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Abstract

Let Ω be a bounded domain with smooth boundary in R
2. We construct non-constant solutions to the

complex-valued Ginzburg–Landau equation ε2�u + (1 − |u|2)u = 0 in Ω , as ε → 0, both under zero
Neumann and Dirichlet boundary conditions. We reduce the problem of finding solutions having isolated
zeros (vortices) with degrees ±1 to that of finding critical points of a small C1-perturbation of the associated
renormalized energy. This reduction yields general existence results for vortex solutions. In particular, for
the Neumann problem, we find that if Ω is not simply connected, then for any k � 1 a solution with exactly
k vortices of degree one exists.
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1. Introduction

We consider the Ginzburg–Landau equation

ε2�u + (
1 − |u|2)

u = 0 in Ω, (1.1)

where Ω is a bounded, smooth domain in R
2, u :Ω → C and ε > 0 is a small parameter. (1.1) is

the Euler–Lagrange equation corresponding to the energy functional
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Jε(u) = 1

2

∫
Ω

|∇u|2 + 1

4ε2

∫
Ω

(
1 − |u|2)2

. (1.2)

Construction and asymptotic analysis of solutions of (1.1) and related problems as ε → 0 has
been a subject extensively treated in the literature during the last decade. The energy Jε is com-
monly regarded as a model for the full Ginzburg–Landau energy of classical superconductivity
theory [14]. It also arises in theories of superfluids and Bose–Einstein condensates. Seeking for
unconstrained critical points of Jε , namely in entire H 1(Ω,C), gives rise to homogeneous Neu-
mann boundary condition for (1.1),

∂u

∂ν
= 0 on ∂Ω. (1.3)

Bethuel et al. [3] considered Eq. (1.1) subject to a boundary condition g : ∂Ω → S1,

u = g on ∂Ω, (1.4)

with Ω star-shaped, and analyzed asymptotic behavior of families of solutions uε of (1.1)–(1.4),
namely critical points of Jε in the space

H 1
g (Ω,C) = {

u ∈ H 1(Ω,C) | u = g on ∂Ω
}
.

Problem (1.1)–(1.4) corresponds to a relaxation of that of finding harmonic maps from Ω into S1.
Let us assume that g is smooth and that the degree d = deg(g, ∂Ω) > 0. It was established in [3]
that for a given family of solutions uε there exist a number k � 1, and k-tuples

ξ = (ξ1, . . . , ξk) ∈ Ωk, d= (d1, d2, . . . , dk) ∈ Z
k,

with ξi �= ξj for all i �= j and
∑k

j=1 dj = d , such that uε(x) → wg(x, ξ,d) along a suitable

subsequence, in C1,α-sense away from the vortices ξj , where

wg(x, ξ,d) ≡ eiϕg(x,ξ,d)

k∏
j=1

(
x − ξj

|x − ξj |
)dj

. (1.5)

Products in the above expression are understood in complex sense and ϕg = ϕg(x, ξ,d) is the
unique solution of the problem

�ϕg = 0 in Ω, (1.6)

wg(x, ξ,d) = g(x) on ∂Ω. (1.7)

Besides, ξ must be a critical point of a renormalized energy, Wg(ξ,d), characterized as the limit

Wg(ξ,d) ≡ lim
ρ→0

[ ∫
Ω\⋃k Bρ(ξj )

|∇xwg|2 dx − π

k∑
j=1

d2
j log

1

ρ

]
, (1.8)
j=1
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for which explicit expression in terms of Green’s functions is found in [3]. This result also holds
true for general domains and families of solutions uε with Jε(uε) = O(log ε), see [23]. In [3],
accurate information was obtained for the behavior of a family of global minimizers uε of Jε

in H 1
g (Ω). In such a case,

k = d, d= 1≡ (1, . . . ,1),

and for all small ε, uε possesses exactly d zeros (called vortices), each of them with degree one.
Moreover, ξ is actually a global minimizer of Wg(·,1).

This result holds for general Ω as found by Struwe [35], see also [7,9]. Natural question
is, of course, the reciprocal, that of finding solutions to (1.1)–(1.4) which concentrate develop-
ing vortices at other critical points of Wg . Through a heat flow method, F.H. Lin [22] found
solutions which concentrate around any non-degenerate local minimum of Wg(·,1). In [7,8],
non-degeneracy was lifted in the sense that if Λ ⊂ Ωd is so that

inf
ξ∈Λ

Wg(ξ,1) < inf
ξ∈∂Λ

Wg(ξ,1), (1.9)

then there is a local minimizer of Jε with exactly d vortices of degree 1 which minimize Wg(·,1)

in Λ. A different proof of this fact was found by F.H. Lin and T.C. Lin in [25]. Moreover,
they established existence of a solution with d vortices concentrating at any non-degenerate
critical point of Wg(·,1), through heat flow analysis and topological arguments. In [24] boundary
conditions yielding solutions with vortices with coexisting degrees +1 and −1 were found. In [1],
Almeida and Bethuel devised a variational–topological approach to prove that if d � 2 then at
least 3 solutions exist, result subsequently improved in [36] to existence of d + 1 solutions.

In [30] Pacard and Riviere improved the result of [24] with a completely different approach.
Their construction yields very accurate information on the solution, particularly close to the zero
set, and includes the case of vortex solutions with coexisting degrees 1 and −1. To state their
result in more precise terms we need to introduce the standard single vortex solutions w±(x) of
respective degrees +1 and −1 in the plane, of the equation

�w + (
1 − |w|2)

w = 0 in R
2,

which have the form

w+(x) = U(r)eiθ , w−(x) = U(r)e−iθ , (1.10)

where (r, θ) designate usual polar coordinates x1 = r cos θ , x2 = r sin θ , and U(r) is the unique
solution of the problem

{
U ′′ + U ′

r
− U

r2 + (1 − |U |2)U = 0 in (0,∞),

U(0) = 0, U(+∞) = 1.
(1.11)

It is well known, see, e.g., [6] that U ′(0) > 0 and

U(r) = 1 − 1
2

+ O

(
1
4

)
as r → +∞.
2r r
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Let us fix a number k � 1, and sets I± with

I− ∪ I+ = {1, . . . , k}, I+ ∩ I− = ∅. (1.12)

Let ξ = (ξ1, . . . , ξk) be a k-tuple of distinct points of Ω , and

d ∈ {−1,1}k, dj = ±1 if j ∈ I±. (1.13)

We consider an approximation to a solution of (1.1)–(1.4) of the form

wgε(x, ξ,d) = eiϕg(x)
∏
j∈I+

w+
(

x − ξj

ε

) ∏
j∈I−

w−
(

x − ξj

ε

)
, (1.14)

where the products are understood to be equal to one if I− or I+ are empty. To match the degree
of the boundary condition (1.4) we need

|I+| − |I−| = d, (1.15)

with ϕg solving (1.6), (1.7) for these choices of parameters. We observe that as ε → 0, wgε ap-
proaches wg given by (1.5), away from the poles.

Pacard and Riviere established in [30] that for this choice of d, and a given non-degenerate
critical point ξ∗ of Wg(ξ,d), a solution uε of problem (1.1)–(1.4) exists and satisfies

uε(x) = wgε(x, ξε,d) + o(1),

where o(1) → 0 uniformly in Ω , and ξε → ξ∗.
The proof in [30] is based on a thorough analysis of the linearized operator around a canon-

ical approximation and an application of implicit function theorem in certain classes of Hölder
spaces. This approach has the advantage of being insensitive to minimizing or non-minimizing
character of the critical point ξ∗, but it relies heavily on its non-degeneracy. This assumption is
hard to check, except for special domains and boundary conditions. On the other hand, a topo-
logical approach to the problem of existence, like that of Almeida and Bethuel [1], gives results
valid in arbitrary domains and under any boundary condition, without any non-degeneracy as-
sumption. However, the topological analysis is difficult since it relies only on general properties
of the “vortex space” and gives relatively little insight into the location or structure of the solu-
tions found.

In problems with variational structure, higher Morse index solutions are harder to find or
describe accurately through purely variational methods. This is partly the reason why less it is
known for existence of vortex solutions in the Neumann problem (1.1)–(1.3). Unlike the Dirich-
let problem, minimization does not produce non-trivial solutions of (1.1)–(1.3), minimizers of Jε

in H 1(Ω) are just constants with absolute value one. Worse than this, non-constant local min-
imizers do not exist if Ω is convex or if Ω is simply connected and ε is small, see Jimbo and
Morita [18] and Serfaty [33]. If Ω is not simply connected, nonconstant local minimizers (with-
out vortices) do exist [21] for small ε. In the full Ginzburg–Landau energy, for which natural
boundary conditions are Neumann, local minimizers with vortices do exist at proper ranges of an
external applied field [32].
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On the other hand, a classification result similar to that in [3] is available for the Neumann
problem, as found in [33]. A family of solutions uε to (1.1)–(1.3) with Jε(uε) = O(log ε) satisfies
the asymptotic behavior uε(x) → wN (x, ξ,d), where

wN (x, ξ,d) ≡ eiϕN (x,ξ,d)

k∏
j=1

(
x − ξj

|x − ξj |
)dj

, (1.16)

and ϕN (x, ξ,d) is the unique solution of the problem

�ϕN = 0 in Ω, (1.17)

∂ϕN
∂ν

= −
k∑

j=1

dj

(x − ξj )
⊥ · ν

|x − ξj |2 on ∂Ω,

∫
Ω

ϕN = 0. (1.18)

Here x⊥ = (−x2, x1). A solution (1.17), (1.18) is easily seen to exist and be unique up to additive
constant since mean value of the boundary condition equals zero. Like in the Dirichlet problem,
ξ must be a critical point to the renormalized energy, WN (ξ,d), defined as the limit

WN (ξ,d) ≡ lim
ρ→0

[ ∫
Ω\⋃k

j=1 Bρ(ξj )

|∇xwN |2 dx − π

k∑
j=1

d2
j log

1

ρ

]
, (1.19)

expression for which also explicit form is available, see Section 2.
In this paper we devise a method, which applies both to Dirichlet and Neumann prob-

lems, to find vortex solutions of combined degrees ±1. This is achieved by constructing a
finite-dimensional manifold of approximate solutions, parametrized by all possible locations of
vortices, such that critical points of Jε constrained to this manifold correspond to vortex so-
lutions. Existence of critical points of this reduced functional, which turns out to be a small
C1-perturbation of the renormalized energy, can be analyzed through general topological infor-
mation, without any reference to non-degeneracy. In particular this enables us to find what seem
to be first general results on existence of vortex solutions in the Neumann problem, as well as
new results for the Dirichlet case. This approach, sometimes called variational reduction, has
been successfully applied in various singular perturbation elliptic problems involving point con-
centration.

Let us consider a number k � 1, k-tuples ξ and d ∈ {−1,1}k with corresponding sets I± as
in (1.12), (1.13), and the associated renormalized energies Wg for the Dirichlet problem and WN
for the Neumann problem. Additionally, for the Neumann problem we define the approximation
wN ε(x, ξ,d) similarly as in (1.14),

wN ε(x, ξ,d) = eiϕN (x,ξ,d)
∏
j∈I+

w+
(

x − ξj

ε

) ∏
j∈I−

w−
(

x − ξj

ε

)
. (1.20)

We say that WN (·,d) (respectively Wg(·,d)) exhibits a non-trivial critical point situation
in D, open and bounded subset of Ωk with

D ⊂ {
ξ ∈ Ωk: ξi �= ξj , if i �= j

}
,
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if there exists a δ > 0 such that for any h ∈ C1(D) with ‖h‖
C1(D)

< δ, a critical point for WN +h

(respectively Wg + h) in D exists.
The following result holds.

