2(0,π) + ‖y‖L∞(0,π) ≤ C‖d̃‖H2(0,π),

and the proof is complete.
Remark 8.1. In section 3 of [26], an equivalent form of (8.2) was also derived for a

system of singularly perturbed elliptic equations on N -dimensional domains (N ≥ 2).
There it was assumed that γ4(θ) < 0 (condition (A7) in [26]). It was also observed
that when γ4 > 0, there is a resonance of eigenvalues hitting 0.
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