Theorem 1.1. Assume that WN exhibits a non-trivial critical point situation in D. Then there
exists a solution uε to the Neumann problem (1.1)–(1.3) such that

uε(x) = wN ε(x, ξε,d) + o(1), (1.21)

where o(1) → 0 uniformly in Ω and

ξε ∈ D, ∇ξWN (ξε,d) → 0. (1.22)

The same conclusion holds for the Dirichlet problem (1.1)–(1.4) with WN and wN ε , respectively,
replaced by Wg and wgε .

In the Dirichlet problem this result lifts the non-degeneracy requirement in [25,30]. In par-
ticular it applies for the topological local minimum situation (1.9) in [9], now for combined ±1
degrees.

We refer to a family of solutions uε of (1.1)–(1.3) with properties (1.21), (1.22) in some set D
compactly contained in {ξ ∈ Ωk: ξi �= ξj , if i �= j}, simply as a k-vortex solution with degrees d,
similarly for the Dirichlet problem with WN and wN ε , respectively, replaced by Wg and wgε .

As we have mentioned, this result applies to establish general results for existence of vortex
solution both in Neumann and Dirichlet problems.

Theorem 1.2. For the Neumann problem (1.1)–(1.3), the following facts hold.

(a) A 1-vortex solution with degree 1 always exists.
(b) Two dipole solutions, namely two 2-vortex solutions with degrees (+1,−1), always exist.
(c) Assume that Ω is not simply connected. Then, given any m � 1, there exists an m-vortex

solution with degrees (1, . . . ,1) ∈ Z
m.

Formal dynamics of vortices in the simply connected case in [19,20] suggested the presence of
the single-vortex and the dipole as well as their non-minimizing character. The latter fact actually
follows from the results in [33], also for simply connected domains.

The rather striking presence of solutions with arbitrarily large number of vortices if the do-
main has non-trivial topology, is in strong analogy with a similar phenomenon found in [11] for
singular limits in the Liouville equation −�u = ε2eu under zero Dirichlet boundary condition.

As for the Dirichlet problem, we have the following results.

Theorem 1.3. Consider the Dirichlet problem (1.1)–(1.4) and let d = deg(g, ∂Ω).

(a) If d = 0 and Ω is not simply connected, then a dipole solution exists.
(b) If d � 1 then there exist at least d d-vortex solutions with degrees (1, . . . ,1) ∈ Zd . If Ω is

not simply connected, at least d + 1 such solutions exist.

The skeleton of the proofs is simple. We construct a small function φ(ξ), in such a way that
critical points in ξ of Jε(wN ε(·, ξ,d) + φ(ξ)) correspond to actual critical points of Jε . Such
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a procedure for Ginzburg–Landau vortices is not easy since the right functional analytic set-up
to carry out this reduction is not obvious. A technical difficulty arising is the presence of slowly
decaying elements in the asymptotic kernel of linearization. A difficulty of this type is present in
Liouville type equations −�u = ε2eu in two-dimensional domains, and makes construction of
bubbling solutions a delicate matter, see [2,5,11,13].

It is interesting to point out that the finite-dimensional manifold represented by the functions
wN ε(·, ξ,d)+φ(ξ) is nearly invariant for the associated heat flow. It is thus expected that analy-
sis of dynamics near this manifold could potentially lead to a geometric approach to parabolic
vortex dynamics in the spirit of Henry [16]. In this direction, it could provide a framework al-
ternative to the variational one by Sandier and Serfaty in [31], and related to the multi-vortex
configuration reduction by Gustafson and Sigal [15]. Energy and spectrum estimates which such
a theory would require are derived in the separate work [12]. Heat flow for Ginzburg–Landau has
been analyzed in [17,24,28,31].

We shall devote the rest of this paper to the proof of the above results.

2. First approximation and error estimate

In the sections to follow we will concentrate on working out the variational reduction for the
Neumann problem (1.1)–(1.3). As it will become clear in the course of the arguments, just minor
changes are needed for the Dirichlet problem.

Let us fix a number k � 1, a k-tuple d ∈ {−1,1}k , a small number δ > 0 and ξ ∈ Ωk
δ where

Ωk
δ = {

ξ ∈ Ωk
∣∣ |ξi − ξj | > 2δ for all i �= j, dist(ξi, ∂Ω) > 2δ

}
. (2.1)

Let I± be the respective sets of indices associated to ±1 in d.
We consider the first approximation to a solution of (1.1)–(1.3) given by wN ε(x, ξ,d) defined

in (1.20).
The solution ϕN to problem (1.17), (1.18) can be decomposed as

ϕN (x) =
k∑

j=1

djϕ
∗
j (x),

where

�ϕ∗
j = 0 in Ω,

∂ϕ∗
j

∂ν
= − (x − ξj )

⊥ · ν
|x − ξj |2 on ∂Ω,

∫
Ω

ϕ∗
j = 0.

We observe that if θ(x − ξj ) denotes the polar argument around the point ξj then we have
precisely

∇θj (x) = (x − ξj )
⊥

|x − ξ |2 .

j
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Alternative way to write wN ε is

wN ε(x) = U0(x)
∏
j∈I+

e
i(θj (x)+ϕ∗

j (x))
∏
j∈I−

e
−i(θj (x)+ϕ∗

j (x))
,

where

U0(x) =
∏

j∈I+∪I−
U

( |x − ξj |
ε

)
.

The function wN ε(x) is intended to approximate a solution of the Neumann problem (1.1)–
(1.3). Let Ωε denote the expanded domain ε−1Ω . For a function u defined in Ω let us write
v(y) = u(εy), with y ∈ Ωε . Then u solves (1.1)–(1.3) if and only if v satisfies{

�v + (1 − |v|2)v = 0 in Ωε,
∂v
∂ν

= 0 on ∂Ωε.
(2.2)

We shall denote in what follows

V0(y) = wN ε(εy), ξ ′
j = ξj

ε
and ϕ̃∗

j (y) = ϕ∗
j (εy).

Let us consider the approximation error of V0 to a solution of (2.2) defined as

E = �V0 + (
1 − |V0|2

)
V0. (2.3)

Part of the error is, of course, how well V0 fits the boundary condition. We set

F = ∂V0

∂ν
. (2.4)

Below we shall work out estimates for E and F which are crucial for the reduction procedure.

Lemma 2.1. There exists a constant C, depending on δ and Ω such that for all small ε and all
points ξ ∈ Ωk

δ we have

k∑
j=1

‖E‖C1(|y−ξ ′
j |<3) � Cε. (2.5)

Moreover, we have that E = iV0(y)[R1 + iR2] with R1, R2 real-valued and

∣∣R1(y)
∣∣ � Cε

k∑
j=1

1

|y − ξ ′
j |3

,
∣∣R2(y)

∣∣ � Cε

k∑
j=1

1

|y − ξ ′
j |

(2.6)

if |y − ξ ′
j | > 1 for all j .

Finally, we have F = iV0(y)[iS2] where S2 is real-valued and

‖S2‖∞ + ε−1‖∇S2‖∞ � Cε3. (2.7)
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Proof. Let us assume first that |y − ξ ′
j | > δ

ε
for all j ∈ I+ ∪ I−. Since the functions θj and ϕ∗

j

are real-valued and since U(r) ∼ 1 − 1
2r2 for large r we get

(
1 − |V0|2

)
V0 =

(
1 −

∣∣∣∣∏
j

U
(
y − ξ ′

j

)∣∣∣∣
2)

V0 = O
(
ε2)

V0

in the considered region. On the other hand, a straightforward computation gives

∇V0(y) = V0(y)

{ ∑
j∈I+∪I−

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

+ i

[ ∑
j∈I+

(∇θj (y) + ∇ϕ̃∗
j (y)

) −
∑
j∈I−

(∇θj (y) + ∇ϕ̃∗
y (y)

)]}
, (2.8)

where by slight abuse of notation we have called θj (y) = θ(y − ξ ′
j ). Taking into account that θj

and ϕ∗
j are harmonic functions,

�V0(y) = V0(y)

{ ∑
j∈I+∪I−

[
�U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
− |∇U(|y − ξ ′

j |)|2
U2(|y − ξ ′

j |)
]

+
[ ∑

j∈I+∪I−

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

]2

−
[ ∑

j∈I+

(∇θj (y) + ∇ϕ̃∗
j (y)

) −
∑
j∈I−

(∇θj (y) + ∇ϕ̃∗
j (y)

)]2

+ 2i

[ ∑
j∈I+

(∇θj (y) + ∇ϕ̃∗
j (y)

) −
∑
j∈I−

(∇θj (y) + ∇ϕ̃∗
j (y)

)]

×
[ ∑

j∈I+∪I−

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

]}
. (2.9)

Now since |∇θj (y)| = 1
|y−ξ ′

j | , from direct computations we get that in the region |y − ξ ′
j | > δ

ε
,

�U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

= O(1)
[
U ′′(∣∣y − ξ ′

j

∣∣) + U ′(|y − ξj |
)∣∣∇θj (y)

∣∣] = O
(
ε2)

.

On the other hand, in this region one also has

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

= O(1)
[
U ′(∣∣y − ξ ′

j

∣∣)θj (y)
] = O

(
1

|y − ξ ′
j |3

)
= O

(
ε3)

.

Furthermore, we have that ∇ϕ̃∗
j (y) = −ε∇θj (y). Indeed, this follows from the fact that ϕ∗

j (x) +
θ(x − ξj ) is harmonic in Ω and it satisfies zero Neumann boundary conditions on ∂Ω .
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All this information allows us to conclude that if |y − ξ ′
j | > δ

ε
for all j then

�V0(y) = V0(y)
[
O

(
ε2) + iO

(
ε4)]

,

so that we can conclude that in this region

E ≡ �V0 + (
1 − |V0|2

)
V0 = V0

[
O

(
ε2) + iO

(
ε4)]

. (2.10)

Assume now that |y − ξ ′
j | � δ

ε
for some j ∈ I+ ∪ I−. To fix idea, assume that j ∈ I+ (the other

case can be treated in the same way, except for minor changes with some signs). Concerning the
nonlinear term, one gets

∣∣V0(y)
∣∣2 = U2(∣∣y − ξ ′

j

∣∣)( ∏
l �=j

U2(∣∣y − ξ ′
l

∣∣))
= U2(∣∣y − ξ ′

j

∣∣)(
1 + O

(
ε2))

.

On the other hand, using again the fact that ∇ϕ̃∗
j (y) = −ε∇θj (y), the linear term can be esti-

mated as follows:

�V0(y) = V0(y)

{[
�U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
− |∇U(|y − ξ ′

j |)|2
U2(|y − ξ ′

j |)
+ O

(
ε2)]

+
[∇U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
+ O

(
ε3)]2

− [(∇θj (y) + ∇ϕ̃∗
j (y)

) + O(ε)
]2

+ 2i
[(∇θj (y) + ∇ϕ̃∗

j (y)
) + O(ε)

] ·
[∇U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
+ O

(
ε3)]}

= V0(y)

{
�U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
− ∣∣∇θj (y)

∣∣2 + 2i∇θj (y) · ∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

+ O(ε)∇θj (y) + O
(
ε3)∇U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
+ O

(
ε2)

+ i

[
O(ε)∇θj (y) · ∇U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
+ O

(
ε3)∇θj (y) + O(ε)

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

]}
.

We thus can conclude that, for |y − ξ ′
j | � δ

ε
one has

E ≡ �V0 + (
1 − |V0|2

)
V0

= V0

(
O(ε)∇θj (y) + O

(
ε3)∇U(|y − ξ ′

j |)
U(|y − ξ ′

j |)
+ O

(
ε2)

+ i

[
O(ε)∇θj (y)

∇U(|y − ξ ′
j |)

U(|y − ξ ′ |) + O
(
ε3)∇θj (y) + O(ε)∇U

(∣∣y − ξ ′
j

∣∣)])
. (2.11)
j
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From here the desired estimate (2.6) follows. Estimate (2.5) can as well be easily derived from
the explicit expressions.

On the boundary of Ωε , we have

∂V0

∂ν
(y) = ∇V0(y) · ν

= V0(y)
∑

j∈I+∪I−

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

· ν

+ V0(y)i

[ ∑
j∈I+

(∇θj (y) + ∇ϕ̃∗
j (y)

) −
∑
j∈I+

(∇θj (y) + ∇ϕ̃∗
j (y)

)]
· ν.

Since for y ∈ ∂Ωε we have |y − ξ ′
j | > δ

ε
, we derive the estimate

∂V0

∂ν
(y) = V0(y)

[
O

(
ε3) + 0i

]
(2.12)

and the L∞ part of estimate (2.7) is thus proven. Direct differentiation completes the proof.
In order to prove the second part of estimate (2.7), we observe that

∇S2(y) = ∇
( ∑

j∈I+∪I−

∇U(|y − ξ ′
j |)

U(|y − ξ ′
j |)

· ν
)

.

Using again the estimates proved above, we get that, for y ∈ ∂Ωε ,∥∥∇S2(y)
∥∥∞ � Cε4.

This completes the proof. �
3. Formulation of the problem

We shall look for a solution of problem (2.2) in the form of a small perturbation of V0. There
are different ways to write such a perturbation. Since we have a “small” error, as described
in the previous lemma, the equation for the perturbation is a linear one with a right-hand side
given by this error perturbed by a lower order nonlinear term. The mapping properties of this
linear operator are, of course, fundamental in solving for such a perturbation. Not only this, the
nonlinearity must truly remain small if, say, an iteration scheme is produced. A characteristic of
Ginzburg–Landau not present in other singular perturbation problems is its great sensitivity to
the way the perturbation is written, since good mapping properties are not at all indifferent to the
way the nonlinearity is expressed. An obvious way to write this perturbation is an additive way,
say v = V0 + φ. The nonlinearity produced when substituting this ansatz in (2.2) is a polynomial
in φ carrying quadratic and cubic terms. While this looks good in principle, it turns out to be
rather disastrous for any reasonable mapping theory one develops for the linear operator that
appears. Another way to express such a perturbation is v = V0e

iψ with small ψ . As we will see,
this expression adapts very well to the equation, but it is not too good near them: not all functions
close to V0 can be written in this form since this expression for v would leave the zero (vortex) set
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invariant. It turns out to be of great convenience to consider instead an ansatz that combines the
additive one near the vortices with the multiplicative one. This is the way in which we formulate
the problem next.

Let η̃ : R → R be a smooth cut-off function that η̃(s) = 1 for s � 1 and η̃(s) = 0 for s � 2.
Define η(y) to be the function

η(y) =
∑

j∈I+∪I−
η̃

(∣∣y − ξ ′
j

∣∣).
We shall look for solution of (2.2) of the form

v(y) = η(V0 + iV0ψ) + (1 − η)V0e
iψ , (3.1)

where ψ is small, however, possibly unbounded near the vortices. We write ψ = ψ1 + iψ2, with
ψ1 and ψ2 real-valued. Setting

φ = iV0ψ, (3.2)

we shall, however, require that φ is bounded (and smooth) near the vortices.
The ansatz (3.1) is additive, v = V0 + φ, close to the vortices ξ ′

j and multiplicative as soon as
y is at distance greater than 2 from them. In terms of φ the ansatz takes the form

v(y) = η(V0 + φ) + (1 − η)V0e
φ/V0 . (3.3)

Let us observe that

v = V0 + iV0ψ + (1 − η)V0
[
eiψ − 1 − iψ

]
.

Let us denote

γ1(y) = (1 − η)V0
[
eiψ − 1 − iψ

]
, (3.4)

function supported in the set {y ∈ Ωε: |y − ξ ′
j | > 1 for all j}.

A direct computation shows that v is a solution to the equation in (2.2) of the form (3.1) if
and only if

Lε(ψ) = R + N(ψ) in Ωε, (3.5)

∂ψ

∂ν
= S on ∂Ωε, (3.6)

where

R = iV −1
0 E, S = iV −1

0 F (3.7)

with E, F the error terms given by (2.3) and (2.4), Lε(ψ) is the linear operator defined by

Lε(ψ) = �ψ + 2
∇V0 · ∇ψ − 2i|V0|2ψ2 + η

E
ψ (3.8)
V0 V0
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and N(ψ) is the nonlinear operator in ψ defined by

N(ψ) = iV −1
0

[
�γ1 + (

1 − |V0|2
)
γ1 − 2 Re(V̄0iV0ψ)(iV0ψ + γ1)

− (
2 Re(V̄0γ1) + |iV0ψ + γ1|2

)
(V0 + iV0ψ + γ1)

] + (η − 1)
E

V0
ψ,

where γ1 is defined by (3.4). Directly from the form of the ansatz, we see that, in the region
|y − ξ ′

j | > 2 for all j , Eq. (3.5) takes the simple form

Lε(ψ) = R − i(∇ψ)2 + i|V0|2
(
1 − e−2ψ2 + 2ψ2

)
. (3.9)

We intend next to describe in more accurate form the equation above. Let us fix an index 1 �
j � k and let us define αj by the relation

V0(y) = w
(
y − ξ ′

j

)
αj (y), (3.10)

where by w we mean w+ or w− depending whether j ∈ I+ or j ∈ I−, in other words

αj (y) = eiϕN (εy)
∏
l �=j

w
(
y − ξ ′

l

)
. (3.11)

For |y − ξ ′
j | < δ

ε
, there are two real functions Aj and Bj so that

αj (y) = eiAj (y)+Bj (y); (3.12)

furthermore, a direct computation shows that, in this region, one has

∇Aj(y) = O(ε), �Aj (y) = O
(
ε2)

(3.13)

and

∇Bj (y) = O
(
ε3)

, �Bj (y) = O
(
ε4)

. (3.14)

Observe that the estimates (3.13) and (3.14) above hold true in any region of points at a distance
greater than δ

ε
from any ξ ′

l , with l �= j .
Recall that ψ = ψ1 + iψ2 with ψ1, ψ2 real-valued. Then Eq. (3.9) for |y − ξ ′

j | > 2 becomes

�ψ1 + 2

(
∇Bj + U ′(|y − ξ ′

j |)
U(|y − ξ ′

j |)
y − ξ ′

j

|y − ξ ′
j |

)
· ∇ψ1

− 2
(∇Aj + ∇θj (y)

) · ∇ψ2 + 2∇ψ1∇ψ2 − R1 = 0, (3.15)

and

�ψ2 − 2|V0|2ψ2 + 2

(
∇Bj + U ′(|y − ξ ′

j |)
U(|y − ξj |)

y − ξ ′
j

|y − ξ ′
j |

)
· ∇ψ2 + 2

(∇Aj + ∇θj (y)
) · ∇ψ1

+ |V0|2
(
e−2ψ2 − 1 − 2ψ2

) + |∇ψ1|2 − |ψ2|2 − R2 = 0. (3.16)
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Next we shall write the equation of problem (2.2) in terms of the function φ defined in (3.2) for
|y − ξ ′

j | < δ
ε
. It is more convenient to do this in the translated variable z = y − ξ ′

j . We define the
function φj (z) through the relation

φj (z) = iw(z)ψ(y), |z| < δ

ε
, (3.17)

with y = ξ ′
j + z namely

φ(y) = φj (z)αj (z),

where, with abuse of notation, we write αj (z) to mean the function αj (y) defined in (3.10) and
φ in (3.2). Hence, in the translated variable, the ansatz (3.3) becomes in this region

v(y) = αj (z)

(
w(z) + φj (z) + (

1 − η̃(z)
)
w(z)

[
eφj (z)/w(z) − 1 − φj (z)

w(z)

])
. (3.18)

Let us call γj = (1 − η̃)w[eφj /w − 1 −φj/w]. The support of this function is contained in the set
|z| > 1. Let us consider the operator Lε

j defined in the following way: for φj , ψ linked through
formula (3.17) we set

Lε
j (φj )(z) = iw(z)Lε(ψ)

(
ξ ′
j + z

)
. (3.19)

Then another way to say that v solves (2.2) in the region |y − ξ ′
j | < δ

ε
is

Lε
j (φj ) = R̃j + Ñj (φj ), (3.20)

where explicitly Lε
j becomes

Lε
j (φj ) = L0(φj ) + 2

(
1 − |αj |2

)
Re(w̄φj )w + 2

∇αj

αj

· ∇φj

+ 2iφj

∇αj

αj

· ∇w

w
+ η̃

Ej

V
j

0

φj , (3.21)

where L0 is the linear operator defined by

L0(φ) = �φ + (
1 − |w|2)

φ − 2 Re(w̄φ)w, (3.22)

Ej is given by

Ej = �V
j

0 + (
1 − ∣∣V j

0

∣∣2)
V

j

0 ,

where V
j

0 is the function V0 translated to ξ ′
j , namely V

j

0 (z) = V0(z + ξ ′
j ). Observe that, in terms

of αj , Ej takes the expression

Ej = 2∇αj · ∇w + w�αj + (
1 − |αj |2

)|w|2αj w. (3.23)
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The term R̃j in (3.20) is

R̃j = −α−1
j Ej (3.24)

while the nonlinear term Ñj (φj ) is given by

Ñj (φj ) = −
[
�(αjγj )

αj

+ (
1 − ∣∣V j

0

∣∣2)
γj − 2|αj |2 Re(w̄φj )(φj + γj )

− (
2|αj |2 Re(w̄γj ) + |αj |2|φj + γj |2

)
(w + φj + γj )

]
+ (η̃ − 1)

Ej

V
j

0

φj . (3.25)

Taking into account the explicit form of the function αj we get

∇αj (z) = O(ε), �αj (z) = O
(
ε2)

,
∣∣αj (z)

∣∣ ∼ 1 + O
(
ε2)

(3.26)

provided that |y − ξ ′
j | < δ

ε
. With this in mind, we see that the linear operator Lε

j is a small

perturbation of L0.
We intend to solve problem (3.5), (3.6). To do so, we need to analyze the possibility to invert

the operator Lε in order to express the equation as a fixed point problem. It is not expected
this operator to be in general invertible. Indeed, its version Lε

j in the φj -variable is a small

perturbation of the operator L0 in (3.22). When regarded in entire R
2 this operator does have a

kernel: functions wxl
and iw annihilate it. In suitable spaces (for instance L∞), these functions

are known to span the entire kernel, see [26,30]. In a suitable “orthogonal” to this kernel, the
bilinear form associated to this operator turns out to be uniformly positive definite, a main fact
we shall use in our construction in a form established in [10]. Sections 4, 5 are intended to solve
a suitably projected version of problem (3.5), (3.6), for which a linear theory is in order, after
which the resolution comes from a direct application of contraction mapping principle. The next
step is to adjust the points ξ in order to have a solution to the full problem. The latter problem
turns out to be equivalent to a variational problem in ξ which we analyze in Sections 6, 7. The
theorems will be a consequence of solving this finite-dimensional problem in different situations.
We do this in Section 8.

4. Projected linear theory for Lε

Let us consider a small, fixed number δ > 0, and points ξ ∈ Ωk
δ , the set defined in (2.1). We

also call ξ ′
j = ξj /ε. We consider first the following linear problem:

Lε(ψ) = h + c0ε
2χ

Ωε\⋃k
j=1 B(ξ ′

j ,δ/ε)
in Ωε, (4.1)

∂ψ

∂ν
= g on ∂Ωε, (4.2)

∫
Ωε\⋃k B(ξ ′ ,δ/ε)

ψ1 = 0, Re
∫

|z|<1

φ̄j wxl
= 0, for all j, l. (4.3)
j=1 j
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The operator Lε is given by (3.8), ψ1 denotes the real part of ψ and φj is the function defined
from ψ by relation (3.17). Here and in what follows we denote by χA the function defined as

χA(y) = 1 if y ∈ A, χA(y) = 0, otherwise.

We will establish a priori estimates for this problem. To this end we shall conveniently introduce
adapted norms. Let us fix numbers 0 < γ,σ < 1, denote rj = |y − ξ ′

j | and define

‖ψ‖∗ =
k∑

j=1

‖φj‖C2,γ (|z|<2) +
k∑

j=1

‖φj‖C1,γ (|z|<3)

+
k∑

j=1

[‖ψ1‖L∞(rj >2) + ‖rj∇ψ1‖L∞(rj >2)

]

+
k∑

j=1

[∥∥r1+σ
j ψ2

∥∥
L∞(rj >2)

+ ∥∥r1+σ
j ∇ψ2

∥∥
L∞(rj >2)

]
, (4.4)

‖h‖∗∗ =
k∑

j=1

‖h̃j‖C0,γ (|z|<3) +
k∑

j=1

[∥∥r2+σ
j h1

∥∥
L∞(rj >2)

+ ∥∥r1+σ
j h2

∥∥
L∞(rj >2)

]
. (4.5)

Here we have denoted h̃j (z) = iw(z)h(z + ξ ′
j ). Besides, we define

‖g‖∗∗∗ = ε−1‖g1‖L∞(∂Ωε) + ε−2‖∇g1‖L∞(∂Ωε)

+ ε−1−σ ‖g2‖L∞(∂Ωε) + ε−2−σ ‖∇g2‖L∞(∂Ωε). (4.6)

We want to prove the following result.

Lemma 4.1. There exists a constant C > 0, dependent on δ and Ω but independent of c0, such
that for all ε sufficiently small, all points ξ ∈ Ωk

δ and any solution of problem (4.1)–(4.3) we
have

‖ψ‖∗ � C
[|log ε|‖h‖∗∗ + ‖g‖∗∗∗

]
. (4.7)

Proof. We argue by contradiction. Let us assume the existence of sequences ε = εn → 0, points
ξnj → ξ∗

j ∈ Ω with ξ∗
j �= ξ∗

i for all i �= j , and functions ψn, hn, gn which satisfy

Lε
n

(
ψn

) = hn + cnε
2
nχΩεn\⋃k

j=1 B(ξ ′
nj ,δ/εn)

in Ωεn,

∂ψn

∂ν
= gn on ∂Ωεn,

∫
Ω\⋃k B(ξ ′ ,δ/εn)

ψn
1 = 0, Re

∫
|y|<1

φ̄n
j wxl

= 0, ∀j, l,
j=1 nj
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with ∥∥ψn
∥∥∗ = 1, |log εn|‖hn‖∗∗ + ‖gn‖∗∗∗ → 0.

As a first step we shall show that the sequence of numbers cn is bounded. We observe from (3.8)
that on |y − ξ ′

nj | > δ/εn for all j

Re
(
Lε

n

(
ψn

)) = �ψn
1 + O

(
ε3
n

)∇ψn
1 + O(εn)∇ψn

2 ,

and hence, integrating on Ωεn \ ⋃k
j=1 B(ξ ′

nj , δ/εn), we get the estimate

|cn| � C

∣∣∣∣
∫

⋃k
j=1 ∂B(ξ ′

nj ,δ/εn)

∂ψn
1

∂ν
−

∫
∂Ωεn

∂ψn
1

∂ν

∣∣∣∣ + Cεσ
n

(∥∥ψn
∥∥∗ + ‖hn‖∗∗

)

so that

|cn| � C
(∥∥ψn

∥∥∗ + ‖gn‖∗∗∗ + εσ
n ‖hn‖∗∗

)
.

It follows that cn is bounded. We assume then that cn → c∗. Next we will find that actually
c∗ = 0 and that ψn approaches zero. Let us set ψ̃n(x) = ψn(x/εn). It is directly checked, from
the bounds assumed, that given any number δ′ > 0 we have

�ψ̃n
1 = O

(
εσ
n

) + cnχΩεn\⋃k
j=1 B(ξnj ,δ)

in Ω
∖ k⋃

j=1

B
(
ξn
j , δ′),

∂ψ̃n
1

∂ν
= o(1) on ∂Ω,

and, moreover, ∥∥ψ̃n
1

∥∥∞ � 1,
∥∥∇ψ̃n

1

∥∥∞ � Cδ′ .

Passing to a subsequence, we then get that ψ̃n
1 converges uniformly over compact subsets of

Ω \ {ξ∗
1 , . . . , ξ∗

k } to a function ψ̃∗
1 with |ψ̃∗

1 | � 1 which solves

�ψ̃∗
1 = c∗χΩ\⋃k

j=1 B(ξ∗
j ,δ)

in Ω,

∂ψ̃∗
1

∂ν
= 0 on ∂Ω.

The above relation clearly implies that c∗ = 0, and hence that ψ̃∗
1 is constant. But the orthogonal-

ity condition for ψ̃n
1 passes to the limit and this constant must be zero. It follows that ψ̃n

1 goes to
zero uniformly and in C1-sense away from the points ξ∗

1 , . . . , ξ∗
k . This implies in particular that

∣∣ψn
1

∣∣ + ε−1
n

∣∣∇ψn
1

∣∣ → 0 on
∣∣z − ξ ′

jn

∣∣ � δ
,

2εn
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uniformly. Let us now consider the imaginary part of the equation. From (3.8) we argue that

−�ψn
2 + 2ψn

2 = o
(
ε1+σ
n

)
in Ωεn

∖ k⋃
j=1

B

(
ξ ′
nj ,

δ

2εn

)
,

∂ψ̃n
2

∂ν
= o

(
ε1+σ
n

)
on ∂Ωεn,

while globally in this region ψn
2 = O(ε1+σ

n ). A suitable use of barriers yields then that actually
ψn

2 = o(ε1+σ
n ) in the C1-sense, always in this region. Let us consider now a smooth cut-off

function η̂ with η̂(s) = 1 if s < 1
2 , η̂(s) = 0 if s > 1, and define

ψ̂n(z) = η̂

(
εn|z − ξ ′

nj |
δ

)
ψn(z).

Let us compute the equation satisfied by ψ̂n. We observe that, for real and imaginary parts we
get the estimates

∇zη̂∇ψn =
[

o(ε2
n)

O(ε2+σ
n )

]
, ψn�zη̂ =

[
o(ε2

n)

O(ε2+σ
n )

]
,

∇V0

V0
∇zη̂ =

[
o(ε4

n)

O(ε3+σ
n )

]
.

Thus we get

Lε
n

(
ψ̂n

) = o(1)

⎡
⎣

1
r2+σ
j

+ ε2
n

1
r1+σ
j

⎤
⎦ in B

(
ξ ′
nj ,

δ

εn

)
,

ψ̂n = 0 on ∂B

(
ξ ′
nj ,

δ

εn

)
. (4.8)

The following intermediate result provides an outer estimate. For notational simplicity we shall
omit the subscript n in the quantities involved.

Lemma 4.2. There exist positive numbers R0, C such that for all large n

∥∥ψ̂1
∥∥

L∞(rj >R0)
+ ∥∥rj∇ψ̂1

∥∥
L∞(rj >R0)

+ ∥∥r1+σ
j ψ̂2

∥∥
L∞(rj >R0)

+ ∥∥r1+σ
j ∇ψ̂2

∥∥
L∞(rj >R0)

� C
[∥∥φ̂

∥∥
L∞(rj <2R0)

+ o(1)
]
,

where φ̂ = iV0ψ̂ .

Proof. From (3.15) it is directly checked that the following relations hold for rj > 2

−�ψ̂1 = O

(
1

r3

)
∇ψ̂1 + O

(
1

rj

)
∇ψ̂2 + o(1)

(
1

r2+σ
+ ε2

)
, (4.9)
j j
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−�ψ̂2 + 2|αj |2|wj |2ψ̂2 + O

(
1

r3
j

)
∇ψ̂2 = O

(
1

rj

)
∇ψ̂1 + o(1)

1

r1+σ
j

, (4.10)

where αj is given by (3.10) and wj (y) = w(y − ξ ′
j ). Let us call p1, p2 the respective right-hand

sides of Eqs. (4.9) and (4.10). Then we see that

|p2| � B

r1+σ
j

, B = ∥∥rσ
j ∇ψ̂1

∥∥
L∞(rj >1)

+ o(1).

The use of a barrier and elliptic estimates then yield

∣∣∇ψ̂2
∣∣ + ∣∣ψ̂2

∣∣ �
B + ‖ψ̂2‖L∞(rj =2)

r1+σ
j

, 2 < rj <
δ

ε
.

Let us use these estimates to now estimate p1. We get

|p1| � C

r2+σ
j

[∥∥∇ψ̂1
∥∥

L∞(rj >1)
+ ∥∥r1+σ

j ∇ψ̂2
∥∥

L∞(rj >1)
+ o(1)

] + o
(
ε2)

,

and hence

|p1| � B ′

r2+σ
j

+ o
(
ε2)

, B ′ = C
[∥∥rσ

j ∇ψ̂1
∥∥

L∞(rj >1)
+ ∥∥ψ̂2

∥∥
L∞(rj =2)

+ o(1)
]
.

It is easy to see that a supersolution for Eq. (4.9) is given by

ω(z) = B ′

σ 2

(
1 − 1

rσ
j

)
+ o(1)

(
δ2 − r2

j ε2) + ∥∥ψ̂1
∥∥

L∞(rj =1)

and hence ∥∥ψ̂1
∥∥

L∞(rj >1)
� C + ∥∥ψ̂1

∥∥
L∞(rj =1)

.

Now we seek for an estimate for ∇ψ̂1. Let us define ψ̃1(z) = ψ̂1(ξj + R(e + z)) where |e| = 1
and R < δ

ε
. Then for |z| � 1

2 we have

∣∣�ψ̃1
∣∣ � CB ′ + o(1).

Since, also, |ψ̃1| � CB ′ in this region, it follows from elliptic estimates that |∇ψ̃1(0)| � CB ′.
Since R and e are arbitrary, what we have established is∣∣ψ̂1

∣∣ + ∣∣rj∇ψ̂1
∣∣ � C

[∥∥rσ
j ∇ψ̂1

∥∥
L∞(rj >1)

+ ∥∥ψ̂1
∥∥

L∞(1<rj <2)
+ o(1)

]
.

Now,

∥∥rσ
j ∇ψ̂1

∥∥
L∞(rj >1)

� Rσ
0

∥∥∇ψ̂1
∥∥

L∞(1<rj <R0)
+ 1

R1−σ

∥∥rj∇ψ̂1
∥∥

L∞(rj >R0)
,

0



M. del Pino et al.
thus fixing R0 sufficiently large we obtain∣∣ψ̂1
∣∣ + ∣∣rj∇ψ̂1

∣∣ � C
[∥∥ψ̂1

∥∥
C1(1<rj <R0)

+ o(1)
]

for rj > 2,

and also

∣∣ψ̂2
∣∣ + ∣∣∇ψ̂2

∣∣ � C

r1+σ
j

[‖ψ̂‖C1(1<rj <R0)
+ o(1)

]
for rj > 2.

The lemma is proven. �
Continuation of the proof of Lemma 4.1. Let us go back to the contradiction argument. Since
‖ψ‖∗ = 1, and the corresponding portion of this norm of ψ goes to zero on the region rj > δ′/ε
for all j , for any given δ′ > 0, we conclude from the previous lemma that necessarily, for some
index j and m > 0 we have ∥∥φ̂j

∥∥
C2,γ (|z|<R0)

� m, (4.11)

where, as in (3.17),

φ̂j (z) = iw(z)ψ̂
(
ξ ′
j + z

)
.

Let us consider the decomposition

ψ̂
(
ξ ′
j + z

) = ψ̂0(r) + ψ̂⊥(z), r = |z|,

ψ̂0(r) = 1

2πr

∫
|z|=r

ψ̂
(
ξ ′
j + z

)
dσ(z),

and correspondingly write

φ̂j = φ̂0 + φ̂⊥, φ̂0 = iwψ̂0, φ̂⊥ = iwψ̂⊥. (4.12)

From Eq. (4.8) and analyzing the remaining terms, we see that

L0(
φ̂j

) = G in B(0, δ/ε),

φ̂j = 0 on ∂B(0, δ/ε), (4.13)

where G = o(1/|log ε|) for r < 2 and

H = iw−1G = o(1)

[ 1
|log ε|r2+σ + ε2

1
|log ε|r1+σ

]
for r > 1.

Let us decompose G = G0 + G⊥ in analogous way to (4.12). We directly check that

L0(
φ̂⊥) = G⊥ in B(0, δ/ε),
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φ̂⊥ = 0 on ∂B(0, δ/ε).

From this estimate and the fact that ‖ψ̂‖∗ is uniformly bounded we find that

Re
∫

B(0,δ/ε)

Ḡ⊥φ̂⊥ = o(1).

Define B(φ,φ) = Re
∫
B(0, δ

ε
)
L0(φ)φ̄. From the result in Lemma A.1 in Appendix A, it follows

that there exists a number α > 0 such that

α

{ ∫
B(0,δ/ε)

|φ⊥|2
1 + r2

+
∫

B(0,δ/ε)

∣∣Re
(
φ⊥w

)∣∣2 +
∫

B(0,δ/ε)

∣∣∇φ⊥∣∣2
}

� B
(
φ⊥, φ⊥)

, (4.14)

where the orthogonality conditions

Re
∫

B(0,1/2)

φ⊥w̄xj
= 0, j = 1,2,

are used. Now, since B(φ̂⊥, φ̂⊥) = o(1), it follows that∫
B(0,3R0)

∣∣φ̂⊥∣∣2 = o(1)

and elliptic estimates yield φ̂⊥ → 0 in C1-sense in B(0,2R0). Let us consider now φ̂0 = iwψ̂0.
Then

�ψ̂0 + 2
∇w

w
∇ψ̂0 − 2i|w|2ψ̂0

2 = H 0 in B(0, δ/ε),

ψ̂0 = 0 on ∂B(0, δ/ε).

This equation translates into the uncoupled system

�ψ̂0
1 + 2U ′

U

∂ψ̂0
1

∂r
= H 0

1 (r),

�ψ̂0
2 + 2U ′

U

∂ψ̂0
2

∂r
− 2U2ψ̂0

2 = H 0
2 (r)

for 0 < r < δ
ε
. The first equation, plus the boundary condition has the unique solution

ψ̂0
1 (r) = −

δ/ε∫
ds

sU2(s)

s∫
H 0

1 (t)U2(t)t dt.
r 0
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Since

H 0
1 (r) = o(1)

|log ε|r2+σ
+ o

(
ε2)

, r > 1,

H 0
1 (r) = o(1) 1

r
, r < 1, it follows from the above formula that ψ̂0

1 (r) = o(1). On the other hand,

a barrier shows that on ψ̂0
1 we have the estimate ψ̂0

1 (r) = o(1)r . As a conclusion we finally derive

∫
B(0,3R0)

∣∣φ̂0
∣∣2 + ∣∣φ̂⊥∣∣2 = o(1),

and hence, from elliptic estimates, φ̂j → 0 in C1-sense on B(0,2R0). The final conclusion is that
actually ‖ψ‖∗ → 0. This is a contradiction with ‖ψ‖∗ = 1, and the result has been proven. �

We consider now the following linear problem.

Lε(ψ) = h + c0ε
2χ

Ωε\⋃k
j=1 B(ξ ′

j , δ
ε
)
+

∑
j,l

cj l

1

iV0
wxl

(
y − ξ ′

j

)
χ{rj <1/2} in Ωε, (4.15)

∂ψ

∂ν
= g on ∂Ωε, (4.16)

∫
Ωε\⋃k

j=1 B(ξ ′
j ,δ/ε)

ψ1 = 0, Re
∫

|z|<1

φ̄jwxl
= 0, ∀j, l,

φj (z) = iw(z)ψ
(
ξ ′
j + z

)
. (4.17)

Here we have called (with some abuse of notation) w(z) = w±(z) if j ∈ I±. The following is the
main result of this section.

Proposition 4.1. There exists a constant C > 0, dependent on δ and Ω but independent of c0,
such that for all small ε the following holds: if ‖h‖∗∗ + ‖g‖∗∗∗ < +∞ then there exists a unique
solution ψ = Tε(h,g) to problem (4.15)–(4.17). Besides,∥∥Tε(h,g)

∥∥∗ � C
[|log ε|‖h‖∗∗ + ‖g‖∗∗∗

]
. (4.18)

Moreover, the constants clj admit the asymptotic expression

clj = −c−1∗ Re
∫

{|z|<δ/ε}
hj w̄xl

+ O(ε log ε)‖ψ‖∗, (4.19)

where c∗ is the constant in (4.22). Here

hj (z) = αj (z)
−1h

(
ξ ′
j + z

)
.
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Proof. Expressed in terms of φ = iV0ψ , the weak H 1 formulation of this problem can be written
via Riesz’s theorem in the form φ+K(φ) = S where K is a linear, compact operator in the closed
subspace of functions of H 1(Ωε) which satisfy the orthogonality conditions

Re
∫

{|z|<1/2}
φj w̄xl

= 0 for all l, j.

In fact, let us consider the space

H =
{
φ ∈ H0(Ωε)

∣∣∣ Re
∫

{|z|<1/2}
φj w̄xl

= 0 for all l, j

}

endowed with the usual inner product [φ,ψ] = ∫
Ωε

∇φ∇ψ . Problem (4.15)–(4.17) expressed in
weak form is equivalent to that of finding a φ ∈ H such that

[φ,ψ] = 〈(
k(x)φ − s

)
,ψ

〉 ∀ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the opera-
tional form

φ + K(φ) = S

with certain S ∈ H which depends linearly in s and where K is a compact operator in H .
Fredholm alternative then yields the existence assertion, provided that the homogeneous equa-

tion only has the trivial solution. But this is a direct consequence from the estimate in Lemma 4.1
if we establish the a priori estimate (4.19).

In |y − ξ ′
j | � δ

ε
, Eq. (4.15) is equivalent to

Lε
j (φj ) = h̃j +

∑
l

cj lwxl
χ{|z|<1/2}. (4.20)

Here we have denoted h̃j (z) = iw(z)h(ξj + z). Multiplying Eq. (4.20) against w̄xm(y − ξ ′
j ),

integrating all over B(0, δ
ε
) and taking real parts one gets,

Re
∫

B(0,δ/ε)

Lε
j (φj )w̄xm = Re

∫
B(0,δ/ε)

h̃j w̄xm + cjmc∗, (4.21)

where

c∗ =
∫

B(0,1/2)

|wxm |2. (4.22)

The desired result will follow from estimating the left-hand side of equality (4.21).
Integrating by parts, we write
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Re
∫

B(0,δ/ε)

Lε
j (φj )w̄xm = Re

{ ∫
∂B(0,δ/ε)

∂φj

∂ν
w̄xm −

∫
∂B(0,δ/ε)

φj

∂

∂ν
w̄xm

}

+ Re
∫

B(0,δ/ε)

φ̄j

(
Lε

j − L0)
wxm. (4.23)

The boundary integrals can be estimated as

∣∣∣∣Re

{ ∫
∂B(0,δ/ε)

∂φj

∂ν
w̄xm −

∫
∂B(0,δ/ε)

φj

∂

∂ν
w̄xm

}∣∣∣∣ � Cε‖ψ‖∗.

The remaining term in (4.23) can be estimated in the following way:

Re
∫

B(0,δ/ε)

(
Lε − L0)

wxmφ̄j = Re
∫

B(0,δ/ε)

(∇αj∇wxm

+ �αj wxm + O
(
ε2)

wxm

)
φ̄j .

So we get

∣∣∣∣Re
∫

B(0,δ/ε)

(
Lε − L0)

wxmφ̄j

∣∣∣∣ � C

∣∣∣∣∣
δ/ε∫
1

(
ε

r2
+ ε2

r

)
r dr

∣∣∣∣∣‖φ‖∞

� Cε|log ε|‖ψ‖∗.

Combining the above estimates we obtain the validity of (4.19). In particular, it readily follows
that

|cjl | � C
[‖h‖∗∗ + ‖g‖∗∗∗ + ε|log ε|‖ψ‖∗

]
. (4.24)

On the other hand, applying Lemma 4.1 one gets

‖ψ‖∗ � C
[|log ε|‖h‖∗∗ + |log ε||cjl | + ‖g‖∗∗∗

]
. (4.25)

Estimate (4.18) then follows combining (4.24) and (4.25). �
Remark 4.1. The result of Proposition 4.1 holds true, with no significant changes in the proof,
for the Dirichlet problem

Lε(ψ) = h +
∑
j,l

cj l

1

iV0
wxl

(
y − ξ ′

j

)
χ{rj <1/2} in Ωε,

ψ = 0 on ∂Ωε,
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Re
∫

|z|<1

φ̄jwxl
= 0, ∀j, l,

where V0 is defined from wgε instead of wN ε . In fact, proofs go through the same way, without
the need of introducing the parameter c0 or the extra outer orthogonality condition.

5. The projected nonlinear problem

Our goal is to solve problem (3.5), (3.6) for a suitable small ψ . Rather than doing this directly,
we consider first its projected version, for ξ ∈ Ωk

δ ,

Lε(ψ) = N(ψ) + R +
∑
j,l

cj l

1

iV0
wxl

(
x − ξ ′

j

)
χ{rj <1/2}

+ c0ε
2χ

Ωε\⋃k
j=1 B(ξ ′

j ,δ/ε)
in Ωε, (5.1)

∂ψ

∂ν
= 1

iV0

∂V0

∂ν
on ∂Ωε, (5.2)

∫
Ω\⋃k

j=1 B(ξ ′
j ,δ/ε)

ψ1 = 0, Re
∫

|y|<1

φ̄j wxl
= 0, ∀j, l,

φj (z) = iw(z)ψ
(
ξ ′
j + z

)
. (5.3)

We prove

Proposition 5.1. There is a constant C > 0 depending only on δ and Ω such that for all points
ξ ∈ Ωk

δ and ε small problem (5.1)–(5.3) possesses a unique solution ψ with

‖ψ‖∗ � Cε1−σ .

Moreover, automatically one has that c0 = 0.

Proof. As we computed in Lemma 2.1, we see that the boundary condition for ψ becomes in
real and imaginary parts ∂ψ1/∂ν = 0 and

∂ψ2

∂ν
= S2

with

S2(y) = O
(
ε3)

, ∇S2(y) = O
(
ε4)



M. del Pino et al.
uniformly on ∂Ωε . As for the error R = R1 + iR2, Lemma 2.1 yields

R1 = O

(
ε

k∑
j=1

1

r3
j

)
, R2 = O

(
ε

k∑
j=1

1

rj

)

if rj > 1 for all j . Calling R̃j the error in φj -coordinates (see (3.24)) we also find

‖R̃j‖C0,γ (|z|<3) = O(ε),

and then we conclude

‖R‖∗∗ � Cε1−σ .

Here and in what follows C denotes a generic constant independent of ε. We make the following
claim: if ‖ψ‖∗ � Cεσ then ‖N(ψ)‖∗∗ � Cε2−2σ . In fact, for rj > 2 for all j , N(ψ) reduces to

N(ψ)1 = −2∇ψ1∇ψ2, N(ψ)2 = |∇ψ1|2 − |∇ψ2|2 + |V0|2
(
e−2ψ2 + 1 − 2ψ2

)
(see (3.9)). The definitions of the ∗-norm easily yields that in this region

∣∣N(ψ)1
∣∣ � Cε2−2σ 1

r2+σ
j

,
∣∣N(ψ)2

∣∣ � Cε2−2σ 1

r2
j

.

On the other hand, calling Ñj (φj ) the operator in the φj -variable, as defined in (3.25) we see
that

Ñj (φj ) = A1(z,φj ,∇φj ) + A2
(
z,φj ,∇φj ,D

2φj

)
,

where Ai are smooth functions of their arguments, with A2 supported only for |z| < 2, and with

∣∣A1(z,p, q)
∣∣ � C

[|p|2 + |q|2]
,

∣∣A2(z,p, q, r)
∣∣ � C

[|p|2 + |q|2 + |r|2]
near (p, q, r) = (0,0,0). By assumption we have

‖φj‖C2,γ (|z|<2) + ‖φj‖C1,γ (|z|<3) � Cε1−σ ,

from where it is straightforward to check ‖Ñj (φj )‖C0,γ (|z|<2) � Cε2−2σ , and the claim is proven.
On the other hand, it is also true that if ‖ψ�‖∗ � Cε1−σ for � = 1,2 then

∥∥N
(
ψ1) − N

(
ψ2)∥∥∗∗ � Cε

1−σ
2

∥∥ψ1 − ψ2
∥∥∗.

Problem (5.1)–(5.3) is equivalent to the fixed point problem

ψ = Tε

(
N(ψ) + R, iS2

)
,
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where Tε is the linear operator introduced in Proposition 4.1. Since ‖Tε‖ = O(log ε), the above
estimates yield a unique solution with size ‖ψ‖∗ � Cε1−σ . Hence we have proven the existence
of a unique solution in this range for problem (5.1)–(5.3).

Let us observe now the following. If ψ satisfies (5.1)–(5.3) then v given by (3.1) satisfies

�v + (
1 − |v|2)

v = c0ε
2ivχout +

∑
j,l

cj lα
−1
j wxl

(
y − ξ ′

j

)
χ{rj <1/2}.

Here χout = χ
Ωε\⋃k

j=1 B(ξ ′
j ,δ/ε)

. Moreover, if rj < 1
2 then v(ξ ′

j + z) = αj [w(z) + φj ]. Hence,

multiplying the above equation by v̄, using the orthogonality conditions assumed and integrating
by parts we get

−
∫
Ωε

|∇v|2 +
∫
Ωε

(
1 − |v|2)|v|2 = ic0ε

2
∫
Ωε

|v|2χout.

The conclusion is that automatically c0 = 0. The proof is concluded. �
The function ψ(ξ) defined in the above proposition turns out to be continuously differentiable

as we argue next.
Emphasizing the dependence on ξ ′ in the fixed point characterization of ψ , we write

ψ = Tε(ξ
′)

(
R(ξ ′) + N(ψ, ξ ′)

) ≡ M(ψ,ξ).

Somewhat lengthy but straightforward verification yields differentiability of the operator in the
right-hand side of the above equation in the variables (ψ, ξ ′) for the norms considered. In partic-
ular, the fixed point characterization renders continuity of ψ(ξ ′) in the *-norm.

Formally, the partial derivative ∂ξ ′
kl
ψ satisfies

∂ξ ′
kl
ψ = (

∂ξ ′
kl
Tε(ξ

′)
)(

N(ψ, ξ ′) + R(ξ ′)
) + Tε(ξ

′)
(
∂ξ ′

kl

[
N(ψ, ξ ′) + R(ξ ′)

])
,

equation that takes the form(
I − Tε(ξ

′)
(
(DψN)(ψ, ξ)

))[∂ξ ′
kl
ψ] = H(ξ ′) (5.4)

for a continuous function H(ξ ′). The estimate∥∥DψN(ψ, ξ)[ζ ]∥∥∗∗ � Cεσ ′‖ζ‖∗

for some 0 < σ ′ < 1 is found from direct computation. Since we also have ‖Tε‖ � C|log ε|, it
follows that the linear operator on the left-hand side of (5.4) is invertible for all small ε and hence
one can solve for ∂ξ ′

kl
ψ . But this condition is precisely that making the implicit function theorem

applicable, so that ψ is indeed of class C1 as a function of ξ ′.
In order to construct a solution to (3.5) corresponding in original space variable to that pre-

dicted by Theorem 1.1, what we need to do is to find ξ ∈D in such a way that cjl = 0 for all j, l

in (5.1)–(5.3). As we will see, this problem is equivalent to a variational problem neighboring
that of finding critical points of the renormalized energy WN . We carry out this conclusion in the
next two sections.
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6. Role and expressions of renormalized energies

In this section we will compute expansions for the quantities Jε(wN ε) and Jε(wgε). We shall
carry out the computation for the Neumann problem. The Dirichlet case is similar, and it is
essentially contained in [3].

Let us observe that ϕN given by (1.17), (1.18) can be represented as

ϕN (x, ξ,d) =
k∑

j=1

djϕj (x),

where ϕj (x) solves

�ϕj = 0 in Ω,

∂ϕj

∂ν
= − (x − ξj )

⊥ · ν
|x − ξj |2 on ∂Ω,

∫
Ω

ϕj = 0.

Let Γ0 be the outer component of ∂Ω , and let us denote by Γl , l = 1, . . . , n, its inner compo-
nents, if any. Let us observe that

∫
Γl

∂ϕj /∂ν = 0, for all l = 1, . . . , n. These relations imply the

existence of a harmonic conjugate for ϕj , namely a harmonic function ϕ⊥
j that satisfies

∂x2ϕ
⊥
j = ∂x1ϕj , ∂x1ϕ

⊥
j = −∂x2ϕj .

Observe that this harmonic conjugate thus satisfies on each Γl the relation

∂τ

(
ϕ⊥

j (x) + log
1

|x − ξj |
)

= 0

and hence there is a number cl(ξj ) such that

ϕ⊥
j (x) + log

1

|x − ξj | = cl(ξj ) on Γl.

Since harmonic conjugate is defined up to an additive constant, we impose c0(ξj ) ≡ 0. Now, let
φl(x) be the solution of the boundary value problem

�φl = 0 in Ω,

φl = δlj on Γj , ∀j � 0.

Let G0(x, ξ) denote the Green’s function for the problem

−�G0 = 2πδ(x − ξj ) in Ω,

G0(x, ξ) = 0 on ∂Ω,
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and H0(x, ξ) its regular part,

H0(x, ξ) = log
1

|x − ξ | − G0(x, ξ).

Then we can represent

ϕ⊥
j (x) + log

1

|x − ξj | =
n∑

l=1

cl(ξj )φl(x) + G0(x, ξj ).

The existence of a harmonic conjugate for ϕ⊥
j implies that the mean value of its normal derivative

must be zero on each component Γl , l � 1. This yields the relations

cl(ξj )

∫
Γl

∂νφl(x) +
∫
Γl

∂νG0(x, ξj ) = 0.

We observe that the following identity holds:

2πφl(ξ) =
∫
Γl

∂νG0(x, ξj ).

Then if we set

γl ≡ 2π

( ∫
Γl

∂νφl

)−1

,

we get cl(ξj ) = γlφl(ξ). Let us denote

G(x, ξ) =
n∑

l=1

γlφl(ξ)φl(x) + G0(x, ξ), (6.1)

where the sum is understood to be zero if the domain is simply connected. Consistently we denote

H(x, ξ) = −
n∑

l=1

γlφl(ξ)φl(x) + H0(x, ξ). (6.2)

Let us write W(x − ξj /ε) = U(rj /ε)e
iθj where U is the solution of (1.11) and (rj , θj ) are polar

coordinates relative to ξj . We decompose

wN ε(x) = Uε(x)eiΦ(x),

where Φ = ∑k
j=1 dj (ϕj + θj ) and Uε(x) = ∏k

j=1 U(rj /ε). Then we have

∫
|∇wN ε|2 =

∫
|∇Uε|2 +

∫
|∇Φ|2U2

ε = I1 + I2.
Ω Ω Ω
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Now,

I1 = k

∫
R2

|∇U |2 + O
(
ε2)

and, denoting Gj(x) = G(x, ξj ), we have

I2 =
∫
Ω

∣∣∣∣∣
k∑

j=1

dj∇Gj

∣∣∣∣∣
2

U2
ε =

∑
i �=j

∫
Ω

didj∇Gi∇GjU
2
ε +

k∑
j=1

∫
Ω

|∇Gj |2U2
ε = I21 + I22.

We easily compute that

∫
Ω

∇Gi∇Gl

(
1 − U2

ε

) = O(ε),

while, integrating by parts,

∫
Ω

∇Gi∇Gj = 2πG(ξi, ξj ),

since
∫
∂Ω

∂νGiGj = 0. In fact, we have
∫
Γl

∂νGi = 0 for all l �= 0 while Gj is constant on Γl .
Besides, Gj = 0 on Γ0. It follows that

I21 = 2π
∑
i �=j

didjG(ξi, ξj ) + O(ε).

Now, consider a small number δ � ε, to be fixed later. We have

∫
Ω

|∇Gj |2U2
ε =

∫
Bδ(ξj )

|∇Gj |2U2
ε +

∫
Ω\Bδ(ξj )

|∇Gj |2 + O
(
δ−2ε2)

.

Now,

∫
Ω\Bδ(ξj )

|∇Gj |2 =
∫

∂Bδ(ξj )

Gj∂νGj

=
∫

∂Bδ(ξj )

(
−H(x, ξj ) + log

1

δ

)(
1

δ
− ∂νH(x, ξj )

)

= −2πH(ξj , ξj ) + 2π log
1 + O

(
δ2)

.

δ
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On the other hand, we have that

∫
Bδ(ξj )

|∇Gj |2U2
ε = O

(
δ2) + 2π

δ∫
0

U2(r/ε)
dr

r
= O

(
δ2) + c0 + 2π log

δ

ε
,

where c0 is an universal constant. Let us make now the choice δ = ε1/2. Combining the above
expansions we then get

I22 = −
k∑

j=1

2πH(ξj , ξj ) + 2kπ log
1

ε
+ c1 + O(ε)

and in total

Jε

(
wN ε(·, ξ,d)

) = kπ log
1

ε
+ WN (ξ,d) + c2 + O(ε), (6.3)

where

WN (ξ,d) = π
∑
i �=j

didjG(ξi, ξj ) −
k∑

j=1

πH(ξj , ξj ) (6.4)

and c1, c2 are absolute constants which depend on the number k of points. Actually examining
the expressions in the expansions above we also see that it holds in the C1-sense, namely

∇ξ Jε

(
wN ε(·, ξ,d)

) = ∇ξWN (ξ,d) + O(ε). (6.5)

Expression (6.4) for the renormalized energy in the Neumann problem was derived in [18] as
a tool to analyze formally dynamics of vortices, in the simply connected case, G = G0. Also in
the simply connected situation, it appears in the analysis in [33]. Estimate (6.3) is also pushed to
the C1 and C2 orders in [31,33]. Examining the above proof, we observe that WN corresponds
precisely to expression (1.19).

As we have mentioned, the corresponding computation for the Dirichlet problem is basically
contained in [3]. In such a case, the following expansion is found:

Jε

(
wgε(·, ξ,d)

) = kπ log
1

ε
+ Wg(ξ,d) + c3 + O(ε), (6.6)

where now Wg is given by formula (1.8), which corresponds to the following explicit description.
Let Φ be the unique solution of the problem

�Φ = 2π

k∑
j=1

dj δ(x − ξj ) in Ω, (6.7)

∂Φ

∂ν
= g × gτ on ∂Ω,

∫
Φ = 0, (6.8)
Ω
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and set

R(x) = Φ(x) −
k∑

j=1

dj log |x − ξj |. (6.9)

Then

Wg(ξ,d) = −π
∑
l �=j

dldj log |ξi − ξj | − π

k∑
j=1

djR(ξj ) + 1

2

∫
∂Ω

Φ(g × gτ ). (6.10)

7. Variational reduction

Let us consider the equations cjl(ξ) = 0 in (5.1)–(5.3) for the solution ψ = ψ(ξ) predicted
by Proposition 5.1. We denote by v(ξ) the ansatz (3.1) for this ψ and consider the functional

Pε(ξ) = Jε

(
v(ξ)

)
.

Next proposition states that the above system of equations corresponds to finding critical points
of Pε . Moreover, asymptotics of Pε in terms of renormalized energy hold in C1-sense.

Proposition 7.1.

(a) If ∇ξP (ξ) = 0 then cjl(ξ) = 0 for all j, l.
(b) We have the validity of the expansion

∇ξPε(ξ) = ∇ξWN (ξ,d) + O
(
ε1−σ

)
, (7.1)

uniformly on ξ ∈ Ωk
δ .

Proof. We write ξ = (ξ1, . . . , ξk). We also denote ξj = (ξj1, ξj2) and ξ ′
j = (ξ ′

j1, ξ
′
j2

). We have

−∂ξ ′
j0i0

Pε(ξ) = −J ′
ε

(
v(ξ)

)[vξ ′
j0 l0

] = Re
∫
Ωε

[
�v + (

1 − |v|2)
v

]
v̄ξ ′

j0l0

=
∑
l,j

cjl Re
∫

|z|<1

αj

|αj |2 wxl
(z)v̄ξ ′

j0 l0

(
ξ ′
j + z

)
.

Now, near ξ ′
j we have

vξj0l0
(y) = ∂ξ ′

j0 l0

[
αj

(
y − ξ ′

j , ξ
)(

w
(
y − ξ ′

j

) + φj

(
y − ξ ′

j , ξ
))]

= (∂ξ ′ αj )(w + φj ) + αj (∂ξ ′ φj ) − δjj0∂zl
(αj w + αjφj ).
j0i0 j0 l0 0
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We observe that both ∂zαj and ∂ξ ′αj are functions of size O(ε) in the region |z| < 1
2 . As for φj

and ∂zφj , they are of order O(ε1−σ ). On the other hand, we know that

Re
∫

B(0,1/2)

φj (z, ξ)w̄z(z) dz = 0 and hence Re
∫

B(0,1/2)

∂ξ ′
j0 l0

φj (z, ξ)w̄xl
(z) dz = 0.

It holds as well

Re
∫

B(0,1/2)

w̄zl0
wzl

= c∗δl0l ,

where c∗ = ∫
B(0,1/2)

|wz1 |2 dz. Combining the above facts we then find

−∂ξ ′
j0 l0

Pε(ξ) =
∑
l,j

cjl

[
c∗δj0l0 + O

(
ε1−σ

)]
,

from where part (a) follows.
According to Proposition 4.1, we have the validity of the estimate

c∗cij = Re
∫

{|z|<δ/ε}

(
Ñj (φj ) + R̃j

)
w̄xi

+ O
(
ε2−2σ

)
,

cf. (3.24) and (3.25). On the other hand,

Re
∫

{|z|<δ/ε}

(
Ñj (φj ) + R̃j

)
w̄xi

=
∫
Ωε

[
�V0 + (

1 − |V0|2
)]

(V0)ξ ′
j i

+ O
(
ε2−2σ

)

= ∂ξ ′
j i
Jε(V0) + O

(
ε2−2σ

)
.

But, according to expansion (6.5), we see that

∂ξ ′
j i
Jε(V0) = ε∂ξji

WN (ξ,d) + O
(
ε2−2σ

)
.

Combining the above estimates we find

∇ξPε(ξ) = ∇ξWN (ξ,d) + O
(
ε1−σ

)
and the proof is complete. �
8. Proof of main results

8.1. Proof of Theorem 1.1

Let us first consider the case of the Neumann problem. Let ψ = ψ(ξ) be the solution of
problem (5.1)–(5.3) predicted by Proposition 5.1. Then the function v = v(ξ) given by (3.1) is



M. del Pino et al.
a solution to (2.2) if we adjust the points ξ to that cjl(ξ) = 0 in (5.1)–(5.3). Proposition 7.1(a),
says that this is equivalent to find a critical point for P(ξ) = Jε(v(ξ)). Again Proposition 7.1(b),
gives the validity of expansion (7.1), namely

∇ξP (ξ) = ∇ξWN (ξ,d) + O
(
ε1−σ

)
uniformly on Ωk

δ . Now, by assumption, the function WN (·,d) exhibits a non-trivial critical points
situation in Ωk

δ . By definition, then also P(ξ) has a critical point the same region. This gives
(1.22). The fact that (1.21) holds true follows by construction.

For the Dirichlet problem the proof is basically identical, taking into account Remark 4.1 for
the associated linear problem.

8.2. Proof of Theorem 1.2

For part (a), we consider the choice k = 1, d= (1). According to Theorem 1.1, it suffices to
establish the presence of a set D ⊂ Ω where WN (ξ,d) has a non-trivial critical point situation.
We observe that in this case WN reduces just to

WN (ξ,d) = −πH0(ξ, ξ) + π

n∑
l=1

γlφl(ξ)2,

where the second sum appears only if the domain is not simply connected. A standard fact on
Robin’s function H0(ξ, ξ) is that it approaches +∞ as ξ gets close to the boundary ∂Ω . The
other term, in the above expression remains instead bounded. Thus if we choose

D = {
ξ ∈ Ω | dist(ξ, ∂Ω) > δ

}
with δ sufficiently small, we obtain that

sup
ξ∈D

WN (ξ,d) > sup
ξ∈∂D

WN (ξ,d),

and a maximum situation for WN is present in D, which certainly remains for any small C1-
perturbation, and part (a) is proven.

For part (b) the argument is similar. Now let us take k = 2 and d= (1,−1). Then WN now
becomes

WN (ξ,d) = π

[
−G(ξ1, ξ2) −

2∑
i=1

H(ξi, ξi)

]
.

A maximum situation is now present in the region

D = {
ξ ∈ Ω2 | dist

(
ξ, ∂Ω2)

> δ, |ξ1 − ξ2| > δ
}

if δ is chosen small enough. Moreover, if δ is very small, it is easily argued that D is topologically
equivalent to the region Ω × (Ω \ {P }), with P a point in Ω . The Ljusternik–Schnirelmann
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category of this region is at least two. Using that the boundary values are close to −∞, together
with the maximum value we have a second critical value,

sup
Cat(A)�2

inf
A

WN , A ⊂ D.

This second critical value does persist under small C1 perturbations. If these two values are
distinct, then two distinct critical points (modulo permutation of coordinates) are present. If for
the perturbation they turn out to be equal, then standard theory gives that infinitely many critical
points exist. This concludes the proof.

Now, for part (c), we consider the choice of k = m � 2 and d = 1 = (1, . . . ,1). According
to the result of Theorem 1.1, it is sufficient to establish that WN (ξ,1) has a non-trivial critical
value in some open set D, compactly contained in Ωk . Our choice of D is just given by

Dδ = {
ξ ∈ Ωm | dist

(
ξ, ∂Ωm

)
> δ

}
,

where δ is a small positive number yet to be chosen. We observe that with no ambiguity, we may
set WN (ξ) = +∞ if ξi = ξj for some i �= j .

Let Ω1 be a bounded non-empty component of R2 \ Ω̄ , and consider a closed, smooth Jordan
curve γ contained in Ω which encloses Ω1. Let S to be the image of γ , and B = S×· · ·×S = Sk .

Then define

C = sup
Φ∈Γ

inf
z∈B

WN
(
Φ(z),1

)
, (8.1)

where Φ ∈ Γ if and only if Φ(z) = Ψ (1, z) with Ψ : [0,1]×B → D continuous and Ψ (0, z) = z.
We want to prove that this number defines a critical value for WN in D, and besides, for any

small C1-perturbation of this function. This is a consequence of the following two intermediate
facts.

Claim 1. There exists K > 0, independent of the small number δ used to define Dδ such that
C � K .

Claim 2. Given K > 0, there exists δ > 0 such that if (ξ1, . . . , ξm) ∈ ∂Dδ , and |WN (ξ1, . . . ,

ξm,1)| � K , then there is a vector τ , tangent to ∂Dδ such that

∇WN (ξ1, . . . , ξm,1) · τ �= 0.

From these facts the quantity C is finite, and from a standard deformation argument, it must
define a critical value in Dδ . These conditions do survive for any small C1-perturbation of WN
and hence Theorem 1.1 applies to yield the desired result.

To establish Claim 1, we need to prove the existence of K > 0 independent of small δ such
that if Φ ∈ Γ , then there exists z̄ ∈ B with

WN
(
Φ(z̄),1

)
� K. (8.2)
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Let us assume that 0 ∈ Ω1 and write

Φ(z) = (
Φ1(z), . . . ,Φm(z)

)
.

Identifying the components of the above m-tuple with complex numbers, we shall establish the
existence of z̄ ∈ B such that

Φj(z̄)

|Φj(z̄)| = e
2jπi
m for all j = 1, . . . ,m. (8.3)

Clearly in such a situation, there is a number μ > 0 depending only on m and Ω such that∣∣Φj(z̄) − Φl(z̄)
∣∣ � μ.

This, and the definition of WN clearly yields the validity of estimate (8.2) for a number K only
dependent of Ω . To prove (8.3), one builds, based on the coordinates (8.3), a map of the torus T m,
which can be extended naturally to a map of a solid torus embedded in R

m+1 which is homotopic
to the identity. By a degree argument this map turns out to be onto which inherits in particular
the existence of z̄ as in (8.3).

As for Claim 2, let us assume the opposite, namely the existence of a sequence δ → 0 and of
points ξ = ξδ for which ξ ∈ ∂D and such that

∇ξi
WN (ξ1, . . . , ξm,1) = 0 if ξi ∈ Ωδ, (8.4)

and

∇ξi
WN (ξ1, . . . , ξm,1) · τi = 0 if ξi ∈ ∂Ωδ, (8.5)

for any vector τi tangent to ∂Ωδ at ξi , where Ωδ = {x ∈ Ω: dist(x, ∂Ω) > δ}.
From the assumption it follows that there is a point ξl ∈ ∂Ωδ , such that H(ξl, ξl) → ∞ as

δ → 0. Since the value of WN remains uniformly bounded, necessarily we must have that at
least two points ξi and ξj that are becoming close. Let δn = 1

n
, ξn = (ξn

1 , . . . , ξn
m) ∈ Ωδn be a

sequence of points such that (8.4), (8.5) hold, and

ρn = inf
i �=j

∣∣ξn
j − ξn

i

∣∣ → 0, as n → ∞.

Without loss of generality, we can assume that ρn = |ξn
1 − ξn

2 |. We define

xn
j = ξn

1 − ξn
j

ρn

. (8.6)

Clearly there exists k, 2 � k � m, such that

lim
n→∞

∣∣xn
j

∣∣ < ∞, j = 1, . . . , k and lim
n→∞

∣∣xn
j

∣∣ = ∞, j > k.

For j � k we set

x̃j = lim xn
j .
n→∞
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We consider two cases:

(1) either

dist(ξn
1 , ∂Ωδn)

ρn

→ ∞;

(2) or there exists c0 < ∞ such that for almost all n we have

dist(ξn
1 , ∂Ωδn)

ρn

< c0.

Case (1). It is easy to see that in this case we actually have

dist(ξn
j , ∂Ωδn)

ρn

→ ∞, j = 1, . . . , k.

Furthermore, points ξn
1 , . . . , ξn

k are all interior to Ωδn hence (8.4) is satisfied for all partial deriv-
atives ∂ξlj

, j � k. Define

W̃N (x1, . . . , xm) = WN (ξ1 + ρnx1, . . . , ξ1 + ρnxm,1).

We have for all l = 1,2, j = 1, . . . , k,

∂xlj
W̃N (x) = ρn∂ξlj

WN
(
ξn

1 + xρn,1
)
.

Then at x̃ = (x̃1, . . . , x̃k,0, . . . ,0) we have

∂xlj
W̃N (x̃) = 0.

On the other hand, using the fact that

∣∣∇xH(x, y)
∣∣ + ∣∣∇yH(x, y)

∣∣ � C1 min

{
1

|x − y| ,
1

dist(y, ∂Ω)

}
+ C2 (8.7)

and letting ρn → 0, we get

lim
n→∞ρn∂ξlj

WN
(
ξn

1 + xρn

) = −4
∑

i �=j, i�k

∂xlj
log

1

|x̃j − x̃i | = 0.

This last equality is true for any j � k, l = 1,2. On the other hand, consider the function

Ψk(x1, . . . , xk) = −4
∑
i �=j

log |xi − xj |

defined for xj ∈ H = {(x1, x2): x1 � 0}. Denote I+ the set of indices i for which x1
i > 0 and I0

that for which x1
i = 0. Then explicit computations show that, either

∇xi
Ψk(x1, . . . , xk) �= 0, for some i ∈ I+, (8.8)



M. del Pino et al.
or

∂

∂xi2
Ψk(x1, . . . , xk) �= 0, for some i ∈ I0. (8.9)

This fact proves impossibility of the case (1) above.
It remains to consider:
Case (2). In this case there exists a constant C such that

dist(ξn
j , ∂Ωδn)

ρn

� C, j = 1, . . . , k.

If there points ξn
j are all interior to Ωδn then after scaling with ρn we argue as in case (1) and we

reach a contradiction with the fact that the function ϕ̄k given by

ϕ̄k(x1, . . . , xk) = 4
k∑

i=1

log
1

|xi − x̄i | + 4
∑
i �=j

log
|xi − xj |
|xi − x̄j |

has the property that

∇ϕ̄k(x1, . . . , xk) �= 0

for any k distinct points xi ∈ int(H).
Therefore, if case (2) is to hold, we assume that for certain j = j∗ we have

dist
(
ξn
j∗, ∂Ωδn

) = 0.

Assume first that there exists a constant C such that δn � Cρn. Consider the following sum
(summation here is taken with respect to all i �= j ):

sn =
∑
i �=j

G
(
ξn
j , ξn

i

)
.

The leading part, as n → ∞, of sn comes just from the points that become close as n → 0. We
can isolate groups of those points according to the asymptotic form of their mutual distances. For
example we can define:

ρ1
n = inf

i �=j, i,j>k

∣∣ξn
j − ξn

i

∣∣,
and consider those points whose mutual distances are O(ρ1

n), and so on. For each group of those
points (also those with indices higher than k) the argument given above in the case (1) applies.
This means that not only those points become close to one another but also that their distance to
the boundary ∂Ωδn is comparable with their mutual distance. Applying the asymptotic formula
for the Green’s function we see that

sn = O(1), as n → ∞. (8.10)
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Since |ξn
j∗ − ξ̄ n

j∗ | � 2δn (because ξn
j∗ ∈ ∂Ωδn ) we have that

∑
j

H
(
ξn
j , ξn

j

) → ∞, as n → ∞,

which together with (8.10) contradicts the fact that WN (ξn,1) is bounded uniformly in n.
Finally assume that ρn = o(δn). In this case after scaling with ρn around ξn

j∗ and arguing
similarly as in the case (1) we get a contradiction with (8.8), (8.9) since those points ξn

j that are
on ∂Ωδn , after passing to the limit, give rise to points that lie on the same straight line. Thus
case (2) cannot hold.

In summary we reached a contradiction and Claim 2 follows. The proof is complete.

8.3. Proof of Theorem 1.3

For part (b), let us consider now k = d and d = (1, . . . ,1). Topologically, the domain D of
Wg is equivalent to

Ω × (
Ω \ {P1}

) × · · · × (
Ω \ {P1, . . . ,Pd}),

where the Pi ’s are distinct points of Ω . Since Wg approaches in this situation +∞ near the
boundary, h = Cat(D) critical values cj can be defined as

cj ≡ inf
Cat(A)�j

sup
A

Wg, A ⊂ D.

If these values are all distinct, the same is true for any small C1-perturbation, and at least k

critical points, distinct up to permutations of coordinates, are present. If two of them coincide,
automatically an infinite number of critical points is present. If Ω is simply connected, h is at
least equal to the category of the (d − 1)-torus, namely h � d . If Ω is not simply connected this
category is at least that of the d-torus, namely d + 1. This concludes the proof.

For part (a) we consider k = 2 and d= (+1,−1). In this case we consider Neumann Green’s
function, solution of

−�xG(x, ξ) = 2π

(
δ(x − ξ) − 1

|Ω|
)

in Ω,

∂G

∂νx

= 0 on ∂Ω,

∫
Ω

G = 0,

and write H(x, ξ) = G(x, ξ) + log |x − ξ |. Then, from representation (6.10) we find that

Wg(ξ,d) = −2πG(ξ1, ξ2) − πH(ξ1, ξ1) − πH(ξ2, ξ2) + Θ(ξ1, ξ2),

where Θ and its derivatives are bounded. Asymptotic behavior of this function when points ξi

are either close to the boundary or to each other is analogous to that of the function WN in the
proof of Theorem 1.2(c) for m = 2 except that here it carries opposite sign. The same arguments
as in that proof then apply to construct a non-trivial critical point situation for Wg and the desired
result follows.
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Appendix A

In this appendix we will prove an estimate leading to formula (4.14).
Let us consider the bilinear form associated to the operator L0 in (3.22) with w(x) =

U(r)eidθ , d = ±1.

B(φ,φ) =
∫
R2

|∇φ|2 −
∫
R2

(
1 − U2)|φ|2 + 2

∫
R2

∣∣Re(w̄φ)
∣∣2

,

defined in its natural space H of all locally-H 1 functions with

‖φ‖H =
∫
R2

|∇φ|2 +
∫
R2

(
1 − U2)|φ|2 +

∫
R2

∣∣Re(w̄φ)
∣∣2

< +∞.

Let us consider, for a given φ, its associated ψ defined by the relation

φ = iwψ. (A.1)

Let us decompose

ψ = ψ0(r) +
∑
m�1

[
ψ1

m(x) + ψ2
m(x)

]
, (A.2)

where

ψ0 = ψ01(r) + iψ02(r),

ψ1
m = ψ1

m1(r) cos(mθ) + iψ1
m2 sin(mθ),

ψ2
m = ψ2

m1(r) sin(mθ) + iψ2
m2 cos(mθ).

This bilinear form is non-negative, as it follows from various results in [3,4,26,27,34], see
also [10,29].

We want to prove the following fact.

Lemma A.1. There exists a constant C > 0 such that if φ ∈ H decomposes like in (A.1), (A.2)
with ψ0 ≡ 0, and satisfies the orthogonality conditions

Re
∫

B(0,1/2)

wxl
φ̄ = 0, l = 1,2,

then

B(φ,φ) � C

∫
R2

|φ|2
1 + r2

. (A.3)
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Proof. Let φ be as in the statement of the theorem. We shall establish the above result assuming
first that φ is smooth, compactly supported and that its support does not contain zero. Then we
have the identity

B(φ,φ) = B(iwψ, iwψ) = B0(ψ,ψ),

where, explicitly,

B0(ψ,ψ) =
∫
R2

|∇ψ |2U2 +
∫
R2

|ψ2|2U4 − 2
∫
R2

∇θ · [ψ1∇ψ2 − ψ2∇ψ1]U2.

The function ψ satisfies then the orthogonality conditions

Re

{ ∫
B(0,1/2)

ψ

[
d

∂θ

∂xj

+ i

U

∂U(r)

∂xj

]
U2(r)

}
= 0, (A.4)

j = 1,2. It is easy to check that B0 separates Fourier modes. Since ψ0 = 0 we get

B0(ψ,ψ) =
∑
m�1

[
B0

(
ψ1

m,ψ1
m

) +B0
(
ψ2

m,ψ2
m

)]
.

Expressed in terms of ψ
j
m the bilinear forms take form

B0(ψ,ψ) = π
∑

j=1,2

∑
m�1

B
j
m

(
ψ

j
m,ψ

j
m

)
,

where for a radial R
2-valued function ϕ = ϕ(r) we denote

B
j
m(ϕ,ϕ) =

∞∫
0

|ϕ′|2U2r dr + 2

∞∫
0

ϕ2
2U4r dr +

∞∫
0

B
j
mϕ · ϕU2r dr,

where

B
j
m = 1

r2

(
m2 2(−1)jm

2(−1)jm m2

)
.

Then we need to show that

B0(ψ,ψ) � C
∑
m�1

∞∫
0

[|ψm1|2 + |ψm2|2
]U2(r)r dr

1 + r2
(A.5)

under assumption (A.4).
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Claim 1. There exists C > 0 such that

B
j

1(ϕ,ϕ) � C

∞∫
0

|ϕ|2r dr

1 + r2
, j = 1,2, (A.6)

for each function ϕ radial and compactly supported which satisfies

1/2∫
0

ϕ · Z0U
2r dr = 0, (A.7)

where

Z0(r) = (d/r,−U ′/U).

In [10, Proposition 2.1], it was proven the identity

B
j

1(ϕ,ϕ) =
∞∫

0

∣∣ϕ′ − A(r)ϕ
∣∣2

U2(r)r dr, (A.8)

where A(r) is a 2 × 2 symmetric matrix of functions for which a function ϕ satisfies

ϕ′ = A(r)ϕ,

∞∫
0

|ϕ|2U2r dr < +∞,

if and only if ϕ is a constant multiple of the function Z0(r).
Next, let us notice that for a sufficiently large R and M we have

R∫
0

Mϕ2
2r dr +

R∫
0

(|ϕ1|2 − 4ϕ1ϕ2 + |ϕ2|2
)U2

r2
r dr � c

R∫
0

|ϕ|2r dr,

with certain constant c > 0. It then follows that there exist constants c1, c2 > 0 such that

B
j

1(ϕ,ϕ) � c1

∞∫
0

|ϕ|2 r dr

1 + r2
− c2

R∫
0

ϕ2
2r dr. (A.9)

Now, if (A.6) were not true then for a sequence of εn → 0 and functions ϕn satisfying (A.7) we
would have

∞∫ ∣∣ϕn
∣∣2 r dr

1 + r2
= 1,
0
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while simultaneously B
j

1(ϕ
n,ϕn) → 0. Estimate (A.9) additionally implies that if we set

‖ϕ‖2
H ∗ ≡

∞∫
0

(
|ϕ′|2 + |ϕ|2

r2
+ U2|ϕ2|2

)
U2r dr,

then ϕn is bounded in this space. In particular we may assume the this sequence has a weak limit
ϕ̃ ∈ H ∗. Moreover, this function satisfies, thanks to (A.8), ϕ̃′ = A(r)ϕ̃ and hence ϕ̃ = C0Z0. But
also

1/2∫
0

ϕ̃ · Z0U
2r dr = 0 (A.10)

and then ϕ̃ = 0. But from (A.9) we infer that ϕ̃ �= 0. We have reached a contradiction that com-
pletes the proof of the claim.

Claim 2. For each m > 1 we have

B
j
m(ϕ,ϕ) � C

∞∫
0

|ϕ|2r dr

1 + r2
, j = 1,2, (A.11)

for each radial function ϕ.

To prove this we just observe that

(
B

j
m − B

j

1

)
ϕ · ϕ � (m − 1)2

r2
|ϕ|2,

hence, using B
j

1(ϕ,ϕ) � 0, one proves the claim.
Going back to the proof of (A.3) we see that from the above claims we readily obtain (A.5).

To establish the final result, lifting the requirement that φ vanishes near the origin we argue by
approximation using a shrinking sequence of cut-off functions, as similarly done in [10]. This
concludes the proof. �
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